Thermal Conductivity of Donghai UHP Eclogite and Its Significance for Studying Continental Scientific Drilling
-
摘要: 对采自江苏东海毛北地区(中国大陆科学钻探先导孔附近) 的新鲜榴辉岩样品进行了岩石热导率的测定, 初步查明了该区榴辉岩热导率随矿物组成的变化关系, 探讨了岩石结构特征和温度变化对热导率的影响.本次所测东海超高压榴辉岩的热导率介于3.2 2 2~ 3.716Wm-1·K-1之间并随岩石中2种主要矿物的相对含量比而变化, 随着榴辉岩中石榴石对绿辉石体积比(VGrt/VOmp) 的增加而降低, 近似的函数关系满足K =3.76 7- 0.18× (VGrt/VOmp).岩石中矿物分布的不均匀性和面状构造的发育对榴辉岩热导率的影响较大, 由此产生的热导率各向异性可达近10 %.温度是影响热导率的另外一个重要因素.结合本次的实测资料和相应的热导率-温度关系, 建立了东海地区榴辉岩热导率随温度的变化关系方程K (T) =1/ (7.85×10-2 +6.95×10-4 ×T), 根据这一方程并结合东海地区的地热梯度资料推算了榴辉岩热导率随5 0 0 0m钻孔深度的变化关系, 推测东海地区科学钻探施工至5 0 0 0m深度时, 榴辉岩的热导率将比地表平均降低2 4%.该成果为钻探测井资料的解释以及该区地热结构模型的建立提供了重要依据和约束资料.Abstract: UHP eclogite samples were collected from surface exposures around Chinese Continental Scientific Drilling (CCSD) drill-site in Donghai area have been measured on thermal conductivity to investigate the effect of mineral components and texture on thermal conductivity (TC) of eclogite. Measured thermal conductivities vary from 3.222 to 3.716 Wm-1·K-1 with average value 3.511 Wm-1·K-1, which depend on the volume ratio of garnet and omphacite (VGrt/VOmp) in the rocks. This correlation was fitted to the function K=3.767-0.18× (VGrt/VOmp), which shows the thermal conductivity of eclogite in this area decreased as increasing of VGrt/VOmp. Inhomogeneous distribution of minerals and the foliation texture in rocks also significantly affect the value of thermal conductivity and induce the anisotropy up to 10% in eclogite. For temperature dependence, according to calculations from the correlation between K-T, thermal conductivities under high temperature were also fitted to a function: K (T) =1/ (7.85×10-2+6.95×10-4×T), T is absolute temperature. Based on this function and the published geothermal data of this area, a depth dependence of thermal conductivity can be concluded. The K of eclogite decreased as the increasing depth of CCSD drill hole. The K values of eclogite in surface and in bottom of hole are 3.511 Wm-1·K-1 and 2.687 Wm-1·K-1, respectively. The K of eclogite will be predicted to be decreased about 24% from surface to the end of 5 000 m depth of CCSD. These research results are helpful to establish the geothermal model of this area and to interpret well logging results from CCSD.
-
Key words:
- UHP eclogite /
- thermal conductivity /
- half-space line TC meter /
- CCSD /
- Jiangsu Donghai
-
表 1 实验样品的矿物组成和结构特征
Table 1. Mineralogical components and texture of starting material in experiments
表 2 利用矿物成分推算的热导率与实测值的对比
Table 2. Comparison between measured value and calculated thermal conductivity from mineralogical components
表 3 利用热导率-温度关系推测的高温下的热导率
Table 3. Thermal conductivity under high temperature inferred from published correlation of K-T (Wm-1·K-1)
-
[1] Hofmeister A M. Mantle values of thermal conductivity and the geotherm from phonon lifetimes[J]. Science, 1999, 283: 1699-1706. doi: 10.1126/science.283.5408.1699 [2] Dubuffet F, Yuen D A, Rabinowicz M. Effects of a realistic mantle thermal conductivity on the patterns of 3-D convection[J]. Earth and Planetary Science Letters, 1999, 171(3): 401-409. doi: 10.1016/S0012-821X(99)00165-X [3] Tommasi A, Gibert B, Seipold U, et al. Anisotropy of thermal diffusivity in the upper mantle[J]. Nature, 2001, 411: 783-786. doi: 10.1038/35081046 [4] Jokinen J, Kukkonen I T. Inverse simulation of the lithospheric thermal regime using the Monte Carlo method[J]. Tectonophysics, 1999, 306(3-4): 293-310. doi: 10.1016/S0040-1951(99)00062-1 [5] Seipold U, Huenges E. Thermal properties of gneisses and amphibolites-high pressure and high temperature investigations of KTB-rock samples[J]. Tectonophysics, 1998, 291(1-4): 173-178. doi: 10.1016/S0040-1951(98)00038-9 [6] Arndt J, Bartel T, Scheuber E, et al. Thermal and rheological properties of granodioritic rocks from the Central Andes, North Chile[J]. Tectonophysics, 1997, 271(1-2): 75-88. doi: 10.1016/S0040-1951(96)00218-1 [7] Vasseur G, Brigaud F, Demongodin L. Thermal conductivity estimation in sedimentary basins[J]. Tectonophysics, 1995, 244(1-3): 167-174. doi: 10.1016/0040-1951(94)00225-X [8] 熊亮萍, 胡圣标, 汪缉安. 中国东南地区岩石热导率值的分析[J]. 岩石学报, 1994, 10(3): 323-329. doi: 10.3321/j.issn:1000-0569.1994.03.010XIONG L P, HU S B, WANG J A. Analysis on the thermal conductivity of rocks from SE China[J]. Acta Petro Sinica, 1994, 10(3): 323-329. doi: 10.3321/j.issn:1000-0569.1994.03.010 [9] 沈显杰, 张文仁, 陆秀文, 等. 地热-Ⅱ型稳定分棒式热导仪—岩石热导率精密测量装置[J]. 岩石学报, 1987, 1: 86-95. SHEN X J, ZHANG W R, LU X W, et al. Geotherm-Ⅱ model thermal conductivity meter of steady-stage divided 134地球科学—中国地质大学学报第28卷 doi: 10.3321/j.issn:1000-0569.1987.01.010 [10] 赵永信, 杨淑贞, 张文仁, 等. 岩石热导率的温压实验及分析[J]. 地球物理学进展, 1995, 10(1): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ501.009.htmZHAO Y X, YANG S Z, ZHANG W R, et al. An experimental study of rock thermal conductivity under different temperature and pressure[J]. Progress in Geophysics, 1995, 10(1): 104-113. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ501.009.htm [11] Xu Z, Yang W, Zhang Z, et al. Scientific significance and site-selection researches of the first Chinese scientific deep drillhole[J]. Continental Dynamics, 1998, 3: 1-13. [12] Xu Z, Yang W, Yang J, et al. Chinese continental scientific drilling program in the Sulu ultrahigh pressure metamorphic belt[J]. ICDP Newsletter, 2000, 2: 13-16. [13] Rauen A, Winter H. Petrophysical properties[A]. In: Emmermann R, Althaus E, Giese P, et al, eds. KTB Report 95-2[C]. Hannover: Hannover Press, 1995. 24-28. [14] Clauser C, Huenges E. Thermal conductivity of rocks and minerals[A]. In: Ahrens T, ed. AGU Handbook of physical constant Am Geophys[C]. Union, Washington, NY, 1995, Section 3.9, 105-126. [15] Buntebarth G. Thermal properties of KTB Oberpfalz VB core samples at elevated temperature and pressure[J]. Sci Drilling, 1991, 2: 73-80. [16] Diment W H, Pratt H R. Thermal conductivity of some rock-forming minerals: a tabulation[R]. USGS open file report 88-690, US Geol Survey, Denver Co, 1988. 15. [17] Zoth G, H‐nel R. Appendix of thermal conductivity[A]. In: H‐nel R, Rybach L, Stegena L, eds. Handbook of Terrestrial heat flow density determination[C]. Dordrecht: Kluwer Press, 1988. 449-466. [18] Burkhardt H, Honarmand H, Pribnow D. Test measurements with a new thermal conductivity borehole tool[J]. Tectonophysics, 1995, 244(1-3): 161-165. doi: 10.1016/0040-1951(94)00224-W [19] Sass J H, Lachenbruch A H, Moses TH. Heat flow from a scientific research well at Cajon Pass, California[J]. J Geophys Res, 1992, 97(B4): 5017-5030. doi: 10.1029/91JB01504 [20] Seipold U. Temperature dependence of thermal transport properties of crystalline rocks — a general law[J]. Tectonophysics, 1998, 291(1-4): 161-171. doi: 10.1016/S0040-1951(98)00037-7 [21] 汪集, 胡圣标, 程本合, 等. 中国大陆科学钻探靶区深部温度预测[J]. 地球物理学报, 2001, 44(6): 774-782. doi: 10.3321/j.issn:0001-5733.2001.06.006WANG J Y, HU S B, CHENG B H, et al. Prediction of deep temperature in the target area of Chinese continental scientific drilling[J]. Chinese Journal of Geophysics, 2001, 44(6): 774-782. doi: 10.3321/j.issn:0001-5733.2001.06.006 [22] Wang J, Hu S, Yang W, et al. Geothermal measurements in the pilot-boreholes of the China continental scientific drilling[J]. Chinese Sci Bull, 2001, 46(20): 1745-1748.