Estimation of Carbon Sink Capacity Caused by Rock Weathering in China
-
摘要: 岩石的风化作用同时参与了短时间尺度和长时间尺度的全球碳循环, 对碳酸盐岩而言, 它的风化作用在短时间尺度上对大气二氧化碳循环具有重要影响, 但在长时间尺度上不产生净碳汇; 而硅酸盐岩等其他类型岩石的风化过程由于反应速率较慢, 在短时间尺度上对全球碳循环及其变化反应不灵敏, 但它所产生的净碳汇是遗漏汇的组成之一.为了准确估计我国岩石风化所致的碳汇能力, 简要评价了现有的各种模型和方法, 并基于GEM-CO2模型进行了计算.计算结果表明, 我国岩石每年因溶蚀、风化作用共消耗的CO2约为4.72×107 t, 折合成C为1.41×107 t, 其中由碳酸盐类岩石风化消耗的碳量最多, 约为0.74×107 t/a, 占总量的52.65%.硅酸盐岩及其他类型岩石风化消耗的碳量约为0.67×107 t/a, 占总量的47.35%.岩石风化所致碳汇能力的空间分布首先取决于岩石类型, 其次受地区的气候条件控制.Abstract: Rock weathering caused by the carbonic acid reaction with minerals to produce dissolved bicarbonates carried by rivers to the oceans is an important part in carbon cycle. The process causes significant carbon dioxide consumption, the accurate calculation of which may partly explain the missing sink of carbon. The CO2 uptaken by carbonate dissolution on the continents is counterbalanced by the CO2 release carbonate precipitation in the ocean. The same is not true for silicate weathering. Silicate weathering is more important than carbonate weathering as a long-term control on atmospheric CO2. A global erosion model (GEM-CO2) developed by Amiotte Suchet allows us to calculate the flux of atmospheric/soil CO2 consumed by chemical erosion of continental rocks. In this paper, the CO2 consumption by rock weathering in China is estimated based on GEM-CO2 and the Chinese Resources and Environment Database, whose distribution is shown in a GRID map with a spatial resolution of 1 000 m×1 000 m. The total carbon consumption is about 4.72×107 t/a, about 52.65% of which are caused by carbonate. The model results are close to previous estimation of other researches. The flux of CO2 consumed by rock weathering increases where carbonate rock outcrops are more abundant and when drainage intensity increases. The results show that the main consumption of CO2 is localized in Guangxi, Guizhou and Chongqing provinces, and west Hubei Province and southwest Hunan Province, because of a high proportion of carbonate rocks and high humidity in a large area.
-
Key words:
- rock weathering /
- carbon sink process /
- carbon dioxide /
- China
-
图 1 中国的岩石类型、年平均气温(℃)、年平均降水量(mm)、年平均蒸发量(mm)、年平均排流量(mm)、岩石风化消耗CO2量(mmol·km-2·s-1)分布
a.岩石类型: 1.变质岩及深成岩类; 2.酸性火山岩; 3.玄武岩; 4.砂层与砂岩类; 5.页岩类; 6.碳酸盐岩类; 7.蒸发岩类; 9.表层土; b.年平均气温; c.年平均降水量; d.年平均蒸发量; e.年平均排流量; f.岩石风化消耗CO2量
Fig. 1. Distribution of rock, annual mean temperature, annual precipitation, annual evapotranspiration, annual drainage, CO2 consumption by rock weathering in China
表 1 各储库碳的平均滞留期(王明星, 1998)
Table 1. Retention periods of different carbon storages
表 2 GEM-CO2模型系数(Amiotte and Probst, 1993)
Table 2. GEM-CO2 model index
表 3 风化消耗CO2估算统计
Table 3. CO2 consumption by rock weathering
-
[1] Amiotte, S., Probst J. L., 1993. Flux de CO2 consommé par altération chimique continentale: Influences du drainage et de la lithologie. C. R. Acad. Sci. Paris, 317: 615-622. [2] Berner, R. A., 1991. A model for atmospheric CO2 over Phanerozoic time. Amer. J. Sci. , 291: 339-376. doi: 10.2475/ajs.291.4.339 [3] Berner, R. A., 1997. Weathering, plants and the long-term carbon cycle. Geochimica et Cosmochimica Acta, 56: 3225-3231. [4] Dreybrodt, W., Buhmann, D., 1991. A mass transfer model for dissolution and precipitation of calcite from solutions in turbulent motion. Chemical Geology, 90: 107-122. doi: 10.1016/0009-2541(91)90037-R [5] Dreybrodt, W., Buhmann, D., Michaelis, J., et al., 1992. Geochemically controlled calcite precipitation by CO2 outgassing: Field measurements of precipitation rates in comparison to theoretical predictions. Chem. Geol. , 97: 285-294. doi: 10.1016/0009-2541(92)90082-G [6] Franke, H. W., 1975. Correspondence between sintering and corrosion. Ann. Spélé, 30: 4665-4675. [7] Indermuhle, A., Monnin, E., Stauffer, B., et al., 2000. Atmospheric CO2 concentration from 60 to 20 kyrBP from the Taylor Dome ice core, Antarctica. Geophysical Research Letters, 27: 735-738. doi: 10.1029/1999GL010960 [8] Kennedy, D., 2001. Breakthrough of the year. Science, 294: 2443-2447. [9] Li, J. Z., Lin, J. S., Fang, J. F., 1994. Analysis and estimation of the karst solutional intensity. Geographical Research, 13(3): 90-97 (in Chinese with English abstract). [10] Liu, Z. H., 2000. Contribution of carbonate rock weathering to the atmosphere CO2 sink. Carsologica Sinica, 19(4): 293-300 (in Chinese with English abstract). doi: 10.1007/s002549900072 [11] Mahlman, J. D., 1997. Uncertainties in projections of human-caused climate warming. Science, 21(278): 1416-1417. [12] Probst, J. L., Amiotte, S. P., Tardy, Y., 1992. Global continental erosion and fluctuations of atmospheric CO2 consumed during the last 100 years. In: Kharaka, Y. K., Maest, A., eds., Proc. 7th Int. Symp. W. R. I., Park City, Utah, U. S. A., July 13-18, 1992. Balkema, Rotterdam, 483-486. [13] Schimel, D., House, J., Hibbard, K., et al., 2001. Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature, 414: 169-172. doi: 10.1038/35102500 [14] Steven, C. W., 2001. Climate change enhanced: Where has all the carbon gone? Science, 292: 2261-2263. doi: 10.1126/science.1061077 [15] Wang, M. X., 1998. Global carbon cycle. In: Chen, S. P., ed., Geosystem science—Chinese progresses and century prospects. Chinese Science & Technology Press, Beijing, 780(in Chinese). [16] White, W. B., 1977. Role of solution kinetics in the development of karst aquifers. In: Tolson, J. S., Doyle, F. L., eds., Karst hydrology. Intern. Assoc. Hydrogeol. Memoir, 12: 503-517. [17] Wigley, T. M. L., Schimel, D. S., 2000. The carbon cycle. Cambridge University Press, Cambridge, 9-10. [18] Xu, S. Y., Jiang, Z. C., 1997. Preliminary assessment of the source-sink relationship between karst process and atmospheric green house gases. Chinese Science Bulletin, 42(9): 953-955 (in Chinese). doi: 10.1360/csb1997-42-9-953 [19] Yuan, D., 1997. The carbon cycle in karst. Z. Geomorph. N. F. , 108: 91-102. [20] 李钜章, 林钧枢, 房金福, 1994. 喀斯特溶蚀强度分析与估算. 地理研究, 13(3): 90-97. doi: 10.3321/j.issn:1000-0585.1994.03.011 [21] 刘再华, 2000. 碳酸盐岩岩溶作用对大气CO2沉降的贡献. 中国岩溶, 19(4): 293-300. doi: 10.3969/j.issn.1001-4810.2000.04.001 [22] 王明星, 1998. 全球碳循环. 见: 陈述彭. 地球系统科学——中国进展与世纪展望. 北京: 中国科学技术出版社, 780. [23] 徐胜友, 蒋忠诚, 1997. 我国岩溶作用与大气温室气体CO2源汇关系的初步估算. 科学通报, 42(9): 953-955. doi: 10.3321/j.issn:0023-074X.1997.09.019