Mountain Building Process and Geomorphic Migration of Eastern Kunlun Mountains during Quaternary
-
摘要: 东昆仑山的现代地貌格局为一系列北西西向的山系和盆地(谷地) 相间列, 第四纪沉积和岩相分布与地貌格局存在良好的匹配性, 第四纪不同时代沉积反映了山系的成山作用过程.显著地貌分异首先出现于北部的布尔汗布达山, 即早更新世中晚期(1525ka), 表现为受布尔汗布达山地貌控制的其南部山脚的早更新世中期(1525ka) 左右冲洪积物的始现.南部马尔争—布青山的成型发生于早中更新世之交, 这次成山作用在整个青藏高原昆仑—黄河源地区具有广泛影响.更南部的查哈西里山在1113.9~979.6ka间的沉积特征也显示了这一事件的影响, 即由湖相转变为冲洪积相, 但在这一时期查哈西里山总体仍为沉积区, 山系并未形成, 山顶最高层位粗冲洪积物的砾石成分统计和砾石扁平面产状统计仍显示物源来自北部, 沉积与北部隆起的马尔争-布青山有关, 查哈西里山真正隆起高于两侧, 应发生在晚更新世.伸展断裂组合与地貌之间的良好耦合关系表明, 东昆仑地区山体的崛起与伸展断裂构造之间存在密切的成因关系.山系突出于高原面的成山作用主要受控于近南北向的伸展作用, 这一伸展作用应与青藏高原整体隆升后边缘的重力失稳垮塌及均衡作用相联系, 这种伸展垮塌随着时间的迁移向南发展.Abstract: The relief in the eastern Kunlun Mountains, northeast Tibetan plateau is characteristic of a series of NWW-SEE ranges alternating with basins or valleys. The distribution of Quaternary deposits and facies match well with the relief, exposing the mountain building process. The obvious relief differentia first appeared in the north of Buerhanbuda Mountain, represented by the first occurrence of the fluvial deposits at its south foot in the mid-late Early Pleistocene (after 1 525 ka). While the molding of the Maerzheng-Buqing Mountain happened in the later Early Pleistocene, when a so-called Kunlun-Yellow River movement affected an extensive area, the eastern Kunlun Mountains and the headstreams of the Yellow River. The Chahaxili Mountains in the south of our research area were also affected by this event which is inferred by the change from lacustrine deposits to pluvial or alluvial deposits at about 1 113.9-979.6 ka. However, the fact that there are still the deposition area in Chahaxili Mountain area shows that it didn't plump up at that time. Hence, the provenance of the pluvial or alluvial deposits, coming from the north and related to the uplift of the Maerzheng-Buqing Mountain, can be deduced by statistics of the gravel composition and the gravel array. It is concluded that the molding of the Chahaxili Mountains could have occurred in the Late Pleistocene. On the other hand, the good matching relationship between the Pleistocene extension fractures and the relief framework indicates that the mountain building process should be extension-controlled, mainly N-S. This N-S extension should be related to the collapse and equilibrium adjusting of the north edge of the Tibetan plateau caused by gravity unbalance after its being uplifted. The transfer of the mountains building process from north to south implies that the collapse developed from north to south.
-
Key words:
- eastern Kunlun /
- Quaternary /
- mountain building process /
- extensional structure
-
图 1 东昆仑阿拉克湖一带第四纪地质简图
1.全新世湖沼沉积: 灰色淤泥质粉细砂、亚砂土及含钙质粘土; 2.全新世湖泊沉积: 砂砾石、粉砂及次生黄土; 3.全新世沼泽沉积: 灰色淤泥质粉细砂、亚砂土及含钙质粘土; 4.晚更新世-全新世洪冲积: 灰色、杂色粘土、砂砾石; 5.中更新世冰碛: 杂色泥砂质砾石及漂砾; 6.中更新世冰水沉积: 杂色泥砂质砾石; 7.中更新世冰碛: 杂色泥砂质砾石及漂砾; 8.中更新世冲洪积: 灰黄色、杂色砂砾石; 9.早更新世洪冲积: 灰色、杂色砂砾石; 10.早更新世河湖积: 弱胶结杂色砂砾岩夹粉砂岩透镜体; 11.早更新世湖积: 浅灰色粉砂质粘土、灰黄色粉砂夹砂砾石; 12.前第四纪基岩区; 13.冰斗; 14.冰川U形谷; 15.水系; 16.平坦夷平面; 17.水系系统界线; 18.主要山脊线、分水岭; 19.东昆南活动断裂
Fig. 1. Distribution of Quaternary strata and relief framework in Alake Lake area of the eastern Kunlun, Qinghai Province
表 1 研究区不同部位主要第四纪沉积年龄测试结果
Table 1. Ages of the Quaternary strata in study area
-
[1] 陈正乐, 张岳桥, 王小凤, 等. 新生代阿尔金山脉隆升历史的裂变径迹证据[J]. 地球学报, 2001, 22(5): 413-418. doi: 10.3321/j.issn:1006-3021.2001.05.006CHEN Z L, ZHANG Y Q, WANG X F, et al. Fission track dating of the apatite constrains on the Cenozoic uplift of the Altyn Tagh Mountains[J]. Acta Geoscientia Sinica, 2001, 22 (5): 413-418. doi: 10.3321/j.issn:1006-3021.2001.05.006 [2] 许志琴, 姜枚, 杨经绥. 青藏高原北部隆升的深部构造物理作用——以" 格尔木-唐古拉山" 地质及地球物理综合剖面为例[J]. 地质学报, 1996, 70(3): 195-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199603000.htmXU Z Q, JIANG M, YANG J S. Tectonophysical process at depth for the uplift of the northern part of the Qinghai-Xizang plateau: Illustrated by the geological and geophysical comprehensive profile from Golmud to the Tanggula Mountains, Qinghai Province, China[J]. Acta Geologica Sinica, 1996, 70(3): 195-206. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE199603000.htm [3] 崔之久, 高全洲, 刘耕年, 等. 夷平面、古岩溶与青藏高原隆升[J]. 中国科学(D辑), 1996, 26(4): 378-386. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199604014.htmCUI Z J, GAO Q Z, LIU G N, et al. Planation surfaces, palaeokarst and uplift of Xizang (Tibet) plateau[J]. Science in China (Series D), 1996, 39(4): 391-400. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199604014.htm [4] 崔之久, 伍永秋, 刘耕年. " 昆仑-黄河运动" 的发现及其性质[J]. 科学通报, 1997, 42(18): 1986-1989. doi: 10.3321/j.issn:0023-074X.1997.18.019CUI Z J, WU Y Q, LIU G N. Discovery and character of the Kunlun-Yellow River movement[J]. Chinese Science Bulletin, 1997, 42(18): 1986-1989. doi: 10.3321/j.issn:0023-074X.1997.18.019 [5] 崔之久, 伍永秋, 刘耕年, 等. 关于" 昆仑-黄河运动"[J]. 中国科学(D辑), 1998, 28(1): 53-59. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199801009.htmCUI Z J, WU Y Q, LIU G N, et al. On Kunlun-Yellow River tectonic movement[J]. Science in China(Series D), 1998, 41 (6): 592-600. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199801009.htm [6] 施雅风, 李吉均, 李炳元. 青藏高原晚新生代隆升与环境变化[M]. 广州: 广东科技出版社, 1998.373-408.SHI Y F, LI J J, LI B Y. Uplift and environmental changes of Qinghai-Xizang (Tibetan) plateau in the Late Cenozoic[M]. Guangzhou: Guangdong Science & Technology Press, 1998. 373-408. [7] 施雅风, 李吉均, 李炳元, 等. 晚新生代青藏高原的隆升与东亚环境变化[J]. 地理学报, 1999, 54(1): 10-54. doi: 10.3321/j.issn:0375-5444.1999.01.002SHI Y F, LI J J, LI B Y, et al. Uplift of the Qinghai-Xizang (Tibetan) plateau and east Asia environmental change during Late Cenozoic[J]. Acta Geographica Sinica, 1999, 54(1): 10-54. doi: 10.3321/j.issn:0375-5444.1999.01.002 [8] 李吉均, 方小敏, 马海州, 等. 晚新生代黄河上游地貌演化与青藏高原隆起[J]. 中国科学(D辑), 1996, 26(4): 316-322. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199604004.htmLI J J, FANG X M, MA H Z, et al. Geomorphological and environmental evolution in the upper reaches of the Yellow River during the Late Cenozoic[J]. Science in China(Series D), 1996, 39 (4): 380-390. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK199604004.htm [9] 李炳元, 潘保田, 高红山. 可可西里东部地区的夷平面与火山作用[J]. 第四纪研究, 2002, 22(5): 397-405. doi: 10.3321/j.issn:1001-7410.2002.05.001LI B Y, PAN B T, GAO H S. A planation surface and ages of volcanic rocks in eastern Hoh Xil, Qinghai-Tibetan plateau[J]. Quaternary Sciences, 2002, 22(5): 397-405. doi: 10.3321/j.issn:1001-7410.2002.05.001 [10] 李长安, 殷鸿福, 于庆文. 东昆仑山构造隆升与水系演化及其发展趋势[J]. 科学通报, 1999, 44(2): 211-213. doi: 10.3321/j.issn:0023-074X.1999.02.023LI C A, YIN H F, YU Q W. Evolution of drainage systems and its development trend in connection with tectonic uplift of eastern Kunlun Mt[J]. Chinese Science Bulletin, 1999, 44 (2): 211-213. doi: 10.3321/j.issn:0023-074X.1999.02.023 [11] George A D, Marshallsea S J, Wy rwoll K H, et al. Miocene cooling in the northern Qilianshan, northeastern margin of the Tibetan plateau, revealed by apatite fission-track and vitrinite-reflectance analysis[J]. Geological Society of America, 2001, 29(10): 939-942. [12] 赵志军, 方小敏, 李吉均, 等. 酒泉砾石层的古地磁年代与青藏高原隆升[J]. 科学通报, 2001, 46(14): 1208-1212. doi: 10.3321/j.issn:0023-074X.2001.14.017ZHAO Z J, FANG X M, LI J J, et al. Paleomagnetic dating of the Jiuquan gravel in the Hexi Corridor: Implication on midPleistocene uplift of the Qinghai-Tibetan plateau[J]. Chinese Science Bulletin, 2001, 46(14): 1208-1212. doi: 10.3321/j.issn:0023-074X.2001.14.017 [13] 王国灿, 侯光久, 张克信, 等. 东昆仑东段中更新世以来的成山作用及其动力转换[J]. 地球科学——中国地质大学学报, 2002, 27(1): 4-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200201001.htmWANG G C, HOU G J, ZHANG K X, et al. Mountain building and its dynamic transition since Middle Pleistocene in the east of eastern Kunlun, northeast Tibetan plateau[J]. Earth Science-Journal of China University of Geosciences, 2002, 27(1): 4-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200201001.htm [14] 周尚哲, 李吉均, 潘保田, 等. 黄河源区更新世冰盖初步研究[J]. 地理学报, 1994, 49(1): 64-71. doi: 10.3321/j.issn:0375-5444.1994.01.008ZHOU S Z, LI J J, PAN B T, et al. A preliminary study on the local ice sheet of Pleisticene in the source area of the Yellow River[J]. Acta Geographica Sinica, 1994, 49(1): 64-71. doi: 10.3321/j.issn:0375-5444.1994.01.008 [15] 郑本兴, 王苏民. 黄河源区的古冰川与古环境探讨[J]. 冰川冻土, 1996, 18(3): 210-217. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT603.002.htmZHENG B X, WANG S M. A study on the paleoglaciation and paleoenvironment in the source area of the Yellow River[J]. Journal of Glaciology and Geocryology, 1996, 18(3): 210-217. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT603.002.htm [16] Yin A, Harrison T M. Geologic evolution of the HimalayanTibetan orogen[J]. Annual Review of Earth and Planetary Sciences, 2000, 28: 211-280. doi: 10.1146/annurev.earth.28.1.211 [17] An Z, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times[J]. Nature, 2001, 411 (6833): 62-66. doi: 10.1038/35075035 [18] Shen F, Royden L H, Burchfiel B C. Large-scale crustal defo rmation of the Tibetan plateau[J]. Journal of Geophysical Research, B, Solid Earth and Planets, 2001, 106 (4): 6793-6816. [19] Sun J M, Liu T S. Stratigraphic evidence for the uplift of the Tibetan plateau between approximately 1.1 and approximately 0.9 Ma ago[J]. Quaternary Research, 2000, 54 (3): 309-320. doi: 10.1006/qres.2000.2170 [20] Owens T J, Zandt G. Implications of crustal property variations for models of Tibetan plateau evolution[J]. Nature, 1997, 387(1): 37-43. [21] Tapponnier P, Xu Z, Roger F, et al. Oblique stepwise rise and growth of the Tibet plateau[J]. Science, 2001, 294: 1671-1672. doi: 10.1126/science.105978 [22] Bendick R, Bilham R. Building Tibet: Earthquakes and topography on the Himalayan and Altyn Tagh fronts[A]. In: Geological Society of America. 1999 Annual meeting, abstracts with programs[C], 1999, 31(7): 297. [23] Dewey J F, Shackleton R M, Chang C F, et al. The tectonic evolution of the Tibetan plateau[J]. Philosophical Transactions of the Royal Society of London, Series A: M athematical and Physical Sciences, 1988, 327: 379-413. [24] Platt J P, England P C. Convective removal of lithosphere beneath mountain belts: Thermal and mechanical consequences [J]. American Journal of Science, 1994, 294 (3): 307-336 doi: 10.2475/ajs.294.3.307