Vulnerability of Groundwater in Quaternary Aquifers to Organic Contaminants: A Case Study in Wuhan City, China
-
摘要: 在详细调查武汉市水文地质条件和地下水污染现状的基础上, 获得了高精度的武汉市水环境中微量有机污染物的组成数据.所检测出的有机组分达3 0余种, 以苯及相关苯系物为主, 污染程度较高的地下水主要分布在人口密集区和工业、商业区.应用改进的DRA STIC模型———地下水污染敏感性评价模型, 在GIS平台上, 编制了武汉市区地下水污染敏感性分区图.根据其评价结果, 建议集中对那些敏感性相对较高的区域采取有效的环保措施, 开发利用时应作出风险评价Abstract: High resolution data about trace organic contaminant concentrations in aquatic environment of Wuhan were obtained in this study, on the basis of detailed hydrogeological and groundwater contamination investigations. More than 30 organic contaminants have been detected, in which benzene hydrocarbons are the most widespread. The seriously contaminated groundwater comes from densely populated, industrial and commercial areas. Applying the DRA MIC model proposed by the authors as an improved version of the widely used DRA STIC model to the assessment of the vulnerability of groundwater to contamination in urban areas, the authors draw a GIS based vulnerability map of Wuhan city. Finally, the authors propose some suggestions about environmental protection and risk management for highly vulnerable regions in line with the assessment results thus made in this paper.
-
Key words:
- groundwater /
- contamination /
- environment /
- vulnerability /
- geographic information system
-
图 1 武汉市地下水中有机组分聚类分析
1.1, 2, 3, 4-四甲苯;2.苯甲醛;3.萘;4.对二甲苯;5.邻二甲苯;6.1, 2, 3, 5-四甲苯;7.1, 2-二氯丙醛;8.1, 2, 4, 5-四甲苯;9.1, 1, 2, 2, -四氯乙烷;10. 烯;11.1, 3-二乙基苯;12.苯乙烯;13.间二甲苯;14.甲苯;15.乙苯;16.4-乙基甲苯;17.1, 2, 4-三甲苯;18.五甲苯;19.四氯乙烯;20.氯苯;21.间二氯苯;22.1, 4-二氯苯;23.溴氯甲烷;24.氯仿;25.1, 3, 5-三甲苯;26.1, 2-二乙基苯;27.1, 4-二乙基苯;28.1, 2, 3-三甲苯;29.三氯乙烯;30.苯
Fig. 1. Cluster analysis results of organic contaminants in groundwaters from Wuhan
-
[1] Aller L T, Foster S S D. DRA STIC: standardized system for evaluating ground water pollution potential using hydrogeologic settings [M]. [s. l. ]: Office of Research Development, US EPA, 1985. [2] Ray I A, Odell P W. Diversity: a new method for evaluating sensitivity of groundwater to contamination [J]. Environmental Geology, 1993, 22: 344-352 [3] James W M. GIS-based groundwater pollution hazard assessment: a critical review of the DRA STIC model [J]. Photogrammetric Engineering & Remote Sensing, 1994, 60(9): 618-627. [4] Rosebaum M S, Nowbuth M D. Aquifer vulnerability assessment through the use of GIS technology [A]. In: Marinos K, ed. Engineering geology and the environment [C]. Rotterdam: Balkema, 1997.1475-1477. [5] Evans B M, Myers M L. AGIS-based approach to evaluating regional groundwater pollution potential with DRA STIC [J]. Journal of Soil and Water Conservation, 1999, 3: 242-245. [6] Stournaras G, Valadaki K, Plessas S. Geological environmental data processing using GIS in areas proposed for urban development Argolis, Greece [J]. Engineering Geology and the Environment, 1997, (C): 1499-1504. [7] Hirata R C A. Groundwater pollution risk and vulnerability map of the state of Sao paulo, Brazil [J]. Water and Science Technology, 1991. [8] 付素蓉, 王焰新, 蔡鹤生, 等. 城市地下水污染敏感性分析[J]. 地球科学———中国地质大学学报, 2000, 25 (5): 477-481. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200005007.htmFU S R, WANG Y X, CAI H S, et al. Vulnerability to contamination of groundwater in urban regions [J]. Earth Science—Journal of China University of Geosciences, 2000, 25(5): 477-481. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200005007.htm [9] Wilson J T. Transport and fate of selected organic pollutants in a sandy soil [J]. Environment and Quality, 1981, (10): 501-506.