• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    江苏东海超高压榴辉岩的热导率及对大陆科学钻探研究的意义

    欧新功 金振民 金淑燕 徐海军

    欧新功, 金振民, 金淑燕, 徐海军, 2003. 江苏东海超高压榴辉岩的热导率及对大陆科学钻探研究的意义. 地球科学, 28(2): 129-136.
    引用本文: 欧新功, 金振民, 金淑燕, 徐海军, 2003. 江苏东海超高压榴辉岩的热导率及对大陆科学钻探研究的意义. 地球科学, 28(2): 129-136.
    OU Xin-gong, JIN Zhen-min, JIN Shu-yan, XU Hai-jun, 2003. Thermal Conductivity of Donghai UHP Eclogite and Its Significance for Studying Continental Scientific Drilling. Earth Science, 28(2): 129-136.
    Citation: OU Xin-gong, JIN Zhen-min, JIN Shu-yan, XU Hai-jun, 2003. Thermal Conductivity of Donghai UHP Eclogite and Its Significance for Studying Continental Scientific Drilling. Earth Science, 28(2): 129-136.

    江苏东海超高压榴辉岩的热导率及对大陆科学钻探研究的意义

    基金项目: 国家“九五”重大科学工程中国大陆科学钻探工程项目资助
    详细信息
      作者简介:

      欧新功(1974-), 男, 中国地质大学在读博士生, 主要研究方向为岩石物理性质及大陆深部构造. E-mail: xgou@cug.edu.cn

    • 中图分类号: P54;P62

    Thermal Conductivity of Donghai UHP Eclogite and Its Significance for Studying Continental Scientific Drilling

    • 摘要: 对采自江苏东海毛北地区(中国大陆科学钻探先导孔附近) 的新鲜榴辉岩样品进行了岩石热导率的测定, 初步查明了该区榴辉岩热导率随矿物组成的变化关系, 探讨了岩石结构特征和温度变化对热导率的影响.本次所测东海超高压榴辉岩的热导率介于3.2 2 2~ 3.716Wm-1·K-1之间并随岩石中2种主要矿物的相对含量比而变化, 随着榴辉岩中石榴石对绿辉石体积比(VGrt/VOmp) 的增加而降低, 近似的函数关系满足K =3.76 7- 0.18× (VGrt/VOmp).岩石中矿物分布的不均匀性和面状构造的发育对榴辉岩热导率的影响较大, 由此产生的热导率各向异性可达近10 %.温度是影响热导率的另外一个重要因素.结合本次的实测资料和相应的热导率-温度关系, 建立了东海地区榴辉岩热导率随温度的变化关系方程K (T) =1/ (7.85×10-2 +6.95×10-4 ×T), 根据这一方程并结合东海地区的地热梯度资料推算了榴辉岩热导率随5 0 0 0m钻孔深度的变化关系, 推测东海地区科学钻探施工至5 0 0 0m深度时, 榴辉岩的热导率将比地表平均降低2 4%.该成果为钻探测井资料的解释以及该区地热结构模型的建立提供了重要依据和约束资料.

       

    • 图  1  TK04半环型热导率测定仪结构简图

      Fig.  1.  Configuration sketch of TK04 half-space line thermal conductivity meter

      图  2  东海榴辉岩(01MB24) 热导率测试的加温曲线

      Fig.  2.  A heating-curve of measured thermal conductivity of eclogite (No.01MB24) from Donghai area

      图  3  单个测量数据(01MB24-01) 的热导率计算及SAM数据评估图解

      Fig.  3.  Diagrams of thermal conductivity calculating on single measurement (No. 01MB24-01) and SAM evaluation method

      图  4  榴辉岩热导率与矿物组成之间的关系

      Fig.  4.  Correlation between thermal conductivity and component of eclogite

      图  5  结构不均一性导致的榴辉岩热导率各向异性

      Fig.  5.  Anisotropy of thermal conductivity associated with inhomogeneous texture of eclogite

      图  6  推算的超高压榴辉岩热导率随CCSD钻孔深度的变化关系

      Fig.  6.  Correlation between calculated thermal conductivity of UHP-eclogite and depth of CCSD deep hole

      表  1  实验样品的矿物组成和结构特征

      Table  1.   Mineralogical components and texture of starting material in experiments

      表  2  利用矿物成分推算的热导率与实测值的对比

      Table  2.   Comparison between measured value and calculated thermal conductivity from mineralogical components

      表  3  利用热导率-温度关系推测的高温下的热导率

      Table  3.   Thermal conductivity under high temperature inferred from published correlation of K-T (Wm-1·K-1)

    • [1] Hofmeister A M. Mantle values of thermal conductivity and the geotherm from phonon lifetimes[J]. Science, 1999, 283: 1699-1706. doi: 10.1126/science.283.5408.1699
      [2] Dubuffet F, Yuen D A, Rabinowicz M. Effects of a realistic mantle thermal conductivity on the patterns of 3-D convection[J]. Earth and Planetary Science Letters, 1999, 171(3): 401-409. doi: 10.1016/S0012-821X(99)00165-X
      [3] Tommasi A, Gibert B, Seipold U, et al. Anisotropy of thermal diffusivity in the upper mantle[J]. Nature, 2001, 411: 783-786. doi: 10.1038/35081046
      [4] Jokinen J, Kukkonen I T. Inverse simulation of the lithospheric thermal regime using the Monte Carlo method[J]. Tectonophysics, 1999, 306(3-4): 293-310. doi: 10.1016/S0040-1951(99)00062-1
      [5] Seipold U, Huenges E. Thermal properties of gneisses and amphibolites-high pressure and high temperature investigations of KTB-rock samples[J]. Tectonophysics, 1998, 291(1-4): 173-178. doi: 10.1016/S0040-1951(98)00038-9
      [6] Arndt J, Bartel T, Scheuber E, et al. Thermal and rheological properties of granodioritic rocks from the Central Andes, North Chile[J]. Tectonophysics, 1997, 271(1-2): 75-88. doi: 10.1016/S0040-1951(96)00218-1
      [7] Vasseur G, Brigaud F, Demongodin L. Thermal conductivity estimation in sedimentary basins[J]. Tectonophysics, 1995, 244(1-3): 167-174. doi: 10.1016/0040-1951(94)00225-X
      [8] 熊亮萍, 胡圣标, 汪缉安. 中国东南地区岩石热导率值的分析[J]. 岩石学报, 1994, 10(3): 323-329. doi: 10.3321/j.issn:1000-0569.1994.03.010

      XIONG L P, HU S B, WANG J A. Analysis on the thermal conductivity of rocks from SE China[J]. Acta Petro Sinica, 1994, 10(3): 323-329. doi: 10.3321/j.issn:1000-0569.1994.03.010
      [9] 沈显杰, 张文仁, 陆秀文, 等. 地热-Ⅱ型稳定分棒式热导仪—岩石热导率精密测量装置[J]. 岩石学报, 1987, 1: 86-95. SHEN X J, ZHANG W R, LU X W, et al. Geotherm-Ⅱ model thermal conductivity meter of steady-stage divided 134地球科学—中国地质大学学报第28卷 doi: 10.3321/j.issn:1000-0569.1987.01.010
      [10] 赵永信, 杨淑贞, 张文仁, 等. 岩石热导率的温压实验及分析[J]. 地球物理学进展, 1995, 10(1): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ501.009.htm

      ZHAO Y X, YANG S Z, ZHANG W R, et al. An experimental study of rock thermal conductivity under different temperature and pressure[J]. Progress in Geophysics, 1995, 10(1): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ501.009.htm
      [11] Xu Z, Yang W, Zhang Z, et al. Scientific significance and site-selection researches of the first Chinese scientific deep drillhole[J]. Continental Dynamics, 1998, 3: 1-13.
      [12] Xu Z, Yang W, Yang J, et al. Chinese continental scientific drilling program in the Sulu ultrahigh pressure metamorphic belt[J]. ICDP Newsletter, 2000, 2: 13-16.
      [13] Rauen A, Winter H. Petrophysical properties[A]. In: Emmermann R, Althaus E, Giese P, et al, eds. KTB Report 95-2[C]. Hannover: Hannover Press, 1995. 24-28.
      [14] Clauser C, Huenges E. Thermal conductivity of rocks and minerals[A]. In: Ahrens T, ed. AGU Handbook of physical constant Am Geophys[C]. Union, Washington, NY, 1995, Section 3.9, 105-126.
      [15] Buntebarth G. Thermal properties of KTB Oberpfalz VB core samples at elevated temperature and pressure[J]. Sci Drilling, 1991, 2: 73-80.
      [16] Diment W H, Pratt H R. Thermal conductivity of some rock-forming minerals: a tabulation[R]. USGS open file report 88-690, US Geol Survey, Denver Co, 1988. 15.
      [17] Zoth G, H‐nel R. Appendix of thermal conductivity[A]. In: H‐nel R, Rybach L, Stegena L, eds. Handbook of Terrestrial heat flow density determination[C]. Dordrecht: Kluwer Press, 1988. 449-466.
      [18] Burkhardt H, Honarmand H, Pribnow D. Test measurements with a new thermal conductivity borehole tool[J]. Tectonophysics, 1995, 244(1-3): 161-165. doi: 10.1016/0040-1951(94)00224-W
      [19] Sass J H, Lachenbruch A H, Moses TH. Heat flow from a scientific research well at Cajon Pass, California[J]. J Geophys Res, 1992, 97(B4): 5017-5030. doi: 10.1029/91JB01504
      [20] Seipold U. Temperature dependence of thermal transport properties of crystalline rocks — a general law[J]. Tectonophysics, 1998, 291(1-4): 161-171. doi: 10.1016/S0040-1951(98)00037-7
      [21] 汪集, 胡圣标, 程本合, 等. 中国大陆科学钻探靶区深部温度预测[J]. 地球物理学报, 2001, 44(6): 774-782. doi: 10.3321/j.issn:0001-5733.2001.06.006

      WANG J Y, HU S B, CHENG B H, et al. Prediction of deep temperature in the target area of Chinese continental scientific drilling[J]. Chinese Journal of Geophysics, 2001, 44(6): 774-782. doi: 10.3321/j.issn:0001-5733.2001.06.006
      [22] Wang J, Hu S, Yang W, et al. Geothermal measurements in the pilot-boreholes of the China continental scientific drilling[J]. Chinese Sci Bull, 2001, 46(20): 1745-1748.
    • 加载中
    图(6) / 表(3)
    计量
    • 文章访问数:  3540
    • HTML全文浏览量:  115
    • PDF下载量:  3
    • 被引次数: 0
    出版历程
    • 收稿日期:  2003-01-17
    • 刊出日期:  2003-03-25

    目录

      /

      返回文章
      返回