INDIRECT INDICATORS OF GAS HYDRATE OCCURRENCE WITHIN SUBMARINE SEDIMENTS
-
摘要: 天然气水合物是近十多年来发现的一种新型超级洁净能源, 因其在能源勘探、海底灾害环境和全球气候变化研究中的重要性而日益引起世界各国的高度重视.尽管此种化合物通常分布于大陆边缘沉积物和极地永冻层内, 但前者的水合物赋存量占据全球天然气水合物总量的90 %以上.鉴于此, 拟就该种化合物在海底沉积物中赋存的简接标志进行详细讨论, 以使人们在不进行沉积物取样或没有采集到水合物样品的情况下, 也能快速准确地确定此种化合物的分布.Abstract: Gas hydrate, a kind of new type energy resources discovered over the past ten years, has aroused much attention from many countries around the globe, because of the very important role the gas hydrate has played in energy resource exploration, submarine geo hazards prevention, and change in global climate. This kind of compounds usually exists within the sediments from the continental margins and also within the permafrosts of the polar areas, but the amount of gas hydrates occurring in the continental margins exceeds 90% of the total amount of gas hydrates existing in the whole world. In this case, this paper presents a detailed discussion on the indirect indicators of gas hydrate occurrence within submarine sediments, for the purpose of rapid and accurate determination of the distribution of this kind of compounds without the sediment sampling or without the hydrate samples collected.
-
Key words:
- gas hydrate /
- identification indicator /
- marine geology
-
图 1 天然气水合物的地震响应(据Lee等[6]修改)
Fig. 1. Response of gas hydrate to seismic reflection
图 2 天然气水合物导致的VAMP & apos; S结构(据Scholl等[8]修改)
Fig. 2. VAMP & apos; S structure of gas hydrate on seismic section
图 3 天然气水合物的测井响应(据Kvenvolden[5]修改)
Fig. 3. Response of gas hydrate to logging
-
[1] Max M D, Dillon W P. Oceanic methane hydrate: the character of the Black Ridge hydrate stability zone, and the potential for methane extraction[J]. Journal of Petroleum Geology, 1998, 21(3): 343~357. doi: 10.1111/j.1747-5457.1998.tb00786.x [2] Hovland M, Gallagher J W. Gas hydrate and free gas volumes in marine sediments: example from the Niger delta front[J]. Marine and Petroleum Geology, 1997, 14(3): 245~255. doi: 10.1016/S0264-8172(97)00012-3 [3] Hyndman R D, Davis E R. A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion[J]. Journal of Geophysical Research, 1992, 97(B5): 7025~7041. doi: 10.1029/91JB03061 [4] Clayton C J, Hay S J, Baylis S A, et al. Alteration of natural gas during leakage from a North Sea salt dipia field[J]. Marine Geology, 1997, 137: 69~80. doi: 10.1016/S0025-3227(96)00080-1 [5] Kvenvolden K A. A primer on the geological occurrence of gas hydrate[A]. Gas hydrates: relevance to world margin stability and climatic change[C]. [s. l. ]: First Master Workshop, 1993. 39~80. [6] Lee M W, Hutchinson D R, Agena W F, et al. Seismic character of gas hydrate on the south eastern U. S. continental margin[J]. Marine Geophysical Researches, 1994, 16: 163~184. doi: 10.1007/BF01237512 [7] Andreassen K, Hart P E, MacKay M. Amplitude versus offset modeling of the bottom simulating reflection associated with submarine gas hydrates[J]. Marine Geology, 1997, 137: 25~40. [8] Scholl D W, Hart P E. Velocity and amplitude structures on seismic-reflection profiles-possible massive gas-hydrate deposits and underlying gas accumulations in the Bering Sea basin[R]. U S Geolgocal Survey Professional Paper 1570, 1997: 331~351. [9] 陈一鸣, 朱德怀, 任康, 等. 矿场地球物理测井技术测井资料解释[M]. 北京: 石油工业出版社, 1994. [10] Kastner M, Kvenvolden K A, Lorenson T D. Chemistry, isotope composition, and origin of a methane-hydrogen sulfide hydrate at the Cascadia subduction zone[J]. Earth and Planetary Science Letters, 1998, 156: 173~183. doi: 10.1016/S0012-821X(98)00013-2