Finding, Characteristics and Significances of Qulong Superlarge Porphyry Copper (Molybdenum) Deposit, Tibet
-
摘要: 驱龙斑岩铜(钼) 矿床位于冈底斯东段火山岩浆弧与日多盆地的弧-盆转换部位, 受盆缘控盆、控岩构造控制, 形成于汇聚造山向伸展走滑转换的瞬时过渡环境(15~ 16Ma), 是冈底斯东段新发现的最具找矿潜力的超大型斑岩铜(钼) 矿床, 也是该带斑岩矿床勘查的重大突破.该矿床成矿流体为饱和及过饱和盐水-蒸气沸腾流体, 蚀变具有以斑岩体为中心、面状、环带分布特征, 矿化分为3期5阶段, 硬石膏化及绢英岩化与铜矿化关系密切.并对一些今后必须加强研究的关键性科学问题进行了探讨.Abstract: Qulong porphyry copper (molybdenum) deposit, which is located in the arc-basin transform place between the magma arc of eastern Gangdise and Riduo basin, controlled by basin-controlled, rock-controlled structure in basin edge, and formed in instantaneous transition environment of transform from convergent to extension, is the most potential superlarge deposit in ore-finding and its finding is the important breakthrough in the exploration process of porphyry deposit in eastern belt of Gangdise Mountain. The ore fluid of Qulong porphyry copper (molybdenum) deposit is composed of saturation and supersaturation brine-steam boiling fluids; its distribution characteristics of wall rock alteration include centering by porphyry, surfacing, and annular zone; it has undergone mineralization of 3 periods including 5 phases. It is found that the copper mineralization correlates with anhydrition and sericitization. This paper also probes into some key science issues which call for further studies and attention.
-
Key words:
- Qulong /
- superlarge /
- copper (molybdenum) deposit /
- finding /
- significance
-
图 4 含矿斑岩及围岩w (K2O) -w (Na2O) 图解(图例同图 3)
Fig. 4. w (K2O) -w (Na2O) diagram of wall rock and mineralizing porphyry
表 1 驱龙斑岩铜(钼) 矿床围岩与含矿斑岩岩石化学成分
Table 1. Petrochemistry components of wall rock and mineralizing porphyry in Qulong porphyry Cu (Mo) deposit wB/%
-
[1] Chen, Y. J., Chen, H. Y., Liu, Y. L., et al., 1999. The progress and study history of endogenetic deposit in collisional process. Chinese Science Bulletin, 44 (16): 1681-1689 (inChinese). doi: 10.1360/csb1999-44-16-1681 [2] Dong, S. W., 1999. Tectono-magma evaluation and mineralization in orogenic belts. In: Chen, Y. C., ed., The present theories and methods of mineral resource exploration and assessment. Seism Publishing House, Beijing, 83-89 (in Chinese with English abstract). [3] Ren, Y. S., Zhang, J. S., Fan, W. Y., et al., 2002. Prospective for recasting of Jiama copper-polymetallic ore deposit, Tibet. Geology and Prospecting, 38 (5): 30-32 (in Chinese with English abstract). [4] Sillitoe, R. H., 1997. Characteristics and controls of the largest porphyr ycoppergold and epithermal gold deposits in the circum-Pacific region. Australian Journal of Earth Sciences, 44: 373-388. doi: 10.1080/08120099708728318 [5] Streck, J. M., Dilles, J. H., 1998. Sulfur evolution of oxidized arc magmas as recorded in apatite from aporphyry copper batholith. Geology, 26: 523-526. [6] Tarkian, M., Stridrny, B., 1999. Platinum-group elements in porphyry copper deposit, a reconnaissance study. Mineralogy and Petrology, 65: 161-183. doi: 10.1007/BF01161959 [7] Xia, D. X., Zhang, P., Zhou, X., et al., 1993. The regional geology of Xizang autonomous region. Geological Publishing House, Beijing (in Chinese). [8] Yin, A., Harrison, T. M., 2000. Geologic evolution of the Himalaya-Tibetan orogen. Jann. Earth Planet. Sci., 81: 211-280. [9] Zheng, Y. Y., Wang, B. S., Fan, Z. H., et al., 2002. Analysis of tectonic evolution in the eastern section of the Gangdise Mountains, Tibet and the metallogenic potentialities of copper-gold polymetal. Geological Sciences and Technology Information, 21 (2): 55-60 (in Chinese with English abstract). [10] 陈衍景, 陈华勇, 刘玉琳, 等, 1999. 碰撞造山过程内生矿床作用的研究历史和进展. 科学通报, 44 (16): 1681-1689. doi: 10.3321/j.issn:0023-074X.1999.16.001 [11] 董树文, 1999. 造山带构造岩浆演化与成矿作用. 见: 陈毓川. 当代矿产勘查评价的理论与方法. 北京: 地震出版社, 83-89. [12] 任云生, 张金树, 范文玉, 等, 2002. 西藏甲马铜多金属矿床远景预测. 地质与勘探, 38 (5): 30-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKT200205005.htm [13] 夏代祥, 张平, 周详, 等, 1993. 西藏自治区区域地质志. 北京: 地质出版社. [14] 郑有业, 王保生, 樊子珲, 等, 2002. 西藏冈底斯东段构造演化及铜金多金属成矿潜力分析. 地质科技情报, 21 (2): 55-60. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ200202013.htm