Fault System and Its Control over Gas Accumulation in DF1-1 Diapir, Yinggehai Basin
-
摘要: 莺歌海盆地的巨厚充填、高地温梯度及大规模的超压流体活动等特殊的地质背景, 造就了DF1- 1底辟构造的独特性, 其内天然气的总体特征与底辟区的断裂系统存在着密切的联系.底辟区内的超压流体活动使其上覆地层产生众多的断裂和裂隙.这些垂向上的断裂和裂隙既构成了异常压力体系能量释放的主要通道, 同时也形成了天然气运移的垂向输导体系.在断裂开启过程中上升的活动流体主要取决于断裂下延的深度及断裂上延所连通的中深-浅层的渗透性砂体, 因此由断裂与砂体的相互配置所构成的输导体系在DF1- 1气田的成藏中起着重要的作用.根据DF1- 1的成藏特点, 强调断裂系统与天然气运聚的相互促进关系, 建立了断裂系统与天然气成藏关系模式.Abstract: Yinggehai basin has peculiar sedimentary, tectonic and evolution model and is abundant in hydrocarbon resources. As the main and typical structure in diapir area, DF1-1 diapir develops a lot of faults and cracks, virtually related with gas accumulation. The process of formation, opening and closing of the faults in the top of the diapirs basically display the progression of the fluid/gas migration. When overpressure reached such a critical value with oil/gas accumulating and pressure increasing, faults open as the pathway of oil/gas migration. It will be more favorable if the fault cut the sandstone bodies or fractures in the overpressure area, which might result in oil/gas accumulating into these sandstone bodies (reservoirs). Therefore, faults are the fluid released pathway and sandstone bodies and fractures as reservoirs of oil/gas in DF1-1 diapir. The spatio temporal match of vertical source rocks, reservoir and seals, combined with fault system provided by diapirism, result in the formation of large DF1-1 gas field. The models about fault system and gas accumulation have also been presented and discussed.
-
Key words:
- DF1-1 diapir /
- fault system /
- gas accumulation /
- gas migration
-
表 1 DF1-1底辟构造气水界面对比
Table 1. Contrast of gas-water interfaces in the DFl-1 diapir
-
[1] 龚再升, 杨甲明, 郝芳, 等. 莺歌海盆地与琼东南盆地成藏条件的比较及天然气勘探方向[J]. 地球科学——中国地质大学学报, 2001, 26(3): 286-290. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200103010.htmGONG Z S, YANG J M, HAO F, et al. Difference in natural gas accumulation conditions between Yinggehai and Qiongdongnan basins and its implications for natural gas exploration[J]. Earth Science - Journal of China University of Geosciences, 2001, 26(3): 286-290. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200103010.htm [2] 张启明, 胡忠良. 莺-琼盆地高温高压环境及油气运移机制[J]. 中国海上油气, 1992, 6(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199201003.htmZHANG Q M, HU Z L. High-temperature, overpressure and mechanism of oil/gas migration in Yinggeha-i Qiongdongnan basin[J]. China Offshore Oil and Gas, 1992, 6 (1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199201003.htm [3] 殷秀兰, 李思田, 杨计海. 底辟构造分析及热流体运移模拟——以莺歌海盆地DF1-1为例[J]. 地学前缘, 2000, 7(3): 81-89. doi: 10.3321/j.issn:1005-2321.2000.03.008YIN X L, LI S T, YANG J H. Study on fault system and simulation of driving fluid migration in DF1-1 diapir, Yinggehai basin, South China Sea[J]. Earth Science Frontiers, 2000, 7(3): 81-89. doi: 10.3321/j.issn:1005-2321.2000.03.008 [4] 殷秀兰, 李思田, 马寅生, 等. 莺歌海盆地构造演化的三维模拟实验及其动力学意义[J]. 地质论评, 2001, 47 (5): 535-541. doi: 10.3321/j.issn:0371-5736.2001.05.013YIN X L, LI S T, MA Y S, et al. T hree-dimensional tectonic modeling of the Yinggehai basin in the Late Tertiary and its geodynamic significance[J]. Geological Review, 2001, 47(5): 535-541. doi: 10.3321/j.issn:0371-5736.2001.05.013 [5] 龚再升, 李思田. 南海北部大陆边缘盆地分布与油气聚集[M]. 北京: 科学出版社, 1997.GONG Z S, LI S T. Continental margin basin analysis and hydrocarbon accumulation of the northern South China Sea [M]. Beijing: Science Press, 1997. [6] 王槐基. 莺歌海盆地地震异常体特征及其地震地质解释[J]. 中国海上油气, 1997, 11(2): 131-138. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199702011.htmWANG H J. Characteristic of seismic abnormal blocks and their seismic geological interpretation[J]. China Offshore Oil and Gas, 1997, 11(2): 131-138. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD199702011.htm [7] 何家雄, 陈伟煌, 李明兴. 莺-琼盆地天然气成因类型及气源剖析[J]. 中国海上油气, 2000, 4(6): 398-405. doi: 10.3969/j.issn.1673-1506.2000.06.005HE J X, CHEN W H, LI M X. Genetic types of natural gas and source rock in Ying-Qiong basin[J]. China Offshore Oil and Gas, 2000, 4(6): 398-405. doi: 10.3969/j.issn.1673-1506.2000.06.005 [8] 解习农, 李思田, 董伟良, 等. 热流体活动示踪标志及其地质意义——以莺歌海盆地为例[J]. 地球科学——中国地质大学学报, 1999, 24(2): 183-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX902.016.htmXIE X N, LI S T, DONG W L, et al. Trace marker of hot fluid flow and their geological implications - a case study of Yinggehai basin[J]. Earth Science - Journal of China University of Geosciences, 1999, 24(2): 183-188. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX902.016.htm [9] Perez B F, Alonso S, Ercilla G. History of mud diapirism and trigger mechanisms in the Western Alboran Sea[J]. Tectonophysics, 1997, 282: 399-422. doi: 10.1016/S0040-1951(97)00226-6 [10] Lewis J C, Byrne T. Deformation and diagenesis in an ancient mud diapir, Southwest Japan[J]. Geology (Boulder), 1996, 24(4): 303-306. doi: 10.1130/0091-7613(1996)024<0303:DADIAA>2.3.CO;2 [11] 陈建渝, 牛瑞卿. 断陷盆地多次运移成藏的有机地球化学研究[J]. 地球科学——中国地质大学学报, 2000, 25 (3): 253-259. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200003007.htmCHEN J Y, NIU R Q. Organic geochemistry research into mult-i phase petroleum migration and accumulation in riftsubsidence basin[J]. Earth Science - Journal of China University of Geosciences, 2000, 25(3): 253-259. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200003007.htm [12] Antonellini M, Aydin A. Effect of faulting on fluid flow in porous sandstone: geometry and spatial distribution [J]. AAPG Bulletin, 1995, 79(5): 642-671. [13] Van Balen R, Cloetingh S. Tectonic control of the sedimentary record and stress-induced fluid flow: constraints from basin modeling[A]. In: Parnell J, ed. Geofluids: origin, migration and evolution of fluids in sedimentary basins[C]. Geological Society Special Publication, 1994, 78: 9-26. [14] Powers M C. Fluid release mechanisms in compacting marine mudstones and their importance in oil exploration [J]. AAPG Bulletin, 1967, 51: 1240-1254.