Results of Physical Experiment on Petroleum Migration in Water Saturated Fractured Media and Their Geological Significance
-
摘要: 利用2套裂缝网络模型进行了一系列石油在饱水裂缝介质中运移的物理模拟实验, 从石油运移角度研究不同网络拓扑结构、不同缝宽、不同原油粘度等因素对石油运移的影响.通过实验结果分析发现, 在裂缝宽度不同的多裂缝体系的石油运移过程中, 宽度大的裂缝方向控制着石油运移的方向和原油在裂缝介质中的分布.同时发现, 当流体势降低方向(驱替方向) 与宽缝方向一致时, 运移速度、运移量与粘度的大小尚能呈现出一定的关系: 油的粘度越小, 运移速度越快, 运移量越大, 反之亦然.但当流体势降低方向(驱替方向) 与宽缝方向垂直时, 变化趋于复杂.根据物理模拟实验的结果, 指出在油气成藏研究和油气分布预测中, 油气运移高峰期的古流体势分布和古应力场分布研究的配合, 是判断油气运移方向、确定有利聚集区带的关键.Abstract: A series of physical experiments on petroleum migration in water saturated fractured media are performed by using two designed models. The objective of the experiments is to study the influences of fracture topography, fracture width and oil viscosity in oil migration. The experiment results demonstrate that the direction of fractures with the greatest width controls mainly the migration direction and distribution of oil in fractured media. It is also found that when the decreasing direction of fluid potential is parallel to the direction of fractures with the greatest width, migration velocity and migration quantity increase with the decrease of oil viscosity. But the relationships among migration velocity, migration quantity and oil viscosity are more complex when the decreasing direction of fluid potential is perpendicular to the direction of fractures. The results clarify that it is essential to study the combined effect of paleo-stress and paleo-potential distributions in identifying the direction of oil migration and accumulation.
-
Key words:
- fractured media /
- oil migration /
- physical model /
- oil displacing water process
-
表 1 各裂缝组中无因次含油量
Table 1. Dimensionless oil quantities in different fracture systems
-
[1] 康永尚, 谌卓恒. 裂缝性油气储集层研究现状及发展趋势[J]. 地质论评, 1996, 42 (增刊): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1996S1014.htmKANG Y S, CHEN Z H. On the current status and future trend of fractured petroleum reservoirs[J]. Geological Review, 1996, 42 (Suppl): 95-101. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP1996S1014.htm [2] 朱九成, 郎兆新, 张丽华. 图像处理技术在多相渗流实验中的应用[J]. 石油勘探与开发, 1997, 24 (4): 54-56. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK199704014.htmZHU J C, LANG Z X, ZHANG L H. Application of image treating techniques in multi-phase flow experiment[J]. Petroleum Exploration and Development, 1997, 24 (4): 54-56. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK199704014.htm [3] 荆仁杰. 计算机图像处理[M]. 杭州: 浙江大学出版社, 1995.JING R J. Computer image treatment[M]. Hangzhou: Zhejiang University Press, 1995. [4] 王平. 含油气盆地构造力学原理[M]. 北京: 石油工业出版社, 1993.WANG P. Principles of tectonic mechanics in petroleum basins [M]. Beijing: Petroleum Industry Press, 1993. [5] 曾联波, 金之钧, 汤良杰, 等. 柴达木盆地北缘油气分布的构造控制作用[J]. 地球科学———中国地质大学学报, 2001, 26 (1): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200101010.htmZENG L B, JINZ J, TANG L J, et al. Structural controls of petroleum and gas distribution on northern margin of Qaidam basin, China[J]. Earth Science—Journal of China University of Geosciences, 2001, 26(1): 54-58. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200101010.htm