Plant Below-Ground Habitat and Stable Layer of Plant Species in Habitat
-
摘要: 植物地境是其生境的重要组成部分.地境结构的系统分析应作为探索植物与其地境生态关系的重要手段之一.植物地境具有鲜明的耗散结构特征, 内部的宏观稳定性和层次性是适应外界环境的自组织结果, 并与植物根群的“层片”结构相契合.每一“层片”代表一个特定的地下小环境.若地境具有多个“层片”, 说明该地境拥有可被多种植物利用的多样小环境.根群作为根系的主功能区, 是联系植物与地境的纽带.与植物的根系相比, 根群的“层片”现象更清晰.通过根群的“层片”, 不同植物实现资源分割, 避免过激竞争, 能够长期共存.基于地境耗散结构特征分析和各物种根群所处深度范围的统计结果, 首次建立了物种地境稳定层的概念.某一物种根群所处的位置即为该物种的地境稳定层.物种地境稳定层可作为地境生态功能分层的基本单位.较之地境全剖面各指标的平均值, 地境稳定层内理化指标组态更为真实地反映了植物生存的地下环境, 可用以确定物种的生存域; 不同植物的生理和生活习性是对其稳定层内指标组态量值及动态变化规律的一种响应; 地境所能提供的稳定层的多寡及组态对地表植物群落的结构具有一定的控制作用; 地境稳定层的消失和产生, 可导致对应物种的消亡和入侵, 造成植物群落的演替.Abstract: Plant below-ground habitat is an important part of the plant habitat, and the systemic analysis of its structure should be emphasized in seeking for the regulations of the ecological relationship between plant and its habitat. Remarkable characteristics of the dissipative structure are discovered in the plant below-ground habitat, made up of many layers displaying macroscopic stability as a result of the self-organization. This layered structure of the plant below-ground habitat is well consistent with the synusium of the root masses. This synusium allows us to predict that each layer means one special below-ground little living environment for the root mass of the plant species, and if the below-ground habitat is made up of many such layers, it would provide various little below-ground living environments for different plant species. In the analysis, the root mass of the plant, defined as the part of the roots performing the major function of absorbing soil resources, is the linchpin between the plant and its below-ground habitat. Compared with the root system, the synusium of the root masses (among) different plants is clearer, by which, different plants can partition the resources in different deep layers to avoid intensive competition and coexist for long term. Based on the analysis of the dissipative structure of plant below-ground habitat and statistical results about the depth of the species root mass, the concept "stable layer of plant species in below-ground habitat" (SLPSBH) is built, which can be determined by the position of the root mass and used as the basic unit for layering the plant below-ground habitat in view of its ecological function. With the concept, we may predict that (1) the configuration of physical and chemical indexes in the stable layer can characterize the below-ground living environment of the plant more truly than the averages of the indexes in whole soil profile, (2) some life habits and physiological characteristics of the plant species is built on long-term adapt to the value and dynamic of the configuration in its stable layer, (3) it may be how many SLPSBH can be provided in below-ground habitat for different plant species that determines the structural features of the plant community, and (4) the plant species which SLPSBH exists no longer would disappear from the community, while the new comers may invade for they can find their SLPSBH, leading to the succession of the plant community.
-
[1] Bai, Y.F., Xu, Z.X., Li, D.X., 2002. On the small scale spatial heterogeneity of soil moisture, carbon and nitrogen in Stipa communities of the Inner Mongolia plateau. Acta Ecologica Sinica, 22(8): 1215-1223(in Chinese with English abstract). [2] Bengough, A.G., Croser, C., Pritchard, J., 1997. A biophysical analysis of root growth under mechanical stress. Plant and Soil, 189: 155-164. doi: 10.1023/A:1004240706284 [3] Cairns, M.A., Brown, S., Helmer, E.H., et al., 1997. Root biomass allocation in the world's upland forests. Oecologia, 111: 1-11. doi: 10.1007/s004420050201 [4] Canadell, J., Jackson, R.B., Ehleringer, J.R., et al., 1996. A global analysis of root distribution for terrestrial biomes. Oecologia, 108: 389-411. doi: 10.1007/BF00333714 [5] Fernandes, P., Oliver, R., Diatta, S., 2000. Changes in organic matter of a Ferrallitic tropical soil degraded by cropping systems: The case of southern Senegal. Arid Soil Research and Rehabilitation, 14: 137-150. doi: 10.1080/089030600263067 [6] Fitter, A.H., Graves, J.D., Self, G.K., et al., 1998. Root production, turnover and respiration under two grassland types along an altitudinal gradient: Influence of temperature and solar radiation. Oecologia, 114: 20-30. doi: 10.1007/s004420050415 [7] Gale, M.R., Grigal, D.F., 1987. Vertical root distribution of northern tree species in relation to successional status. Canadian Journal of Forest Research, 17: 829-834. doi: 10.1139/x87-131 [8] Hou, C.T., Li, R.M., Feng, C.E., 2002. An approach to survey contents and methods of regional and agroecological geology: A case study in Hebei plain. Geological Science and Technology Information, 21(1): 66-70(in Chinese with English abstract). [9] Huang, J.H., Han, X.G., Chen, L.Z., 1999. Advances in the research of(fine)root biomass in forest ecosystems. Acta Ecologica Sinica, 19(2): 270-277(in Chinese with English abstract). [10] Jia, B.Q., Ci, L.J., Cai, T.J., et al., 2002. Preliminary research on changing soil water characters at ecotone between oasis and desert. Acta Phytoecologica Sinica, 26(2): 203-208(in Chinese with English abstract). [11] Jian, F.L., Li, H.X., 2001. Theoretical and methodological discussion on the research of dissipative structure of soil ecosystem. Journal of South China Agricultural University, 22(3): 16-19(in Chinese with English abstract). [12] Kang, S.Z., Hu, X.T., Goodwin, I., et al., 2002. Soil water distribution, water use, and yield response to partial root zone drying under a shallowgroundwater table condition in a pear orchard. Scientia Horticulturae, 92: 277-291. doi: 10.1016/S0304-4238(01)00300-4 [13] Liu, C.M., Wang, H.X., 1999. The interface processes of water movement in the soil-crop-atmosphere system and water-saving regulation. Science Press, Beijing, 80-91(in Chinese). [14] Megonigal, J.P., Day, F.P., 1992. Effects of flooding on root and shoot production of bald cypress in large experimental enclosures. Ecology, 73(4): 1182-1193. doi: 10.2307/1940668 [15] Neilson, R.P., 1995. Amodel for predicting continental-scale vegetation distribution and water balance. Ecological Applications, 5: 362-385. doi: 10.2307/1942028 [16] Oikeh, S.O., Kling, J.G., Horst, W.J., et al., 1999. Growth and distribution of maize roots under nitrogen fertilization in plinthite soil. Field Crops Research, 62: 1-13. doi: 10.1016/S0378-4290(98)00169-5 [17] Parton, W.J., Stewart, J.W.B., Cole, C.V., 1988. Dynamics of C, N, P and S in grassland soils: Amodel. Biogeochemistry, 5: 109-131. doi: 10.1007/BF02180320 [18] Persson, H.D., 1983. The distribution and productivity of fine roots in boreal forests. Plant and Soil, 71: 87-101. doi: 10.1007/BF02182644 [19] Phillips, W.S., 1963. Depth of roots in soil. Ecology, 44: 424. doi: 10.2307/1932198 [20] Potter, C.S., Randerson, J.T., Field, C.B., et al., 1993. Terrestrial ecosystem production: Aprocessmodel based on global satellite and surface data. Global Biogeochem. Cycles, 7(4): 811-841. doi: 10.1029/93GB02725 [21] Pregitzer, K.S., Kubiske, M.E., Yu, C.K., et al., 1997. Relationships among root branch order, carbon, and nitrogen in four temperate species. Oecologia, 111: 302-308. doi: 10.1007/s004420050239 [22] Reynolds, H.L., Hungate, B.A., Chapin, Ⅲ.F.S., et al., 1997. Soil heterogeneity and plant competition in an annual grassland. Ecology, 78(7): 2076-2090. [23] Sala, O.E., Lauenroth, W.K., Parton, W.J., 1992. Long-term soil water dynamics in the shortgrass steppe. Ecology, 73(4): 1175-1181. doi: 10.2307/1940667 [24] Schlesinger, W.H., Raikes, J.A., Hartley, A.E., et al., 1996. On the spatial pattern of soil nutrients in desert ecosystems. Ecology, 77(2): 364-374. [25] Tansley, S.A., 1935. The use and abuse of vegetational concepts and terms. Ecology, 16: 284-307. doi: 10.2307/1930070 [26] Vogt, K.A., Grier, C.C., Vogt, D.J., 1986. Production, turnover and nutrient dynamics of aboveand belowground detritus of world forest. Advances in Ecological Research, 15: 303-377. [27] Yu, W.T., Yu, Y.Q., 2001. Advances in the research of underground biomass. Chinese Journal of Applied Ecology, 12(6): 927-932(in Chinese with English abstract). [28] Zhang, R.Z., Li, X.G., Hu, H., et al., 1998. Laws of soil moisture variation in farmland in loess area of Gansu Province. Journal of Soil Erosion and Soil and Water Conservation, 4(4): 53-59(in Chinese with English abstract). [29] Zhang, S.Q., Shan, L., 2001. Research progress on water uptake in plant roots. Chin. J. Appl. Environ. Biol., 7(4): 396-402(in Chinese with English abstract). [30] Zhang, W.Z., Gao, Q., 1994. Exploration of the movements ofwater and dissolved salts in soils under different plant communities in Aneurolepidium chinense grassland of Songnen plain. Acta Phytoecologica Sinica, 18(2): 132-139(in Chinese with English abstract). [31] Zhu, T.C., Zhong, Z.C., Li, J.D., 1988. Plant ecology. Higher Education Press, Beijing, 42-44(in Chinese). [32] 白永飞, 许志信, 李德新, 2002. 内蒙古高原针茅草原群落土壤水分和碳、氮分布的小尺度空间异质性. 生态学报, 22(8): 1215-1223. doi: 10.3321/j.issn:1000-0933.2002.08.007 [33] 候春堂, 李瑞敏, 冯翠娥, 2002. 区域农业生态地质调查内容与方法. 地质科技情报, 21(1): 66-70. doi: 10.3969/j.issn.1000-7849.2002.01.015 [34] 黄建辉, 韩兴国, 陈灵芝, 1999. 森林生态系统根系生物量研究进展. 生态学报, 19(2): 270-277. doi: 10.3321/j.issn:1000-0933.1999.02.021 [35] 贾宝全, 慈龙骏, 蔡体久, 等, 2002. 绿洲—荒漠交错带土壤水分变化特征初步研究. 植物生态学报, 26(2): 203-208. doi: 10.3321/j.issn:1005-264X.2002.02.011 [36] 简放陵, 李华兴, 2001. 土壤生态系统耗散结构变异规律研究的理论与方法探讨. 华南农业大学学报, 22(3): 16-19. doi: 10.3969/j.issn.1001-411X.2001.03.005 [37] 刘昌明, 王会肖, 1999. 土壤—作物—大气界面水分过程与节水调控. 北京: 科学出版社, 80-91. [38] 宇万太, 于永强, 2001. 植物地下生物量研究进展. 应用生态学报, 12(6): 927-932. doi: 10.3321/j.issn:1001-9332.2001.06.030 [39] 张仁陟, 李小刚, 胡华, 等, 1998. 甘肃黄土地区农田土壤水分变异规律研究. 土壤侵蚀与水土保持学报, 4(4): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS804.009.htm [40] 张岁岐, 山仑, 2001. 根系吸水机理研究进展. 应用与环境生物学报, 7(4): 396-402. doi: 10.3321/j.issn:1006-687X.2001.04.019 [41] 张为政, 高琼, 1994. 松嫩平原羊草草地土壤水盐运动规律的研究. 植物生态学报, 18(2): 132-139. doi: 10.3321/j.issn:1005-264X.1994.02.004 [42] 祝廷成, 钟章成, 李建东, 1988. 植物生态学. 北京: 高等教育出版社, 42-44.
点击查看大图
计量
- 文章访问数: 3222
- HTML全文浏览量: 96
- PDF下载量: 5
- 被引次数: 0