Mid-Pleistocene Revolution Recorded by Pulleniatina obliquiloculata in the Southern South China Sea
-
摘要: 对南海南部ODP 1143站2.1 Ma以来沉积物中的浮游有孔虫群进行研究, 发现在冲绳海槽及南海北部普遍被认为是黑潮标志种的Pulleniatina obliquiloculata在中更新世革命(MPR)前后对冰期旋回的响应截然相反; 且在MPR之后的变化与南海北部和冲绳海槽相反, 即冰期时含量高而间冰期时低.交叉频谱分析和相位分析的结果也证实了ODP 1143站P.obliquiloculata与全球冰量变化之间的上述关系.该种在MPR前后冰期旋回的转变, 可能是由于MPR之后南海南部在冰期时切断了与印度洋之间的海水交换, 或者是冰期时海水盐度增加等因素引起的上部水体结构的重大改观所致.
-
关键词:
- Pulleniatina obliquiloculata /
- 冰期旋回 /
- 中更新世革命(MPR) /
- 南海南部
Abstract: Planktonic foraminifers from ODP Site 1143, southern South China Sea (SCS), were analyzed to reveal their response to glacial cycles in the past 2.1 Ma. Pulleniatina obliquiloculata, a widely-accepted indicator of the Kuroshio, shows completely reverse fluctuations, with high abundance in glacials, in southern SCS to those in the Okinawa trough and northern SCS since the Mid-Pleistocene Revolution (MPR). Before the MPR, P.obliquiloculata is abundant in interglacial intervals. Cross-spectral and phase analyses between P.obliquiloculata and δ18O confirmed the observations depicted above. The authors ascribed the transition of P.obliquiloculata's response to glacial cycles in southern SCS to a profound change in the regional upper ocean structure, probably related to glacial separation of the southern SCS from the Indian water and to higher surface salinity during glacial times after the MPR. -
图 1 ODP1143站位示意图
图中曲线为南海表层沉积物中普林虫百分含量等值线(据Pflau-mann and Jian, 1999)
Fig. 1. Location of ODP Site 1143图中曲线为南海表层沉积物中普林虫百分含量等值线(据Pflaumann and Jian, 1999)
图 5 南海南部和北部普林虫百分含量冰期旋回对比(17940站资料来源于Pflaumann and Jian, 1999; 1146站δ18O数据来自Clemens and Prell, 待刊; 17957站资料引自Jian et al., 2000b; 1143站δ18O数据来自汪品先等, 2001和Tian et al., 2002)
Fig. 5. Downcore comparison of P. obliquiloculata% from northern and southern SCS (data of Core 17940 from Pflaumann and Jian, 1999; δ18O of ODP Site 1146 from Clemens and Prell, in press; data of Core 17957 from Jian et al., 2000b; and δ18O of ODP Site 1143 from Wang et al., 2001 andTian et al., 2002)
表 1 P. obliquiloculata%与底栖有孔虫氧同位素(δ18O) 之间交叉频谱分析和相位分析结果
Table 1. Results of cross spectral coherencies and phase relationships between P. obliquiloculata% and benthic δ18O at ODP Site 1143
0~0.85 Ma 0.85~2.1 Ma 偏心率 斜率 岁差(23 ka) 斜率 岁差(23 ka) C PS C PS C PS C PS C PS 0.76 -157.2±21.6 0.74 153.9±22.7 0.74 176.1±22.6 0.85 6.9±13.5 0.67 -7.9±23.0 C.相关系数; PS.相位差(结果内“±”后面的数字为误差); 0~0.85 Ma和0.85~2.1 Ma时间段内二者相关系数超过80%置信度的值分别为0.66和0.55. -
[1] An ecological, zoogeographical and taxo-nomic review of recent planktonic foraminifera. In: Ram say, A. T. S., ed., Oceanic micropaleontol. Academic Press, London, 1: 1-100. https://www.cnki.com.cn/Article/CJFDTOTAL-KXXG202006006.htm [2] Chen, M., Farrell, J., 1991. Planktonic foraminifer faunal varia- tions in the northeastern Indian Ocean: A high- resolution record of the past 800 000 years from site 758. Proceedings of the Ocean Drilling Program, Scientific Results. [3] Clemens, S., Prell, W., 2003. Data report: Preliminary oxygen and carbon isotopes from site 1146, northern South China Sea. In: Wang, P. X., Prell, W. L., Blum, P., et al., eds., Proc. ODPSci. Res., 184: College Station TX (Ocean Drillling Program)(in press). [4] Cullen, J. L., 1981. Microfossil evidence for changing salinity pat-terns in the Bay of Bengal over the last 20 000 years. Palaeo-geogr., Palaeoclimatol., Palaeoecol., 35: 315-356. doi: 10.1016/0031-0182(81)90101-2 [5] Cullen, J. L., Droxler, A. W., 1990. Late Quaternary variations in planktonic foraminifer faunas and pteropod preservation in the equatorial Indian Ocean. Proceedings of the Ocean Drilling Program, Scientific Results, 115: 579-588. [6] Cullen, J. L., Prell, W. L., 1984. Planktonic foraminifera of the northern Indian Ocean: Distribution and preservation in sur-face sediments. Mar. Micropaleontol., 9: 1-52. doi: 10.1016/0377-8398(84)90022-7 [7] Fang, D. Y., 1997. Sedimentological and paleoceanographic changes in the southern South China Sea since the last glacial stage: Taking core 17962 as an example (Disserta-tion). Shanghai: Tongji University (in Chinese with English abstract). [8] Howell, P., 2001. ARAND time series and spectral analysis package for the Macintosh, Brown University. IGBP PAG-ES/World Data Center for Paleoclimatology Data Contribu-tion Series #2001-044. NOAA/NGDC Paleo climatology Program, Boulder, Colorado, USA. [9] Huang, W., Wang, P. X., 1998. A quantitative approach to deep- water sedimentation in the South China Sea: Changes since the last glaciation. Science in China (Series D), 41 (2): 195-201 (in Chinese). doi: 10.1007/BF02932440 [10] Jian, Z. M., Saito, Y., Wang, P. X., et al., 1998. The shift of Kuroshio axis over the last 20 000 years. Chinese Science Bulletin, 43 (12): 1053-1056 (in Chinese with English abstract). doi: 10.1007/BF02884649 [11] Jian, Z. M., Wang, P. X., Saito, Y., et al., 2000a. Holocene var-iability of the Kuroshio current in the Okinawa trough, northwestern Pacific Ocean. Earth and Planetary Science Letter, 184: 305-319. doi: 10.1016/S0012-821X(00)00321-6 [12] Jian, Z. M., Wang, P. X., Chen, M., et al., 2000b. Foraminiferal responses to major Pleistocene paleoceanographic changes in the southern South China Sea. Paleoceanography, 15 (2): 229-243. doi: 10.1029/1999PA000431 [13] Jones, J. I., 1967. Significance of distribution of planktonic fora-minifera in the equatorial Atlantic undercurrent. Micropale-ontology, 13 (4): 489-501. [14] Le, J., Mix, A. C., Shackleton, N. J., 1995. Late Quaternary pa-leoceanography in the eastern equatorial Pacific Ocean from planktonic foraminifers: A high-resolution record from site 846. Proceedings of the Ocean Drilling Program, Scientific Results, 138: 675-693. [15] Li, B. H., Jian, Z. M., 2001. Evolution of planktonic foraminifera and thermocline in the southern South China Sea since 10 Ma (ODP-184, Site 1143). Science in China (Series D), 44 (10): 889-896 (in Chinese). doi: 10.1007/BF02907080 [16] Li, B., Jian, Z., Wang, P., 1997. Pulleniatina obliquiloculata as a paleoceanographic indicator in the southern Okinawa trough during the last 20 000 years. Mar. Micropaleontol., 32: 59-69. doi: 10.1016/S0377-8398(97)00013-3 [17] Li, X., Sun, X. J., 1999. Palynological records since last glacial maximum from a deep sea core in southern South China Sea. Quaternary Sciences, 6: 526-535 (in Chinese with English abstract). [18] Liu, C. L., Cheng, X. R., 2001. Exploring variations in upper o- cean structure for the last 2 Ma of the Nansha area by means of calcareous nannofossils. Science in China (Series D), 44 (10): 905-911 (inChinese). doi: 10.1007/BF02907082 [19] Maasch, K. A., 1988. Statistical detection of the mid-Pleistocene transition. Climate Dynamics, 2: 133-143. doi: 10.1007/BF01053471 [20] Miao, Q., Thunell, R. C., Anderson, D. M., 1994. Glacial-Hol-ocene carbonate dissolution and sea surface tempera tures in the South China and Sulu seas. Paleoceanography, 9 (2): 269-290. doi: 10.1029/93PA02830 [21] Pflaumann, U., Jian, Z., 1999. Modern distribution patterns of planktonic foraminifera in the South China Sea and western Pacific: A new transfer technique to estimate regional sea-surface temperatures. Marine Geology, 156: 41-83. doi: 10.1016/S0025-3227(98)00173-X [22] Pisias, N. G., Moore, T. C. Jr., 1981. The evolution of Pleisto-cene climate: A time series approach. Earth Planetary Sci-ence Letter, 52: 450-458. doi: 10.1016/0012-821X(81)90197-7 [23] Prell, W. L., Damuth, J. E., 1978. The climate-related diachro-nous disappearance of Pulleniatina obliquiloculata in late Quaternary sediments of the Atlantic and Caribbean. Ma-rine Micropaleontology, 3: 267-277. doi: 10.1016/0377-8398(78)90031-2 [24] Shaw, P., Chao, S., 1994. Surface circulation in the South Chi na Sea. Deep-Sea ResearchⅠ., 41 (11/12): 1663-1683. [25] Planktonic foraminifera in the western north Pacific during the past 150 000 years: Comparison of modern and fossil assemblages. Palaeogeogr., Palaeoclima-tol., Palaeoecol., 35: 241-279. doi: 10.1016/0031-0182(81)90099-7 [26] Tian, J., Wang, P. X., Cheng, X., et al., 2002. Astronomically tuned Plio-Pleistocene benthic δ18O record from South China Sea and Atlantic-Pacific comparison. Earth and Planeta-ry Science Letter, 203: 1015-1029. doi: 10.1016/S0012-821X(02)00923-8 [27] Ujiié, H., Ujiié, Y., 1999. Late Quaternary course changes of the Kuroshio current in the Ryukyu arc region, northwest ern Pacific Ocean. Marine Micropaleontology, 37: 23-40. https://www.cnki.com.cn/Article/CJFDTOTAL-HYYB202202003.htm [28] Wang, L., Wang, P. X., 1990. Late Quaternary paleoceanography of the South China Sea: Glacial-interglacial contrasts in an enclose basin. Paleoceanography, 5 (1): 77-90. doi: 10.1029/PA005i001p00077 [29] Wang, P. X., 1990. The ice-age China sea—Status and prob-lems. Quaternary Sciences, 2: 111-124 (in Chinese with English abstract). [30] Wang, P. X., Prell, W. L., Blum, P. et al., 2000. Proceedings of the ODP, Initial Reports 184. Ocean Drilling Program, Tex-as A & M University, College Station, 1-103[CD -ROM ]. [31] Wang, P. X., Tian, J., Cheng, X. R., 2001. Transition of Qua ter-nary glacial cyclicity in deep-sea records at Nansha, the South China Sea. Science in China (Series D), 44 (10): 926-933 (inChinese). doi: 10.1007/BF02907085 [32] Wang, P. X., Zhang, J., Min, Q., 1985. Distribution of foraminif-era in surface sediments of the East China Sea. In: Wang, P. X., et al., eds. Marine micropaleontology of China. Chi-na Ocean Press and Springer Verlag, Beijing, 34-69. [33] Xu, J., Huang, B. Q., Chen, R. H., et al., 2001. Distribution of foraminifera in surface sediments of northeastern South China Sea and its environmental implications. Journal of Tropical Oceanography, 20 (4): 6-13 (in Chinese with English abstract). [34] Xu, X., Oda, M., 1999. Surface-water evolution of the eastern East China Sea during the last 36 000 years. Marine Geol ogy, 156: 285-304. doi: 10.1016/S0025-3227(98)00183-2 [35] 房殿勇, 1997. 南海南部末次冰期以来沉积与古海洋变迁———以17962柱样为例. 上海: 同济大学. [36] 黄维, 汪品先, 1998. 末次冰期以来南海深水区的沉积速率. 中国科学(D辑), 28 (1): 13-17. doi: 10.3321/j.issn:1006-9267.1998.01.003 [37] 翦知湣, SaitoYoshiki, 汪品先, 等, 1998. 黑潮主流轴近两万年来的位移. 科学通报, 43 (5): 532-535. doi: 10.3321/j.issn:0023-074X.1998.05.019 [38] 李保华, 翦知湣, 2001. 南沙深海区近10Ma来浮游有孔虫群及海水温跃层演变. 中国科学(D辑), 31 (10): 840-845. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200110012.htm [39] 李逊, 孙湘君, 1999. 南海南部末次冰期以来的孢粉记录及其气候意义. 第四纪研究, 6: 526-535. doi: 10.3321/j.issn:1001-7410.1999.06.005 [40] 刘传联, 成鑫荣, 2001. 从超微化石看南沙海区近2Ma海水上层结构的变化. 中国科学(D辑), 31 (10): 834-839. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200110006.htm [41] 汪品先, 1990. 冰期时的中国海———研究现状与问题. 第四纪研究, 2: 111-124. doi: 10.3321/j.issn:1001-7410.1990.02.002 [42] 汪品先, 田军, 成鑫荣, 2001. 第四纪冰期旋回转型在南沙深海的记录. 中国科学(D辑), 31 (10): 793-799. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200110000.htm [43] 徐建, 黄宝琦, 陈荣华, 等, 2001. 南海东北部表层沉积中有孔虫的分布及其环境意义. 热带海洋学报, 20 (4): 6-13. doi: 10.3969/j.issn.1009-5470.2001.04.002