Occurrence of High Mature Organic Matter in Marine Black Shale Source Rocks of Lower Cambrian from Northern Tarim Basin, China
-
摘要: 近年来的研究证明, 中新生代未熟-低熟海相富有机质泥质烃源岩中有机质是通过溶解在水中的分子规模的碳有机质以化学吸附的形式被吸附到矿物表面上和蒙脱石结构层内.然而, 对于高熟海相泥质烃源岩中有机质的赋存状态却少有报道.通过对塔里木盆地下寒统底部高熟海相泥质烃源岩的有机碳含量、矿物表面积、扫描电镜和透射电镜的综合分析, 得到了其有机质以细小的颗粒状保存于沉积物颗粒之间的结论.同时, 通过高熟海相烃源岩与现代未熟海相烃源岩有机质赋存状态的对比, 提出了值得进一步研究的有关科学问题.Abstract: More and more evidences indicate that the organic matter (OM) in immature organic-rich sediments and sedimentary rocks is chemically absorbed onto the external surfaces of minerals and into interlayer (internal) surfaces of smectitic clay minerals in the form of amorphous molecular scale carbon OM. But there are few reports about the occurrence of high mature OM in marine black shale petroleum source rocks. This paper studies the occurrence of high mature OM in the black shale of basal Cambrian from the northern Tarim basin. Based on the comprehensive analysis of total organic carbon contents (TOC), maximum thermolysis temperatures (Tmax) of OM, mineral surface areas (MSA), scanning electronic microscope (SEM) and transmission electronic microscope (TEM) of the black shale, it concludes that the high mature OM in the marine black shale of the basal Cambrian from the basin occurs in the state of particulates ranging from 1 to 5 microns in diameter. The contrast of the existing state of the high mature OM in the black shale with that of the immature one in the modern marine continental margin sediments has brought some scientific problems, which are valuable to study in detail.
-
表 1 黑色页岩有机碳含量、最高热解温度和矿物表面积分析结果
Table 1. Analytical results of TOC, Tmax and MSA in black shale
-
[1] Bader, R. G., Hood, D. W., Smith, J. B., 1970. Recovery of dissolved organic matter in seawater and organic sorption by particulate material. Geochimica et Cosmochimica Acta, 19: 236-243. [2] Bergamashi, B. A., Tsamakis, E., Keil, R. A., et al., 1997. The effect of grain size and surface area on organic matter, lignin and carbohydrate concentration, and molecular compositions in Peru Margin sediments. Geochimica et Cosmochimica Acta, 61: 1247-1260. doi: 10.1016/S0016-7037(96)00394-8 [3] Bishop, A. N., Kearsley, A. T., Patience, R. L., 1992. Analysis of sedimentary organic materials by scanning electron microscopy: The application of back scattered electron imagery and light element X-ray microanalysis. Organic Geochemistry, 18: 431-446. doi: 10.1016/0146-6380(92)90106-8 [4] Bishop, A. N., Phillip, R. P., 1994. Potential for amorphous kerogen formation via adsorption of organic material at mineral surfaces. Energy and Fuels, 8: 1494-1497. doi: 10.1021/ef00048a040 [5] Bock, M. J., Mayer, L. A., 2000. Mesodensity organo-clay associations in a near shore sediment. Marine Geology, 163: 65-75. doi: 10.1016/S0025-3227(99)00105-X [6] Collins, M. J., Bishop, A. N., Farrimond, P., 1995. Sorption by mineral surfaces: Rebirth of the classical condensation pathway for kerogen formation? Geochimica et Cosmochimica Acta, 59: 2387-2391. doi: 10.1016/0016-7037(95)00114-F [7] Gordon, A. S., Millero, F. J., 1985. Adsorption mediated decrease in the biodegradation rate of organic compounds. Microbial Ecology, 11: 289-298. doi: 10.1007/BF02016813 [8] Hedges, J. I., Keil, R. G., 1995. Sedimentary organic matter preservation: An assessment and speculative synthesis. Marine Geology, 49: 81-115. [9] Hedges, J. I., Keil, R. G., 1999. Organic geochemical perspective on esturine processes: Sorption reactions and consequences. Marine Chemistry, 65: 55-65. doi: 10.1016/S0304-4203(99)00010-9 [10] Hedges, J. I., Oades, J. M., 1997. Comparative organic geochemistries of soils and marine sediments. Organic Geochemistry, 27: 319-361. doi: 10.1016/S0146-6380(97)00056-9 [11] Heinrichs, S. M., Sugai, S. F., 1993. Adsorption of amino acids and glucose by sediments of Resurrection Bay (Alaska): Functional group effects. Geochimica et Cosmochimica Acta, 57: 823-835. doi: 10.1016/0016-7037(93)90171-R [12] Keil, R. G., Hedges, J. I., 1993. Sorption of organic matter to mineral surfaces and the preservation of organic material in coastal marine sediments. Chemical Geology, 107: 385-388. doi: 10.1016/0009-2541(93)90215-5 [13] Kennedy, M. J., Pevear, D. R., Hill, R. H., 2002. Mineral surface control of organic carbon in black shale. Science, 295: 657-660. doi: 10.1126/science.1066611 [14] Mayer, L. M., 1994a. Surface area control of organic carbon accumulation in continental shelf sediments. Geochimica et Cosmochimica Acta, 58: 1271-1284. doi: 10.1016/0016-7037(94)90381-6 [15] Mayer, L. M., 1994b. Relationship between mineral surfaces and organic carbon concentration in soils and sediments. Chemical Geology, 114: 347-363. doi: 10.1016/0009-2541(94)90063-9 [16] Mayer, L. M., 1999. Extent of coverage of mineral surfaces by organic matter in marine sediments. Geochimica et Cosmochimica Acta, 63: 207-215. doi: 10.1016/S0016-7037(99)00028-9 [17] Ransom, B., Bennett, R. H., Baerwald, R., et al., 1997. TEM study of in situ organic matter on continental margins: Occurrence and the monolayer hypothesis. Marine Geology, 138: 1-9. doi: 10.1016/S0025-3227(97)00012-1 [18] Ransom, B., Dongseon, K., Kastner, M., et al., 1998. Organic matter preservation on continental slopes: Importance of mineralogy and surface area. Geochimica et Cosmochimica Acta, 62: 1329-1345. doi: 10.1016/S0016-7037(98)00050-7 [19] Salmon, V., Derenne, S., Lallier-Verges, E., et al., 2000. Protection of organic matter by mineral matrix in a Cenomanian black shale. Organic Geochemistry, 31: 463-474. doi: 10.1016/S0146-6380(00)00013-9