Groundwater Exploitation: An Important CO_2 Source
-
摘要: 运用水文地球化学模拟软件计算了大庆市齐家水源地地下水的CO2分压及地下水被抽出至地表与大气CO2达成平衡后CO2自水中的逸出量, 结果表明, 地下水p(CO2)= 1.28× 104 Pa, 显著高出大气p(CO2); 当地下水到达地表环境后将有11.15 mmol/kg的CO2释放进入大气.进一步的讨论得知, 各种岩性含水层的地下水都可以含有较高的p(CO2).因而, 地下水的开采成为了一个不容忽视的CO2人为排放源.这应该引起有关学者的重视.Abstract: Partial CO2pressure(p(CO2))of groundwater from Qijia water supply base and mass transfers after the groundwater being pumped out to equilibrate with atmospheric CO2are calculated by hydrogeochemical modeling. The results show that the groundwater p(CO2)is pronounced higher than atmospheric p(CO2), and that 11.15 mmol/kg CO2will be emitted to the atmosphere when the groundwater reaches the surface. Further discussion has revealed that different lithologic aquifers usually contain higher groundwater p(CO2).Consequently, groundwater exploitation hasbecome a man-made CO2source and should arouse our attention.
-
Key words:
- hydrogeochemical modeling /
- groundwater exploitation /
- CO2 emission
-
表 1 齐家水源地泰康组含水层水化学特征
Table 1. Hydrochemical characteristics of Qijia groundwater
表 2 地下水抽出至地表与大气充分平衡后的化学成分
Table 2. Hydrochemical composition of the pumped water equilibrated with air 10-3mol/kg
表 3 地下水抽出至地表与大气平衡后产生的物质迁移量
Table 3. Mass transfers when groundwater being pumped out to equilibrate with air 10-3mol/kg
表 4 不同岩性地区地下水成分及地下水到达地表后CO2的逸出量
Table 4. Examples of groundwater compositions from different lithologic aquifers and amounts of CO2 degassing after the groundwater being pumped to surface
-
[1] 张宗祜, 施德鸿, 任福弘, 等. 论华北平原第四系地下水系统之演化[J]. 中国科学(D辑), 1997, 27(2): 168-173. doi: 10.3321/j.issn:1006-9267.1997.02.006ZHANG Z H, SHI D H, REN F H, et al. Evolution of Quaternary groundwater system in the North China plain[J]. Science in China(Series D), 1997, 27(2): 168-173. doi: 10.3321/j.issn:1006-9267.1997.02.006 [2] 贾国东, 张建立, 秦延君, 等. 地下水水质参数在抽水过程中的不稳定性及其水化学模拟——以大庆市齐家水源地为例[J]. 地球科学——中国地质大学学报, 2000, 25(2): 201-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200002017.htmJIA G D, ZHANG J L, QIN Y J, et al. Instability of groundwater quality parameters during pumping and its hydrochemical simulation: example from Qijia water supply base[J]. Earth Science— Journal of China University of Geosciences, 2000, 25(2): 201-204. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX200002017.htm [3] 国家计委能源所能源与环境研究室. 我国矿物燃料燃烧的CO2排放量及削减对策[J]. 能源政策研究通讯, 1991, (2): 4-6.Institute of Energy and Environment. Amounts of CO2emission from combustion of mineral fuel and the strategy of decreasing the emission[J]. Energy Policy Research Letter, 1991, (2): 4-6. [4] 钱天伟, 段长春, 曹玉清. 研究地下水中HCO3-来源的稳定碳同位素法[J]. 长春地质学院学报, 1995, 25(2): 178-182. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ502.010.htmQIAN T W, DUAN C C, CAO Y Q. Research on the source of HCO3- in groundwater by stable isotope method[J]. Journal of Changchun University of Earth Sciences, 1995, 25(2): 178-182. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ502.010.htm [5] 袁道先. 现代岩溶学和全球变化研究[J]. 地学前缘, 1997, 4(1~ 2): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY7Z1.003.htmYUAN D X. Modern karstology and global change study[J]. Earth Science Frontiers, 1997, 4(1-2): 17-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY7Z1.003.htm [6] 袁道先. 中国岩溶地球化学研究进展[J]. 水文地质工程地质, 1990, (5): 41-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG199005013.htmYUAN D X. Research advance on karst geochemistry in China[J]. Hydrogeology and Engineering Geology, 1990, (5): 41-42. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG199005013.htm [7] 沈照理, 朱宛华, 钟佐. 水文地球化学基础[M]. 北京: 地质出版社, 1993. 1-189.SHEN Z L, ZHU W H, ZHONG Z S. Fundamentals of hydrogeochemistry[M]. Beijing: Geological Publishing House, 1993. 1-189. [8] 李玉军. 西宁市南川水源地水质恶化机制[J]. 青海地质, 1996, 5(2): 43-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GTJL199602006.htmLI Y J. Mechanism of deterioration of groundwater quality in Nanchuan water source site, Xining[J]. Geology of Qinghai, 1996, 5(2): 43-50. https://www.cnki.com.cn/Article/CJFDTOTAL-GTJL199602006.htm [9] 李中琴. 大同市平原区地下水污染现状分析[J]. 山西地质, 1988, 3(2): 197-205.LI Z Q. Pollution state analysis on groundwater in plain area of Datong[J]. Shanxi Geology, 1988, 3(2): 197205. [10] 刘金荣, 周玲玲. 岩溶地下水化学组分随降水周期变化的规律性[J]. 广西地质, 1996, 9(3): 53-61. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ603.008.htmLIU J R, ZHOU L L. The varying regularity of major chemical compositions of karst water with precipitation cycle[J]. Guangxi Geology, 1996, 9(3): 53-61. https://www.cnki.com.cn/Article/CJFDTOTAL-GXDZ603.008.htm [11] 陶书华. 渭北岩溶水的化学特征及其地质背景[J]. 陕西地质, 1999, 17(1): 53-57.TAO S H. The chemical characteristics and geological background of karst water in north Weinan, Shaanxi[J]. Geology of Shaanxi, 1999, 17(1): 53-57. [12] 郭永海, 沈照理, 钟佐. 河北平原地下水化学环境演化的地球化学模拟[J]. 中国科学(D辑), 1997, 27(4): 360-365. doi: 10.3321/j.issn:1006-9267.1997.04.007GUO Y H, SHEN Z L, ZHONG Z S. Hydrogeochemical modeling of groundwater chemical environmental evolution in Hebei plain[J]. Science in China(Series D), 1997, 27(4): 360-365. doi: 10.3321/j.issn:1006-9267.1997.04.007 [13] 高明, 华致洁, 林玉琴. 江苏省六合、盱眙玄武岩地区含偏硅酸矿泉水形成的水文地球化学机理[J]. 水文地质工程地质, 1992, (3): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG199203015.htmGAO M, HUA Z J, LIN Y Q. The hydrogeochemical mechanism in the formation of metasilicic mineral waterin basaltic area of Liuhe and Xuyi districts, Jiangsu Province[J]. Hydrogeology and Engineering Geology, 1992, (3): 39-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG199203015.htm
计量
- 文章访问数: 3485
- HTML全文浏览量: 112
- PDF下载量: 2
- 被引次数: 0