Heat Flow Action and Its Control on Natural Gas Migration and Accumulation in Mud-Fluid Diapir Areas in Yinggehai Basin
-
摘要: 莺歌海盆地是一个在新生代发育起来的南海北部被动大陆边缘的年轻高热盆地, 其高地温场及高大地热流值主要集中于盆地中部坳陷区的泥-流体底辟构造带.因此, 底辟发育演化与热流体上侵活动, 尤其是上新世晚期的热流体活动控制了天然气及CO2的运聚与成藏特征.同时, 由于热流体上侵活动的分区分块与分层的局部性侵入, 导致了壳源型和壳幔混合型CO2及烃类气运聚富集的分区分块与分层的局部富集特点.总之, 泥-流体底辟作用中热流体上侵活动是控制天然气尤其是CO2运聚乃至富集成藏的主导因素, 而壳源型和壳幔混合型CO2等非烃气与烃类气运聚成藏时间及运聚通道的差异, 则是控制和制约烃类气与非烃气差异运聚及富集成藏的关键.根据本区CO2等非烃气与烃类气的地化特征及运聚规律, 可以分析和预测其运聚成藏模式, 为天然气勘探部署提供依据.Abstract: The Yinggehai basin is a young but high geotemperature basin that was developed in the Cenozoic at the northern continental margin of South China Sea. Its high geotemperature and heat flow fields are mainly located in the mud-fluid diapir structure areas in the center of the basin. The development and evolution of the mud-fluid diapir, especially the upwelling of heat flow in the Late Pliocene, is closely related with the migration and accumulation of natural gas and carbon dioxide. The local invasion of heat flow, whose distribution is inhomogeneous in different zones and formations, leads to the migration and accumulation of hydrocarbon and carbon dioxide sourced from crust and mantle to hold the same characteristics. While the upwelling of heat flow in mud-fluid diapir areas is the main factor that influences the migration, accumulation and reservoir formation of hydrocarbon gas, especially carbon dioxide. The time and paths of migration and accumulation differences between crust-sourced and mantle-sourced non-hydrocarbon gas and hydrocarbon gas are the keys to the accumulation and reservoirs formation. Based on the geochemical characteristics and migration and accumulation features of non-hydrocarbon and hydrocarbon gas, we can study and predict the model of their migration and accumulation to provide the references for natural gas exploration.
-
表 1 莺歌海盆地不同构造单元及区带地温梯度、大地热流分布特征
Table 1. Distribution of geotemperature gradient and geothermal heat flow in different zones of Yinggehai basin
-
[1] Bekins, B., McCaffrey, A. M., Dreiss, S. J., 1994. Influence of kinetics on the smectite to illite transition in the Barbados accretionary prism. Journal of Geophysical Research, 99(B9): 18147-18158. doi: 10.1029/94JB01187 [2] He, J. X., 1995. The accumulation conditions and exploration aspects of natural gas in the mud-fluid diapir zones, Yinggehai basin. China Offshore Oil and Gas (Geology), 19(3): 57-163 (in Chinese with English abstract). [3] He, J. X., 1998. The distribution and primary prediction of CO2 in the Yinggehai basin. Petroleum Exploration and Development, 25(2): 20-23 (in Chinese with English abstract). [4] He, J. X., 1994. The formation and evolution of mud-fluid diapir and its relationship with hydrocarbon accumulation mechanism in Yinggehai basin. Acta Sedimentalogica Sinica, 12(3): 120-129 (in Chinese with English abstract). [5] He, L. J., Xiong, L. P., Wang, J. Y., et al., 2000. The numerical modeling of tectonic development in the Yinggehai basin. Science in China (Series D), 30(4): 415-419 (in Chinese with English abstract). [6] Hu, Y., 1979. Physical chemistry. The People's Education Press, Beijing, 56-78 (in Chinese). [7] Li, S. T., Lin, C. S., Zhang, Q. M., et al., 1998. The dynamical process of episode splide in the northern continential margin of South China Sea and the tectonic events in the 10 Ma. Chinese Science Bulletin, 43(8): 797-810 (in Chinese with English abstract). doi: 10.1360/csb1998-43-8-797 [8] Shi, J. X., 1987. The organic inclusions and its relationship with hydrocarbon. Science in China (Series B), 3: 318-325 (in Chinese with English abstract). [9] Xie, X. N., Li, S. T., Dong, W. L., et al., 1999. Trace marker of hot heat flow and their geological implications—A case study of Yinggehai basin. Earth Science—Journal of China University of Geosciences, 24(2): 83-188 (in Chinese with English abstract). [10] Xie, X. N., Li, S. T., Dong W. L., et al., 2001. Evidence for hot fluid flow along faults near diapiric structure of the Yinggehai basin, South China Sea. Marine and Petroleum Geology, 18(6): 715-728. doi: 10.1016/S0264-8172(01)00024-1 [11] Zhang, Q. M., Hu, Z. L., 1992. High geotemperature and overpressure background and the mechanism of hydrocarbon migration in the Yinggehai and Qiongdongnan basins. China Offshore Oil and Gas (Geology), 6(1): 1-9 (in Chinese with English abstract). [12] Zhang, Q. M., Liu, F. N., Yang, J. H., 1996. Overpressure system and hydrocarbon accumulation in the Yinggehai basin. China Offshore Oil and Gas (Geology), 10(2): 65-75 (in Chinese with English abstract). [13] 何家雄, 1995. 莺歌海盆地泥-流体底辟带天然气成藏条件及勘探方向. 中国海上油气, 19(3): 57-163. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199503001.htm [14] 何家雄, 1998. 莺歌海盆地CO2分布及初步预测研究. 石油勘探与开发, 25(2): 20-23. doi: 10.3321/j.issn:1000-0747.1998.02.006 [15] 何家雄, 1994. 莺歌海盆地泥-流体底辟发育演化与油气运聚机制. 沉积学报, 12(3): 120-129. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB403.014.htm [16] 何丽娟, 熊亮萍, 汪集, 等, 2000. 莺歌海盆地构造热演化模拟研究. 中国科学(D辑), 30(4): 415-419. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200004010.htm [17] 胡英, 1979. 物理化学. 北京: 人民教育出版社, 56-78. [18] 李思田, 林畅松, 张启明, 等, 1998. 南海北部大陆边缘盆地幕式裂陷的动力过程及10 Ma以来的构造事件. 科学通报, 43(8): 797-810. doi: 10.3321/j.issn:0023-074X.1998.08.003 [19] 施继锡, 1987. 有机包裹体及其与油气的关系. 中国科学(B辑), 3: 318-325. https://www.cnki.com.cn/Article/CJFDTOTAL-JBXK198703012.htm [20] 解习农, 李思田, 董伟良, 等, 1999. 热流体示踪标志及其地质意义——以莺歌海盆地为例. 地球科学——中国地质大学学报, 24(2): 83-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX902.016.htm [21] 张启明, 胡忠良, 1992. 莺-琼盆地高温高压环境及油气运移机制. 中国海上油气, 6(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199201003.htm [22] 张启明, 刘福宁, 杨计海, 1996. 莺歌海盆地超压体系与油气聚集. 中国海上油气, 10(2): 65-75. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199602000.htm