Chlorine-36 Age Study for Deep Groundwater of Quaternary Sediments, Hebei Plain
-
摘要: 为研究河北平原第四系深层地下水的年龄, 应用加速器质谱计对河北平原深层地下水样品的N(36Cl) /N(Cl) 进行了测定, 计算了其年龄, 并与地下水动力学年龄进行了对比研究.结果表明, 河北冲洪积平原山前地带保定市第四系第三和第四含水组的地下水年龄皆很小, 为近期补给的地下水.中部地带保定地区东部和沧州地区西部的第三含水组地下水年龄皆小于5万a, 第四含水组地下水的年龄可能大于10万a.边缘地带沧州市和青县第三含水组地下水年龄为8~ 9万a左右, 东光县为2 6万a左右; 沧州市第四含水组地下水年龄为33万a左右, 东光县为77万a左右.Abstract: For the study of the groundwater age in the deep formation of Quaternary sediments of Hebei plain, the N(36Cl)/N(Cl) ratio of groundwater samples were determined by tandem accelerator mass spectrometry. The chlorine 36 ages were compared with hydrodynamic ages. The groundwater of the third and fourth aquifers of Quaternary sediments in the Baoding district of Hebei plain was found young, that of the third aquifer in the east of Baoding district and the west of Cangzhou district being less than 50 thousand years and that of the fourth aquifer, perhaps more than 100 thousand years. While the groundwater age of the third aquifer in Cangzhou city and Qingxian county was 80-90 thousand years and that in Dongguang county was 260 thousand years, that of the fourth aquifer in Cangzhou city was 330 thousand years and that in Dongguang county was 770 thousand years.
-
Key words:
- chlorine 36 age /
- accelerator mass spectrometry /
- Hebei plain
-
表 1 36Cl制样记录
Table 1. Data of sample preparation
表 2 地下水样品的N (36Cl) /N (Cl) 比值及年龄计算结果
Table 2. N (36Cl) /N (Cl) ratio and age of several aquifers in groundwater
-
[1] Elmore D, Fulton B R, Glover M R, et al. Analysis of 36Cl in environmental water samples using an electrostatic accelerator[J]. Nature, 1979, 277: 22-25. doi: 10.1038/277022a0 [2] Bentley H W, Phillips F M, Davis N, et al. Chlorine 36 dating of very old groundwater 1. the Great Artesian basin, Australia[J]. Water Resources Research, 1986, 22 (13): 1991-2001. doi: 10.1029/WR022i013p01991 [3] Nolte E, Krauthan P, Korschinek G. Measurements and interpretations of 36Cl in groundwater, Milk River aquifer, Alberta, Canada[J]. Applied Geochemistry, 1991, 6(4): 435-445. doi: 10.1016/0883-2927(91)90043-O [4] Andrews J N, Fontes J Ch, Michelot J L, et al. In-situ neutron flux, 36Cl production and groundwater evolutioin in crystalline rocks at Stripa, Sweden. Earth and Planetary Science Letters, 1986, 77: 49-58. doi: 10.1016/0012-821X(86)90131-7 [5] Carlson C A, Phillips F M, Elmore D, et al. Chlorine-36 tracing of salinity sources in the dry valleys of Victoria Land, Antarctica[J]. Geochim Cosmochim Acta, 1990, 54: 311-318. doi: 10.1016/0016-7037(90)90320-K [6] Purdy C. Isotope and chemical tracers of groundwater in the Aquia Formation, Southern Maryland: including 36Cl, 14C, 18O, and 3H[D]. Maryland: University of Maryland, 1991. [7] Frohlich K, Ivanovich M, Hendry M J, et al. Application of isotopic methods to dating of very old groundwater, Milk River aquifer, Alberta, Canada[J]. Applied Geochemistry, 1991, 6: 465-472. doi: 10.1016/0883-2927(91)90045-Q [8] Andrews J N. Jeans-Charles F. Comment on "Chlorine36 dating of very old groundwater, 3, further results on the Great Artesian Basin, Australia" by T. Torgersen et al [J]. Water Resources Research, 1993, 29(6): 1871- 1874. doi: 10.1029/93WR00620 [9] Andrews H R, Koslowsky V T, Cornett R J J, et al. AMS measurements of 36Cl at Chalk River[J]. Nuclear Instruments and Methods in Physics Research, 1994, B92: 74-78. [10] Milton J C D, Andrews H R, Chant L A, et al. 36Cl in the Laurentian Great Lakes basin[J]. Nuclear Instruments and Methods in Physics Research, 1994, B92: 440-444. [11] Hainsworth L. Spatial and temporal variations in chlorine-36 deposition in the northern United States[D]. Maryland: University of Maryland, 1994. [12] Jiang S S, Jiang S, Guo H, et al. Determination of 36Cl in the groundwater and ores around a uranium deposit[J]. Nuclear Instruments and Methods in Physics Research, 1994, B92: 385-388. [13] Fabryka-Martin J, Liu B, Wolfsberg A, et al. Significance of apparent discrepancies in water ages derived from atmospheric radionuclides at Yucca Mountain, Nevada. In: Hotchkiss W R, Downey J S, Gutentag E D, et al, eds. Proceedings of water resources at risk by american institute of hydrology annual meeting, May 14-18, 1995, Denver Colorado. [s. l. ]: [s. n. ], 1995. [14] Bond C. T he geochemistry of the Magothy aquifer, Maryland using chlorine-36as determined by accelerator mass spectrometry[D]. Maryland: University of Maryland, 1996. [15] 董悦安, 何明, 蒋菘生, 等. 河北省保定及沧州地区地下水36Cl同位素年龄的初步研究[J]. 质谱学报, 1999, 20 (3-4): 125-126.Dong Y A, He M, Jiang S S, et al. Initial study on the 36Cl dating of groundwater of Quaternary in Baoding and Cangzhou areas, Hebei Province[J]. Journal of Chinese Mass Spectrometry Society, 1999, 20(3-4): 125-126. [16] 张之淦, 张洪平, 孙及朝, 等. 河北平原第四系地下水年龄、水流系统及咸水成因初探——石家庄至渤海湾同位素水文地质剖面研究[J]. 水文地质工程地质, 1987, 4: 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG198704001.htmZhang Z G, Zhang H P, Sun J C, et al. Environmental isotope study related to groundwater age, flow system and saline water origin in Quaternary aquifer of Hebei plain [J]. Hydrogeology and Engineering Geology, 1987, 4: 1 -6. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG198704001.htm [17] 周炼, 刘存富. 河北沧州地区天然水的氯同位素组成[J]. 地球科学——中国地质大学学报, 1996, 21(5): 563-566. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX605.020.htmZhou L, Liu C F. Chlorine isotope composition of natural water from Cangzhou[J]. Earth Science-Journal of China University of Geosciences, 1996, 21(5): 563- 566. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX605.020.htm [18] 董悦安. 36Cl同位素测年方法对河北平原第四系深层地下水年龄的研究[D]. 北京: 中国原子能科学研究院, 1999.Dong Y A. Study on the deep groundwater age of Quaternary sediments by 36Cl tracing in Hebei plain[D]. Beijing: China Institute of Atomic Energy, 1999.