Constitutive Problem for Seismic Wave Propagation in Discrete Media
-
摘要: 实际地球介质是相当复杂的.基于均匀的、连续介质模型建立的弹性波动理论可能导致对地球结构地震响应的不当解释, 有时可能是错误解释.由于没有更接近实际地球介质模型的波动理论, 许多有用的地震信息因得不到合理解释, 被作为噪音处理了.从等效介质角度来看, 储层介质可以划分为弹性区、粘性区、空白区(空白区是由孔隙、裂隙、结构面产生的介质性质弱化区) 组成的离散介质.在局部平均思想的指导下, 利用区间内聚定理建立起离散(储层) 介质的本构关系, 为建立更接近实际地球介质模型的波动理论提供了力学基础.Abstract: The real geological medium is extremely complicated. Elastic wave theory based on homogeneous and continuous medium model may lead to incorrect explanation of seismic response to geological structure and may even lead to erroneous explanation. Such useful seismic information may be eliminated because it is considered as the noise without an accurate constitutive equation closer to true medium. Natural rock-soil media consist of large porous blocks as a dispersive medium with various gaps, fractures and joint contact surfaces. Hence, that kind of medium is a mixed field of dispersive porous blocks and named "discrete media" by the authors. Among the blocks, pore fluid could run through along all kinds of gaps or surfaces. Also, in the porous blocks, the oil could be filled in pores. Therefore, a global mathematical model of constitutive relation is derived in this paper to simulate the wave propagation in the discrete media.
-
Key words:
- geological medium /
- continuous medium /
- discrete media /
- elastic wave /
- constitutive relation
-
图 1 多孔介质模型[18]
a.单孔隙介质; b.双孔隙介质
Fig. 1. Single-porous medium (a) and double-porous medium models (b)
-
[1] 滕吉文, 张中杰, 王光杰, 等. 地球内部各圈层介质的地震各向异性与地球动力学[J]. 地球物理学进展, 2000, 15(1): 1- 35. doi: 10.3969/j.issn.1004-2903.2000.01.001TENG J W, ZHANG Z J, WANG G J, et al. Seismic anisotropy and geodynamics of Earth interior media[J]. Progress in Geophysics, 2000, 15(1): 1- 35. doi: 10.3969/j.issn.1004-2903.2000.01.001 [2] 布尔贝T, 库索O, 甄斯纳B. 孔隙介质声学[M]. 许云, 译. 北京: 石油工业出版社, 1994.Bourbie T, Coussy O, Zinszner B. Acoustics of porous media[M]. Translated by XU Y. Beijing: Petroleum Industry Press, 1994. [3] Sheriff R E, Geldart L P. Exploration seismology[M]. Translated by CHU Y, LI C Z, WANG H W, et al. Beijing: Petroleum Industry Press, 1999. [4] White J E. Seismic wave propagation[J]. Geophysics Reprint Series, 2000, 21: 2000. https://www.sciencedirect.com/topics/engineering/seismic-wave-propagation [5] Сибиряков BД. 含流体微观非均匀介质中波的传播[J]. 马在田, 译. 国外油气勘探, 1991, 3(3): 109- 112.Сибиряков BД. Wave propagation in the fluid-bearing micro-heterogeneous medium[J]. Translated by MA Z T. Oil and Gas Exploration at Abroad, 1991, 3(3): 109- 112. [6] 怀特J E. 地下的声音(地震波的应用)[M]. 陈俊生, 译. 北京: 石油工业出版社, 1987.White J E. Underground sound: application of seismic waves[M]. Translated by CHEN J S. Beijing: Petroleum Industry Press, 1987. [7] Bakulin A, Grechka V, Tsvankin I. Estimation of fracture parameters from reflection seismic data. Part I: HTI model due to a single fracture set. Part Ⅱ: Fractured models with orthorhombic symmetry; Part Ⅲ: Fractured models with monoclinic symmetry[J]. Geophysics, 2000, 65: 1788- 1802; 1803- 1817; 1818- 1830. doi: 10.1190/1.1444863 [8] Bakulin A, Grechka V, Tsvankin I. Seismic inversion for the parameters of two orthogonal fracture sets in a VTI background medium[J]. Geophysics, 2002, 67: 292- 299. doi: 10.1190/1.1451801 [9] Crampin S. Anisotropy and transverse isotropy[J]. Geophysical Prospecting, 1986, 34: 94- 99. doi: 10.1111/j.1365-2478.1986.tb00454.x [10] Hudson J A, Liu E, Crampin S. The mechanical properties of materials with interconnected cracks and pores[J]. Geophys J Int, 1996, 124: 105- 112. doi: 10.1111/j.1365-246X.1996.tb06355.x [11] Hudson J A, Liu E, Crampin S. The mean transmission properties of a fault with imperfect facial contact[J]. Geophys J Int, 1997, 129: 720- 726. doi: 10.1111/j.1365-246X.1997.tb04507.x [12] Juliard C, Thore P D. Modelling of local velocity anomalies: a cookbook[J]. Geophysical Prospecting, 1999, 47: 299- 312. doi: 10.1046/j.1365-2478.1999.00130.x [13] Shapiro S A, Muller T M. Seismic signatures of permeability in heterogeneous porous media[J]. Geophysics, 1999, 64(1): 99- 103. doi: 10.1190/1.1444536 [14] Ilya T. Anisotropic parameters and P-wave velocity for orthorhombic media[J]. Geophysics, 1997, 62(4): 292- 1309. doi: 10.1190/1.1444231 [15] 袁龙蔚. 流变力学[M]. 北京: 科学出版社, 1986.YUN L W. Rheology[M]. Beijing: Science Press, 1986. [16] 沈平平. 油水在多孔介质中的运动理论和实践[M]. 北京: 石油工业出版社, 2000.SHEN P P. Kinematic theory and practice of oil-water in the porous media[M]. Beijing: Petroleum Industry Press, 2000. [17] 佩蒂庄F J. 沉积岩[M]. 李汉瑜, 徐怀大, 译. 北京: 石油工业出版社, 1981.Pettijohn F J. Sedimentary rocks[M]. Translated by LI H Y, XU H D. Beijing: Petroleum Industry Press, 1981. [18] Boutin C, Royer P, Auriault J L. Acoustic absorption of porous surfacing with dual porosity[J]. Int J Solids&Structures, 1998, 35(34/35): 4709- 4739. https://www.sciencedirect.com/science/article/pii/S0020768398000912 [19] 王柔怀, 伍卓群. 常微分方程讲义[M]. 北京: 人民教育出版社, 1963.WANG R H, WUZ Q. Differential equation teaching materials[M]. Beijing: People's Education Press, 1963. [20] 杨桂通, 张善元. 弹性动力学[M]. 北京: 中国铁道出版社, 1988.YANG G T, ZHANG S Y. Elastic dynamics[M]. Beijing: China Railway Press, 1988.