• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地幔置换作用: 华北两类橄榄岩及其透辉石微量元素对比证据

    郑建平 路凤香 余淳梅 O'ReillyS Y

    郑建平, 路凤香, 余淳梅, O'ReillyS Y, 2003. 地幔置换作用: 华北两类橄榄岩及其透辉石微量元素对比证据. 地球科学, 28(3): 235-240.
    引用本文: 郑建平, 路凤香, 余淳梅, O'ReillyS Y, 2003. 地幔置换作用: 华北两类橄榄岩及其透辉石微量元素对比证据. 地球科学, 28(3): 235-240.
    ZHENG Jian-ping, LU Feng-xiang, YU Chun-mei, O'Reilly S Y, 2003. Mantle Replacement: Evidence from Comparison in Trace Elements between Peridotite and Diopside from Refractory and Fertile Mantle, North China. Earth Science, 28(3): 235-240.
    Citation: ZHENG Jian-ping, LU Feng-xiang, YU Chun-mei, O'Reilly S Y, 2003. Mantle Replacement: Evidence from Comparison in Trace Elements between Peridotite and Diopside from Refractory and Fertile Mantle, North China. Earth Science, 28(3): 235-240.

    地幔置换作用: 华北两类橄榄岩及其透辉石微量元素对比证据

    基金项目: 

    国家“973”项目 G1999043303

    国家自然科学基金项目 40072021

    详细信息
      作者简介:

      郑建平(1964-), 男, 博士, 教授, 从事岩石学教学和科研工作. E-mail: jpzheng@hkem.com

    • 中图分类号: P588.12;P591

    Mantle Replacement: Evidence from Comparison in Trace Elements between Peridotite and Diopside from Refractory and Fertile Mantle, North China

    • 摘要: 在华北地块东部, 河南鹤壁新生代玄武岩中的耐熔橄榄岩捕虏体被认为是克拉通地幔的残留; 山东山旺饱满橄榄岩捕虏体被认为是新生代玄武岩所捕获的新生地幔物质, 对它们全岩的常量、微量元素, 组成单矿物的常量元素和透辉石微量元素进行了对比.结果显示代表古老岩石圈的鹤壁克拉通型地幔和代表新生岩石圈的山旺“大洋型”地幔分别相当于原始地幔经历15 %~ 2 5 %和1%~ 5 %熔融的产物.它们在熔融之后又都遭受了硅酸盐质碳酸岩熔体的交代改造作用, 但前者明显强于后者.古老岩石圈橄榄岩的固相线温度受地幔熔/流体的长期交代而降低.由于早中生代时华北地块受扬子地块碰撞的地幔热扰动和软流圈上涌影响, 促使橄榄岩熔融.所融出的基性岩浆主要垫托在地壳底部, 形成壳-幔过渡带并实现大规模的壳-幔物质和热交换.第三纪以后的热沉降使抬升的软流圈物质冷却垫托在岩石圈底部构成新增生的岩石圈.因此, 发生于东部的中、新生代(相对于古生代) 岩石圈减薄不是软流圈抬升所引起的简单岩石圈厚度变小, 而是伴随着新生地幔物质对古老地幔的置换过程.

       

    • 图  1  鹤壁耐熔地幔和山旺饱满地幔橄榄岩及其单斜辉石REE配分形式

      Fig.  1.  REE pattern of peridotites and clinopyroxenes from Hebi refractory and Shanwang fertile mantle

      图  2  鹤壁和山旺橄榄岩及其单斜辉石微量元素蛛网图

      HB.鹤壁耐熔地幔; SW.山旺饱满地幔; Cpx.单斜辉石; Peri.橄榄岩; 1%, 5%, 10%, 15%, 20%和25%分别代表由单斜辉石模拟的分离熔融程度

      Fig.  2.  Trace element spider figure of peridotites and clinopyroxenes from Hebi and Shanwang

      表  1  鹤壁古老地幔与山旺新生地幔橄榄岩及其矿物的主元素成分对比

      Table  1.   Major element component comparison of peridotites and minerals between Hebi refractory and Shanwang fertile mantle

      表  2  鹤壁古老地幔与山旺新生地幔橄榄岩及其单斜辉石微量元素对比

      Table  2.   Trace element component comparison of peridotites and clinopyroxenes between Hebi refractory and Shanwang fertile mantle 10-6

    • [1] Menzies M A, Fan W M, Zhang M. Paleozoic and Cenozoic lithoprobes and the loss of > 120 km of Archaean lithosphere, Sino-Korean craton, China[J]. Geol Soc Spec Pub, 1993, 76: 71-81. doi: 10.1144/GSL.SP.1993.076.01.04
      [2] 徐义刚. 岩石圈的热-机械侵蚀和化学侵蚀与岩石圈减薄[J]. 矿物岩石地球化学通报, 1999, 18(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH901.000.htm

      XU YG. Roles of thermal-mechanic and chemical erosionin continental lithospheric thinning[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 1999, 18(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH901.000.htm
      [3] 郑建平. 中国东部地幔置换作用与中新生代岩石圈减薄[M]. 武汉: 中国地质大学出版社, 1999. 126.

      ZHENG J P. Mesozoic-Cenozoic mantle replacement and lithospheric thinning beneath the eastern China[M]. Wuhan: China University of Geosciences Press, 1999. 126.
      [4] 路凤香, 郑建平. 华北地台古生代岩石圈地幔特征及深部过程[A]. 见: 池际尚, 路凤香. 华北地台金伯利岩及古生代岩石圈地幔特征[C]. 北京: 科学出版社, 1996.

      LU F X, ZHENG J P. Palaeozoic nature and deep processes of lithospheric mantle beneath North China[A]. In: CHI J S, LU F X, eds. Kimberlites and Palaeozoic mantle beneath North China platform[C]. Beijing: Science Press, 1996.
      [5] Zheng J P, O'Reilly S Y, Griffin W L, et al. Nature and evolution of Cenozoic lithospheric mantle beneath Shandong peninsula, North China block[J]. International Geology Review, 1998, 40(6): 471-499. doi: 10.1080/00206819809465220
      [6] Xu X S, O'Reilly S Y, Griffin W L, et al. Genesis of young lithospheric mantle in SE China: a Lam-ICPMS study[J]. J Petrol, 1999, 40: 111-148.
      [7] Zheng J P, O'Reilly S Y, Griffin W L, et al. Relics of the Archean mantle beneath eastern part of the North China block and its significance in lithospheric evolution[J]. Lithos, 1999, (57): 43-66.
      [8] 袁学诚. 岩石圈地球物理构造格架图[M]. 北京: 地质出版社, 1996.

      YUAN X C. Maps of geophysical from China[M]. Beijing: Geological Publishing House, 1996.
      [9] Wang J Y, Chen M X, Wang J A, et al. On the evolution of geothermal regime of North China basin[J]. Journal of Geodynamics, 1985, (4): 133-148.
      [10] Xu J W, Zhu G. Tectonic models of the Tanlu fault zone, eastern China[J]. International Geology Review, 1994, 36: 771-784. doi: 10.1080/00206819409465487
      [11] Deer W A, Howie RA, Zussman J. Rock-forming minerals[M]. London: Geological Society, 1997.
      [12] McDonough W F, Sun S S. The composition of the Earth [J]. Chem Geol, 1995, 120: 223-253. doi: 10.1016/0009-2541(94)00140-4
      [13] Johnson K T M, Dick H J B, Shimizu N. Melting in the oceanic upper mantle: an ion microprobe study of diopside in abyssal peridotites[J]. J Geophys Res, 1990, 95: 2661-2678. doi: 10.1029/JB095iB03p02661
      [14] Norman M D. Melting and metasomatism in the continental lithosphere: laser ablation ICPMS analysis of minerals in spinel lherzolites from eastern Australia[J]. Contrib Mineral Petrol, 1998, 130: 240-255. doi: 10.1007/s004100050363
      [15] Yaxley G M, Green D H, Kamenetsky V. Carbonatite metasomatism in the southeastern Australian lithosphere [J]. J Petrol, 1998, 39: 1917-1930. doi: 10.1093/petroj/39.11-12.1917
      [16] Stalder R, Foley S F, Brey G P, et al. Mineral-aqueous fluid partitioning of trace elements at 900-1 200 ℃ and 3.0-5.7 GPa: new experimental implications for mantle metasomatism[J]. Geochim Cosmochim Acta, 1998, 62: 1781-1801. doi: 10.1016/S0016-7037(98)00101-X
      [17] Zangana N A, Downes H, Thirlwall M F, et al. Geochemical variation in peridotite xenoliths and their constituent clinopyroxenes from Ray Pic(French Massif Central): implications for the composition of the shallow lithospheric mantle[J]. Chem Geol, 1999, 153: 1135.
      [18] Blusztajn J, Shimizu N. Trace-element variations in clinopyroxenes from spinel peridotite xenoliths from southwest Poland[J]. Chemical Geology, 1994, 111: 227-243. doi: 10.1016/0009-2541(94)90091-4
      [19] Meen J K. Mantle metasomatism and carbonates: an experimental study of a complex relationship[J]. Geol Soc Am(Spec Pap), 1987, 215: 91-100.
      [20] Eggler D H. Solubility of major and trace elements in mantle metasomatic fluids: experimental constraints[A]. In: Menzies M A, Hawkesworth C J, eds. Mantle metasomatism[C]. London: London Academic Press, 1992. 21-41.
      [21] Watson E B, Brenan J M. Fluids in lithosphere, 1. Experimentally determined wetting characteristics of CO2-H2O fluids and the implications for fluid transport, host-rock physical properties and fluid inclusion information[J]. Earth Planet Sci Lett, 1987, 85: 497-515. doi: 10.1016/0012-821X(87)90144-0
      [22] Zinngrebe E, Foley S F. Metasomatism in mantle xenoliths from Gees, West Eifel, Germany: evidence for the genesis of calc-alkaline glasses and metasomatic Ca-enrichment[J]. Contrib Mineral Petrol, 1995, 122: 79-96. doi: 10.1007/s004100050114
      [23] Li S G, Xiao Y, Liou D, et al. Collision of the North China and Yangtze blocks and formation of coesite-bearing eclogites: timing and processes[J]. Chemical Geology, 1993, 109: 89-111. doi: 10.1016/0009-2541(93)90063-O
    • 加载中
    图(2) / 表(2)
    计量
    • 文章访问数:  3636
    • HTML全文浏览量:  124
    • PDF下载量:  3
    • 被引次数: 0
    出版历程
    • 收稿日期:  2002-12-30
    • 刊出日期:  2003-05-25

    目录

      /

      返回文章
      返回