G.BERTRAND LAW AND E.D.WEINBERG PRINCIPLE AND THEIR POPULARIZATION
-
摘要: 将温伯格原理和伯特兰德定律推广到水文地质单元内不同水文地球化学区: 在元素被溶(淋)滤、强烈迁移的水文地球化学区段造成某些元素缺乏, 生物生理负效应与元素质量浓度成负相关关系; 在元素聚(富)集、溶滤、蒸发浓缩水文地球化学环境区, 以及某些元素污染环境造成过量, 生物生理负效应与元素质量浓度成正相关关系; 在此两者之间为元素质量浓度适宜区.根据山西离柳水文地质单元内研究获得: 在元素淋滤、流失水文地球化学区水(土) 中缺Se, I, F引起的KBD, IDD, 龋齿病证实, 其患病率与相应元素质量浓度成负相关关系; 在聚(富)集、溶淋区因水(土)中F过量而患的地氟病, 患病率与F质量浓度成正相关关系.Abstract: When studying the biologic adaptability by using biologic vital element-manganese in the laboratory, G.Bertrand found that plant can't live if there is the lack of a certain vital element and that if the element is sufficient enough, the plant may live very well, but it may be poisoned or even die if the element is so much. While E.D.Weinberg expanded the G.Bertrand law and further revealed that certain quantity of manganese may allow some bacteria to grow well but may not be suitable for them to produce bacteriophage. Biologic vital double threshold element content and its physiological effect can be expanded to different hydrogeochemistry zones in hydrogeologic unit. In elements lioxiviated (leached), transferred strongly hydrogeochemistry zone, biologic physiological effect and element content show negative correlativity. In elements enrichment, lioxiviated, concentration by evaporation hydrogeochemistry zone and environment polluted by some elements superfluous, biologic physiological negative effect and element content show positive correlativity, between them which above is the element content fitting zone. Take the Lishi-Liulin hydrogeologic unit of Shanxi Province as an instance: The lack of selenium, iodine and fluorine in the hydrochemistry zone with element leaching and loss causes KBD, IDD, and tooth decay, which is in a negative correlativity with element content, respectively. While in the element lioxiviation and enrichment zone, fluorine is superfluous. As a result, endemic fluorosis occurs and its sick rate shows positive correlativity with content.
-
图 1 伯特兰德定律和温伯格原理示意[1]
Fig. 1. Schematic figure of G. Bertrand law and E. D. Weinberg principle
图 3 离柳地区KBD、IDD、地氟病患病率、轻重病情与水中元素质量浓度关系曲线
1.KBD病率与水中Se质量浓度关系曲线; 2.8~15岁儿童患病率与水中Ⅰ质量浓度关系曲线; 3.成人患病率与水中Ⅰ质量浓度关系曲线; 4.地氟病患病率和病情轻—中的关系曲线; 5.地氟病病情中—重的关系曲线; 6.缺氟地氟病患病率与水氟质量浓度的关系曲线
Fig. 3. Relationship between element mass concentration in water and sicken rate of KBD, IDD and fluorosis in Lishi-Liulin mining area
-
[1] 施罗德HA. 痕量元素与人[M]. 陈菜玉, 张祖暄, 译. 北京: 科学出版社, 1979. 13-15. [2] 曹玉清, 胡宽瑢, 胡忠毅, 等. 水文地球化学反应-迁移-分异模型[J]. 长春科技大学学报, 2000, (3): 251-256. doi: 10.3969/j.issn.1671-5888.2000.03.010 [3] 胡宽瑢, 曹玉清, 胡忠毅, 等. 水文地质蓄水构造级、区划分及其水资源分布特点[J]. 长春科技大学学报, 2000, (3): 246-250. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ200003008.htm [4] 郝爱兵, 李文鹏, 梁志强. 利用TDS和δ18O确定溶滤和蒸发作用对内陆干旱区地下水咸化贡献的一种方法[J]. 水文地质工程地质, 2000, (1): 4-6. doi: 10.3969/j.issn.1000-3665.2000.01.002 [5] 成杭新, 严光生, 沈夏初, 等. 化学定时炸弹: 中国陆地环境面临的新问题[J]. 长春科技大学学报, 1999, (1): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ901.014.htm [6] 崔月犁. 卫生防病人员岗位考核指南[M]. 第三卷·下册. 北京: 人民卫生出版社, 1986. 485. [7] 梁超柯, Y Li, 王景占, 等. 饮水氟与人群龋齿关系的调查研究[J]. 环境与健康杂志, 1998, (2): 68-73. https://www.cnki.com.cn/Article/CJFDTOTAL-HJYJ802.001.htm [8] 马爱华, 陈培忠, 王学松, 等. 饮用水氟含量的探讨[J]. 数理医药学杂志, 1998, 11(2): 155-156. https://www.cnki.com.cn/Article/CJFDTOTAL-SLYY802.030.htm [9] 胡宽瑢, 曹玉清, 田莉玉. 与元素丰缺有关的水文地球化学生态环境模型[J]. 世界地质, 2000, 19(4): 35-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDZ200004008.htm