• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    巴西桑托斯盆地油气分布特征及其成因分析

    林青 郝建荣 王柯

    林青, 郝建荣, 王柯, 2023. 巴西桑托斯盆地油气分布特征及其成因分析. 地球科学, 48(2): 719-734. doi: 10.3799/dqkx.2023.038
    引用本文: 林青, 郝建荣, 王柯, 2023. 巴西桑托斯盆地油气分布特征及其成因分析. 地球科学, 48(2): 719-734. doi: 10.3799/dqkx.2023.038
    Lin Qing, Hao Jianrong, Wang Ke, 2023. Distribution Charcteristics and Genetic Analysis of Oil and Gas Fields in Santos Basin. Earth Science, 48(2): 719-734. doi: 10.3799/dqkx.2023.038
    Citation: Lin Qing, Hao Jianrong, Wang Ke, 2023. Distribution Charcteristics and Genetic Analysis of Oil and Gas Fields in Santos Basin. Earth Science, 48(2): 719-734. doi: 10.3799/dqkx.2023.038

    巴西桑托斯盆地油气分布特征及其成因分析

    doi: 10.3799/dqkx.2023.038
    基金项目: 

    国家科技重大专项 2017ZX05032-001

    详细信息
      作者简介:

      林青(1972-), 男, 高级工程师, 主要从事油气地球化学及成藏研究工作.ORCID: 0000-0002-2206-6364.E-mail: linqing1@cnooc.com.cn

    • 中图分类号: P618.13

    Distribution Charcteristics and Genetic Analysis of Oil and Gas Fields in Santos Basin

    • 摘要: 巴西桑托斯盆地油气田分布具有“外重内轻,外大内小”的分布特征.轻质油藏(原油API°介于36°~58°之间)或气藏分布于近岸水深小于1 000 m范围内,且储量较小;而水深大于1 500 m区域则主要以正常原油为主(原油API°介于25°~32°之间),储量大.桑托斯盆地油气分布特征与盐下、盐上烃源岩性质,热演化程度以及盐岩分布有关.盐下湖相烃源岩主要为Ⅰ型有机质,倾向于生油,中央凹陷区处于高、过成熟阶段,而东部隆起带深水区域处于成熟阶段;盐上海相烃源岩主为要Ⅱ2-Ⅲ型有机质,倾向于生成轻质油和气,中央凹陷及以西区域处于油窗晚期.研究表明盐上凝析油主要来自盐上高成熟海相烃源岩的贡献;而中央坳陷北部以及以外深水区原油主要来自盐下中等成熟的优质湖相烃源岩.阐明桑托斯盆地油气分布特征及其成因,有助于深入了解桑托斯盆地成烃成藏以及油气分布规律,从而对于桑托斯盆地区块优选,降低投资风险具有重要意义.

       

    • 图  1  桑托斯盆地油气田位置及原油物性分布

      Fig.  1.  Distribution of oil and gas fields and its hydrocarbon properties, Santos Basin

      图  2  降解原油(L1)和正常原油(M15)萜烷和甾烷分布

      Fig.  2.  Distribution of terpanes and steranes of the biodegraded oil and non-biodegraded oil

      图  3  桑托斯盆地典型两类原油甾、萜布特征

      Fig.  3.  Biomarker distribution characterization of two typical oil in Santos Basin

      图  4  利用萜、甾烷生物标参数区分桑托斯盆地原油类型

      Fig.  4.  Oil classification based on parameters of terpanes and steranes biomarker parameters, Santos Basin

      图  5  桑托斯盆地盐下、盐上烃源岩萜、甾烷分布特征

      Fig.  5.  Distribution of terpanes and steranes of pre-salt and post-salt source rocks of Santos Basin

      图  6  利用萜、甾烷参数相关图进行油源对比

      Fig.  6.  Oil source correlation based on terpane and sterane parameters

      图  7  桑托斯盆地湖相、海相来源油平面分布图

      Fig.  7.  Distribution of lacustrine and marine sourced oil of Santos Basin

      图  8  桑托斯盆地盐上海相烃源岩TOC(%)平面分布图

      Fig.  8.  Plot of average TOC(%) value of marine source roks post salt, Santos Basin

      图  9  桑托斯盆地盐下和盐上烃源岩OI-HI关系图

      Fig.  9.  Oxygen index vs. Hydrogen index of pre-salt and post-salt source rocks of Santos Basin

      图  10  桑托斯盆地Aptian期蒸发岩厚度分布等值线图和剖面图

      Fig.  10.  Isochron and secion map of the Aptian evaporate sequence

      图  11  桑托斯盆地盐下(a)和盐上(b)烃源岩成熟度平面分布

      Fig.  11.  Maturity of pre-salt and post-salt source rocks of Santos Basin

      图  12  桑托斯盆地原油生物标志化合物成熟度参数相关图

      Fig.  12.  Correlation plot of oil maturity biomarker parameters of Santos Basin

      表  1  桑托斯盆地部分原油样品及色谱参数及物性特征

      Table  1.   GC parameters and bulk characteristics of some oil samples of Santos Basin

      样品 深度(m) 储层分布 API° 饱和烃(%) 芳烃(%) 非烃(%) Pr/Ph Pr/nC17 Ph/nC18 备注
      M1 4 927.0 盐上 40.0 63.7 24.3 11.9 1.48 0.33 0.27 未降解
      M2 4 959.0 盐上 73.9 19.0 7.1 1.37 0.36 0.30 未降解
      M3 5 054.0 盐上 40.1 76.4 16.7 6.9 1.60 0.31 0.23 未降解
      M4 5 094.0 盐上 42.0 73.7 17.9 8.4 1.43 0.33 0.27 未降解
      M5 4 787.0 盐上 33.7 66.6 22.0 11.4 1.85 0.50 0.32 未降解
      M6 5 281.0 盐上 42.1 80.0 10.5 9.5 1.50 0.34 0.27 未降解
      M7 5 257.0 盐上 39.1 84.6 13.0 2.3 1.48 0.31 0.24 未降解
      M8 5 286.0 盐上 36.1 79.4 16.0 6.4 1.56 0.36 0.26 未降解
      M9 5 242.5 盐上 39.2 82.8 15.2 2.1 1.80 0.25 0.17 未降解
      M10 5 683.0 盐上 44.4 75.8 19.2 5.0 1.74 0.27 0.19 未降解
      M11 4 779.0 盐上 41.0 71.5 18.7 9.9 1.47 0.37 0.29 未降解
      M12 4 860.0 盐上 43.0 73.8 17.9 8.3 1.79 0.33 0.22 未降解
      M13 3 405.7 盐上 \ 74.0 12.4 13.6 1.38 0.46 0.34 未降解
      M14 4 788.0 盐上 31.0 62.1 24.4 13.6 1.48 0.36 0.29 未降解
      M15 4 864.0 盐上 39.8 71.8 18.9 9.3 1.63 0.32 0.24 未降解
      M16 5 088.0 盐上 \ 79.1 18.3 2.6 1.55 0.13 0.10 未降解
      M17 4 769.0 盐上 38.2 68.0 19.8 12.1 1.90 0.57 0.36 未降解
      M18 4 910.5 盐上 39.4 77.6 16.7 5.7 1.53 0.38 0.29 未降解
      M19 3 320.0 盐上 44.0 72.3 17.9 9.9 1.50 0.29 0.24 未降解
      M20 3 679.5 盐上 \ 78.6 13.5 7.9 1.91 0.22 0.14 未降解
      M21 4 174.0 盐上 \ 68.2 16.8 15.0 1.83 0.52 0.34 未降解
      M22 4 739.0 盐上 41.8 81.2 13.4 5.4 1.73 0.18 0.13 未降解
      M23 4 699.2 盐上 32.4 73.2 22.1 4.6 1.44 0.22 0.20 未降解
      M24 4 750.0 盐上 44.6 75.6 17.1 7.3 1.60 0.18 0.13 未降解
      M25 4 163.0 盐上 42.0 77.5 14.6 7.9 1.95 0.30 0.18 未降解
      M26 4 780.0 盐上 38.3 77.8 16.1 6.1 1.74 0.20 0.13 未降解
      M27 5 042.8 盐上 33.1 61.1 34.0 4.1 1.27 0.20 0.19 未降解
      L1 2 565.0 盐上 \ \ \ \ \ \ \ 降解5级
      L2 2 915.4 盐上 \ 31.44 25.30 43.26 \ \ \ 降解5级
      L3 3 840.5 盐上 34.50 64.91 20.49 14.60 1.43 0.31 0.27 未降解
      L4 3 873.0 盐上 32.30 65.60 15.36 19.04 1.57 0.32 0.24 未降解
      L5 4 174.0 盐上 35.90 72.67 16.57 10.76 1.53 0.30 0.23 未降解
      L6 2 977.0 盐上 \ 55.09 19.87 25.04 1.61 0.68 0.54 降解2级
      L7 5 264.0 盐下 27.15 53.53 21.38 25.09 \ \ \ 未降解
      L8 5 305.6 盐下 29.78 56.79 18.52 24.69 2.89 1.23 0.41 未降解
      L9 5 351.8 盐下 28.43 50.20 23.31 26.49 2.14 1.02 0.53 未降解
      L10 5 409.8 盐下 27.80 48.21 23.44 28.35 1.88 0.86 0.59 未降解
      L11 5 461.0 盐下 27.96 \ \ \ 1.82 0.88 0.60 未降解
      L12 5 516.0 盐下 27.65 \ \ \ 2.11 0.99 0.54 未降解
      L13 4 931.96 盐下 37.37 \ \ \ 1.81 0.81 0.60 未降解
      下载: 导出CSV

      表  2  桑托斯盆地原油样品主要饱和烃生物标志化合物参数

      Table  2.   Key biomarker parameters of saturate fraction of oil samples, Santos Basin

      样品号 深度(m) 储层 油族 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14
      L1 2 565.0 盐上 Ⅰ类 0.14 0.78 0.60 0.18 1.61 1.64 0.81 0.57 2.10 0.28 5.71 0.40 0.37 4.92
      L2 2 915.0 盐上 Ⅰ类 0.13 0.74 0.63 0.23 1.30 1.26 0.46 0.89 2.79 0.83 6.31 0.69 0.42 13.69
      L3 3 840.0 盐上 Ⅰ类 0.18 0.90 0.55 0.34 1.07 1.47 0.65 0.57 1.60 0.27 2.18 0.39 0.43 4.44
      L4 3 873.0 盐上 Ⅰ类 0.11 0.76 0.52 0.25 1.29 1.87 0.42 0.42 1.57 0.33 2.10 0.31 0.44 5.37
      L5 4 174.0 盐上 Ⅰ类 0.12 0.86 0.64 0.19 1.33 1.93 0.99 0.45 1.96 0.42 2.12 0.51 0.54 3.71
      L6 3 405.0 盐上 Ⅰ类 0.11 0.69 0.63 0.13 1.44 1.81 1.21 0.50 1.56 0.21 2.65 0.33 0.44 3.76
      L7 5 264.0 盐下 Ⅰ类 0.09 0.76 0.67 0.33 1.16 1.85 0.31 0.55 1.62 0.21 2.30 0.45 0.50 8.15
      L8 5 305.6 盐下 Ⅰ类 0.08 0.84 0.76 0.32 1.15 1.87 0.31 0.56 1.65 0.36 2.48 0.49 0.47 9.11
      L9 5 351.8 盐下 Ⅰ类 0.08 0.85 0.77 0.32 1.16 1.89 0.31 0.56 1.66 0.37 2.55 0.44 0.49 9.24
      L10 5 409.8 盐下 Ⅰ类 0.08 0.85 0.76 0.32 1.30 1.89 0.29 0.56 1.66 0.37 2.54 0.53 0.41 9.22
      L11 5 461.0 盐下 Ⅰ类 0.09 0.82 0.73 0.32 1.29 1.90 0.30 0.56 1.63 0.36 2.38 0.45 0.48 7.23
      L12 5 516.0 盐下 Ⅰ类 0.09 0.82 0.73 0.32 1.16 1.90 0.30 0.56 1.65 0.37 2.60 0.41 0.46 9.59
      L13 4 931.96 盐下 Ⅰ类 0.10 0.76 0.66 0.27 1.15 1.88 0.29 0.53 1.61 0.25 1.80 0.47 0.43 6.68
      L14 5 408.3 盐下 Ⅰ类 0.09 0.77 0.65 0.33 1.22 1.77 0.31 0.53 1.49 0.15 2.43 0.43 0.43 9.19
      L15 5 608.0 盐下 Ⅰ类 0.09 0.75 0.65 0.27 1.22 1.96 0.32 0.54 1.64 0.13 2.34 0.40 0.44 7.81
      L16 5 334.7 盐下 Ⅰ类 0.09 0.75 0.65 0.33 1.15 2.00 0.33 0.55 1.71 0.17 2.38 0.54 0.44 8.12
      L17 5 474.2 盐下 Ⅰ类 0.09 0.75 0.65 0.32 1.18 1.95 0.33 0.56 1.69 0.17 2.37 0.54 0.41 8.05
      L18 5 600.5 盐下 Ⅰ类 0.08 0.75 0.64 0.33 1.21 1.88 0.31 0.55 1.56 0.17 2.61 0.56 0.50 8.15
      L19 5 318.3 盐下 Ⅰ类 0.09 0.76 0.66 0.32 1.22 1.89 0.31 0.54 1.60 0.22 2.48 0.57 0.52 8.27
      L20 5 739.6 盐下 Ⅰ类 0.09 0.76 0.65 0.33 1.17 1.87 0.31 0.54 1.64 0.22 2.44 0.61 0.49 8.00
      L21 5 761.6 盐下 Ⅰ类 0.09 0.92 0.80 0.33 1.18 1.91 0.34 0.58 1.96 0.22 3.31 0.57 0.50 10.52
      L22 5 380.5 盐下 Ⅰ类 0.09 0.77 0.68 0.31 1.24 1.88 0.32 0.55 1.69 0.22 2.42 0.63 0.48 7.35
      L23 5 682.0 盐下 Ⅰ类 0.09 0.77 0.68 0.31 1.23 1.88 0.32 0.54 1.64 0.22 2.38 0.62 0.48 7.51
      L24 5 380.5 盐下 Ⅰ类 0.08 0.75 0.66 0.31 1.22 1.87 0.32 0.54 1.62 0.19 2.49 0.60 0.46 7.83
      M1 4 927.0 盐上 Ⅱ类 0.50 0.70 0.85 0.47 1.08 2.71 2.33 0.46 2.19 0.16 1.10 0.49 0.61 2.01
      M2 4 959.0 盐上 Ⅱ类 0.30 0.88 0.63 0.51 1.08 2.17 1.68 0.74 2.64 0.19 0.91 0.45 0.59 2.13
      M3 5 054.0 盐上 Ⅱ类 0.66 0.74 0.70 0.37 1.07 2.35 4.89 0.54 2.07 0.00 0.75 0.46 0.62 0.60
      M4 5 094.0 盐上 Ⅱ类 0.65 0.76 0.70 0.38 0.99 2.41 3.43 0.99 2.80 0.69 0.54 0.48 0.62 0.79
      M5 4 910.0 盐上 Ⅱ类 0.46 0.63 0.65 0.33 0.99 2.63 3.95 0.55 2.20 0.62 0.78 0.45 0.65 0.62
      M6 5 257.0 盐上 Ⅱ类 0.53 0.77 0.56 0.13 0.95 2.51 6.00 0.30 0.53 0.66
      M7 5 286.0 盐上 Ⅱ类 0.53 0.72 0.66 0.11 1.09 2.59 1.54 0.56 2.32 0.24 0.52 0.46 0.62 0.63
      M8 5 281.0 盐上 Ⅱ类 0.62 0.68 0.64 0.14 1.05 1.94 3.84 0.85 2.78 2.14 0.59 0.49 0.64 0.33
      M9 5 242.0 盐上 Ⅱ类 0.47 0.90 0.82 0.37 1.21 2.69 1.56 0.60 1.63 0.12 0.63 0.52 0.60 2.07
      M10 5 683.0 盐上 Ⅱ类 0.23 0.75 0.50 0.36 0.67 2.46 1.96 0.53 1.58 0.04 0.55 0.62 0.61 1.13
      M11 4 779.0 盐上 Ⅱ类 0.59 0.57 0.54 0.73 1.04 2.98 1.29 0.45 2.12 0.14 0.76 0.49 0.62 2.55
      M12 4 860.0 盐上 Ⅱ类 0.72 0.61 0.49 0.66 1.19 2.71 1.64 0.44 2.09 0.15 0.74 0.47 0.62 2.05
      M13 2 977.0 盐上 Ⅱ类 0.28 0.68 0.54 0.37 1.01 2.43 0.60 0.49 2.33 0.12 0.59 0.40 0.53 1.92
      M14 4 788.0 盐上 Ⅱ类 0.46 0.67 0.67 0.70 0.99 2.87 1.17 0.48 2.23 0.29 0.85 0.47 0.58 2.57
      M15 4 864.0 盐上 Ⅱ类 0.65 0.64 0.64 0.70 0.93 2.83 1.51 0.47 2.06 0.14 0.71 0.50 0.63 2.11
      M16 5 088.0 盐上 Ⅱ类 0.82 0.84 0.64 0.57 1.08 2.11 0.87 0.55 1.62 0.57 1.06 0.37 0.41 3.68
      M17 4 769.0 盐上 Ⅱ类 0.30 0.68 0.76 0.46 1.08 3.02 2.04 0.48 2.19 0.00 1.12 0.48 0.59 1.48
      M18 4 787.0 盐上 Ⅱ类 0.34 0.67 0.71 0.46 1.02 2.77 1.94 0.52 2.07 0.18 0.95 0.47 0.62 1.36
      M19 3 679.0 盐上 Ⅱ类 0.26 0.73 0.65 0.40 1.21 2.19 1.10 0.58 1.39 0.06 1.26 0.44 0.55 5.03
      M20 4 174.0 盐上 Ⅱ类 0.18 0.54 0.69 0.39 1.18 2.51 1.00 0.57 1.71 0.05 1.38 0.44 0.54 4.93
      M21 4 163.0 盐上 Ⅱ类 0.61 0.60 0.62 0.93 1.44 3.16 0.87 0.66 2.96 0.08 0.41 0.42 0.62 4.01
      M22 4 739.0 盐上 Ⅱ类 1.91 0.69 0.60 2.37 1.24 3.73 2.74 0.57 2.27 0.08 0.61 0.44 0.56 4.11
      M23 4 780.0 盐上 Ⅱ类 1.92 0.59 0.56 2.57 1.02 2.81 1.88 0.80 2.94 0.05 0.59 0.44 0.59 6.64
      M24 4 750.0 盐上 Ⅱ类 1.69 0.89 0.73 2.31 1.00 3.94 1.50 0.62 1.69 0.04 0.47 0.56 0.55 4.24
      M25 3 320.0 盐上 Ⅱ类 0.34 0.65 0.50 1.07 0.98 2.03 0.66 0.75 1.82 0.11 0.91 0.38 0.52 4.54
      M26 4 699.0 盐上 Ⅱ类 0.19 0.93 0.57 0.62 1.01 1.27 0.85 0.81 1.76 0.09 1.13 0.39 0.55 4.82
      M27 5 042.0 盐上 Ⅱ类 0.16 0.92 0.54 0.54 1.05 1.13 0.71 0.90 1.63 0.11 1.30 0.43 0.54 4.82
      注:P1. C19/C21三环萜烷;P2. C21/C23三环萜烷;P3. C24/C23三环萜烷;P4. C24四环萜烷/C26三环萜烷;P5. C26/C26三环萜烷;P6. C28-29/C26三环萜烷;P7. Ts/Tm;P8. C29/C30藿烷;P9. C31-35/C30藿烷;P10. Ga./C30藿烷;P11. C30四环聚异二烯类化合物/C27重排甾烷;P12. C29 S/S+R;P13. C29ββ/ββ+αα;P14. 藿烷/甾烷.
      下载: 导出CSV

      表  3  桑托斯盆地盐下烃源岩主要饱和烃生物标志化合物参数

      Table  3.   Key biomarker parameters of saturate fraction of pre-salt source rocks, Santos Basin

      样品号 深度(m) 层位 岩性 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14
      LSR1 6 873 B.V 泥岩 0.06 0.52 0.65 0.60 1.00 1.80 0.70 0.75 1.73 0.17 1.42 0.35 0.50 4.61
      LSR2 5 415 Itapema 泥岩 0.07 0.70 0.63 0.51 1.11 2.18 0.53 0.73 1.79 0.22 2.16 0.40 0.52 5.68
      LSR3 5 337 BV 泥岩 0.07 0.75 0.61 0.59 1.02 2.11 0.56 0.76 2.35 0.19 2.02 0.35 0.51 6.12
      LSR4 5 501 Itapema 泥岩 0.10 0.86 0.61 0.59 1.03 1.99 0.56 0.80 1.90 0.19 1.85 0.36 0.52 5.77
      LSR5 5 772 Picarras 泥岩 0.22 0.92 0.56 0.66 0.71 1.14 0.65 0.26 1.46 0.38 0.47 3.97
      LSR6 5 752 B.V 泥岩 0.08 0.79 0.60 0.45 1.03 1.84 0.44 0.65 1.71 0.16 2.40 0.39 0.50 6.76
      LSR7 6 001 Itapema 泥岩 0.09 0.91 0.60 0.46 1.02 1.73 0.40 0.74 1.65 0.13 2.25 0.41 0.48 7.53
      LSR8 5 800 B.V 泥岩 0.07 0.80 0.61 0.42 1.08 1.74 0.46 0.64 1.67 0.15 2.19 0.38 0.51 6.50
      LSR9 5 851 Itapema 泥岩 0.08 0.83 0.62 0.43 1.07 1.84 0.50 0.65 1.70 0.18 1.80 0.39 0.51 5.81
      LSR10 5 902 Itapema 泥岩 0.10 0.96 0.65 0.44 1.07 1.74 0.50 0.69 1.70 0.17 1.69 0.38 0.51 5.56
      LSR11 5 950 Itapema 泥岩 0.12 0.98 0.58 0.49 1.02 1.77 0.46 0.68 1.94 0.16 1.50 0.37 0.51 6.20
      LSR12 4 752~4 755 Itapema 泥岩 0.06 0.50 0.50 0.70 1.22 2.45 0.85 0.72 1.85 0.19 2.63 0.29 0.46 1.79
      LSR13 4 551~4 554 B.V 泥岩 0.09 0.79 0.57 0.57 1.17 2.11 0.40 0.55 1.64 0.29 2.07 0.27 0.43 2.89
      LSR14 4 881~4 884 Camboriu 泥岩 0.07 0.68 0.60 0.63 1.29 2.03 1.22 0.68 1.69 0.19 1.62 0.25 0.44 1.89
      LSR15 4 662~4 665 B.V 泥岩 0.08 0.66 0.55 0.72 1.25 2.19 0.47 0.66 1.87 0.16 1.53 0.27 0.45 2.43
      LSR16 4 416~4 419 B.V 泥岩 0.08 0.67 0.58 0.61 1.23 1.96 1.04 0.73 1.69 0.20 1.29 0.21 0.42 1.47
      LSR17 5 655 Itapema 泥岩 0.11 0.87 0.58 0.80 1.00 2.40 0.77 0.84 1.57 0.12 1.47 0.31 0.49 4.88
      LSR18 5 844 Itapema 泥岩 0.12 0.86 0.53 0.59 0.90 2.49 0.67 0.83 1.96 0.16 1.31 0.30 0.50 4.41
      LSR19 5 592 Itapema 泥岩 0.12 1.10 0.61 0.56 1.08 1.82 0.61 0.83 1.88 0.19 1.45 0.21 0.45 3.95
      LSR20 5 625 Itapema 泥岩 0.07 0.87 0.61 0.52 1.10 2.18 0.61 0.79 1.82 0.20 1.41 0.24 0.43 4.07
      LSR21 5 856 B.V 泥岩 0.00 0.66 0.55 0.76 0.96 2.28 0.68 0.78 1.84 0.14 1.28 0.38 0.50 4.37
      LSR22 5 256 B.V 泥岩 0.11 0.69 0.55 0.63 1.00 2.48 0.66 0.79 1.93 0.18 1.74 0.36 0.52 5.92
      LSR23 5 301 B.V 泥岩 0.13 0.75 0.61 0.66 0.99 2.01 0.57 0.63 1.65 0.18 1.75 0.36 0.48 5.55
      LSR24 4 950 B.V 泥岩 0.05 0.47 0.68 0.60 1.03 1.99 0.78 0.75 1.71 0.17 1.62 0.39 0.51 3.72
      LSR25 5 652 Picarras 泥岩 0.15 0.74 0.55 0.70 0.93 1.96 0.59 0.68 1.75 0.18 1.34 0.34 0.48 4.36
      LSR26 5 601 Picarras 泥岩 0.12 0.72 0.58 0.58 1.05 1.94 0.68 0.70 1.78 0.19 1.32 0.37 0.50 4.74
      LSR27 5 451 B.V 泥岩 0.08 0.62 0.59 0.58 0.97 1.99 0.56 0.71 1.77 0.19 1.29 0.37 0.46 4.87
      LSR28 5 751 Camboriu 泥岩 0.13 0.81 0.55 0.60 0.95 2.12 0.63 0.68 1.62 0.18 1.27 0.35 0.47 4.56
      LSR29 5 940 B.V 泥岩 0.13 0.72 0.54 0.72 0.83 0.56 0.62 0.22 1.42 0.38 0.51 3.82
      LSR30 5 874 B.V 泥岩 0.08 0.71 0.45 0.64 1.11 1.97 0.45 0.58 1.44 0.15 1.46 0.36 0.48 4.81
      LSR31 6 450 Itamema 泥岩 0.08 0.71 0.55 0.52 0.92 2.33 0.65 0.75 1.70 0.25 1.39 0.38 0.54 5.30
      LSR32 6 585 Camboriu 泥岩 0.10 0.73 0.55 0.77 0.97 1.90 0.68 0.84 1.94 0.12 1.27 0.37 0.53 5.04
      LSR33 6 075 Itamema 泥岩 0.07 0.64 0.60 0.70 0.97 2.25 0.64 0.81 1.75 0.13 1.21 0.35 0.51 4.85
      LSR34 6 450~6 453 B.V 泥岩 0.11 0.90 0.57 0.44 1.00 2.06 0.45 0.60 1.69 0.40 1.29 0.36 0.48 4.88
      LSR35 5 802~5 805 B.V 泥岩 0.05 0.71 0.57 0.39 1.01 2.13 0.33 0.48 1.63 0.52 1.24 0.38 0.47 4.98
      注:P1. C19/C21三环萜烷;P2. C21/C23三环萜烷;P3. C24/C23三环萜烷;P4. C24四环萜烷/C26三环萜烷;P5. C26/C26三环萜烷;P6. C28-29/C26三环萜烷;P7. Ts/Tm;P8. C29/C30藿烷;P9. C31-35/C30藿烷;P10. Ga./C30藿烷;P11. C30四环聚异二烯类化合物/C27重排甾烷;P12. C29 S/S+R;P13. C29ββ/ββ+αα;P14. 藿烷/甾烷.
      下载: 导出CSV
    • [1] Brassell, S. C., Eglinton, G., Howell, V. J., 1987. Palaeoenvironmental Assessment of Marine Organic-Rich Sediments Using Molecular Organic Geochemistry. Geological Society, London, Special Publications, 26(1): 79-98. https://doi.org/10.1144/gsl.sp.1987.026.01.05
      [2] Chaboureau, A.C., Guillocheau. F., Robin, Cecile., et al., 2012. Paleogeographic Evolution of the Central Segment of the South Atlantic during Early Cretaceous Times: Paleotopographic and Geodynamic Implications, Tectonophysics, https://dor.org/10.1016/j.tecto.2012.08.025 doi: 10.1016/j.tecto.2012.08.025
      [3] Connan, J., 1985. Biodegradation of Crude Oils in Reservoirs. In: Brooks, J., Welte, D., eds., Advances in Petroleum Geochemistry, 1: 299-335. Academic Press, London.
      [4] De Grande, S.M.B., Aquino Neto, F.R., Mello, M.R., 1993. Extended Tricyclic Terpanes in Sediments and Petroleums. Organic Geochemsitry, 20(7): 1039-1047. https://dor.org/10.1016/0146-6380(93)90112-O doi: 10.1016/0146-6380(93)90112-O
      [5] Dickson, W., Schiefelbein, C., Zumberge. J., et al., 2005. Basin Analysis in Brazilian and West African Conjugates: Combining Disciplines to Deconstruct Petroleum Systems. Petroleum Systems of Divergent Continental Margin Basins: 25th Annual, Houston, 790-806. https://doi.org/10.5724/gcs.05.25.0790
      [6] Gibbons, M. J., Williams, A. K., Piggott, N., et al., 1983. Petroleum Geochemistry of the Southern Santos Basin, Offshore Brazil. Journal of the Geological Society, 140(3): 423-430. https://doi.org/10.1144/gsjgs.140.3.0423
      [7] Gomes, P., Kilsdonk, B., Grow, T., et al., 2015. Tectonic Evolution of the Outer High of Santos Basin, Southern São Paulo Plateau, Brazil, and Implications for Hydrocarbon Exploration. Tectonics and Sedimentation. Tulsa, Oklahoma: American Association of Petroleum Geologists, 125-142. https://doi.org/10.1306/13351550m1003530
      [8] He, J., He, D.F., Li, S.L., et al., 2011. Formation and Distribution of Giant Oil and Gas Fields in Passive Continental Margin of South Atlantic Ocean: A Case Study of Santos Basin in Brazil. China Petroleum Exploration, (3): 57-67 (in Chinese with English abstract).
      [9] Holba, A.G., Dzou, L.I., Wood, G.D. . et al., 2003. Application of Tetracyclic Polyprenoids as Indicators of Input from Fresh-Brackish Water Environment. Organic Geochmistry, 34(3): 441-469. https://dor.org/10.1016/S0146-6380(02)00193-6 doi: 10.1016/S0146-6380(02)00193-6
      [10] Holba, A.G., Tegelaar, E., Ellis, L., et al., 2000. Tetracyclic Polyprenoids: Indicators of Freshwater(Lacustrine) Algal Input. Geology, 28(3): 251-254. https://dor.org/10.1130/0091-7613(2000)28<251:TPIOFL>2.0.CO;2 doi: 10.1130/0091-7613(2000)28<251:TPIOFL>2.0.CO;2
      [11] Jiang, C.L., Wang, C.X., Cui, H.Y., 2010. Subsalt Hydrocarbon Accumulation Condition and Law in Santos Basin. Journal of Oil and Gas Technology, 32(6): 346-350 (in Chinese with English abstract).
      [12] Kang, H.Q., Cheng, T., Li, M.G., et al., 2016. Characteristcis and Main Control Factors of Hydrocarbon Accumulation in Santos Basin, Brazil. China Offshore Oil and Gas, 28(4): 1-8 (in Chinese with English abstract).
      [13] Lentini, M. R., Fraser. S.I., Sumner, H.S. et al., 2010. Geodynamics of the Central South Atlantic Conjugate Margins: Implications for Hydrocarbon Potential. Petroleum Geoscience, 16 (3): 217-229. https://dor.org/10.1144/1354-079309-909 doi: 10.1144/1354-079309-909
      [14] Liang, Y.B., Zhang, G.Y., Liu, Z.D., et al, 2011. Hydrocarbon Enrichment in the Campos and Santos Basins in Brazil. Marine Geology Frontiers, 27(2): 55-62 (in Chinese with English abstract).
      [15] Liu, S.J., Gao, G., Jin, J., et al., 2022. Source Rock with High Abundance of C28 Regular Sterane in Typical Brackish-Saline Lacustrine Sediments: Biogenic Source, Depositional Environment and Hydrocarbon Generation Potential in Junggar Basin, China. Journal of Petroleum Science and Engineering. https://dor.org/10.1016/j.petrol.2021.109670 doi: 10.1016/j.petrol.2021.109670
      [16] Liu, S.Y., Hu, X.L., Li, J.B., 2011. Great Discovery and Its Significance for Exploration in Subsalt Reservoir in Santos Basin, Brazil. China Petroleum Exploration, 16(4): 74-81. (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2011.04.014
      [17] Liu, S.W., Yang, X.Q., Qiu, N.S., et al., 2017. Geothermal Effets of Salt Structures on Marine Sedimentary Basins and Implications for Hydrocarbon Thermal Evolution. China Science Bulltin, 62: 1631-1644. https://doi.org/10.1360/N972017-00076.
      [18] Ma, A.L., Li, Y.Z., Zhang, X.K., et al., 2015. Carbon Dioxide Origin, Alkane Gas Geochemical Characteristics and Pool Forming Model of Pre-Salt J Oil Field in Offshore Santos Basin, Brazil. China Offshore Oil and Gas, 27(5): 13-20 (in Chinese with English abstract).
      [19] Ma, Z.Z., 2013. Petroleum Geology and Favorable Exploration Potential of Typical South Atlantic Deep Water Basin: Taking Brazil Santos Basin as an Example. Journal of Central South University (Science and Technology), 44(3): 1108-1115. (in Chinese with English abstract).
      [20] Mello, M.R., Telnaes, N., Gaglianone, P.C., et al., 1988. Organic Geochemical Characterisation of Depositional Palaeoenvironments of Source Rocks and Oils in Brazilian Marginal Basins. Proceedings of the 13th International Meeting On Organic Geochemistry, Venice, 31-45. https://dor.org/10.1016/B978-0-08-037236-5.50009-9
      [21] Moldowan, J.M., Seifert, W.K., Gallegos, E. J., 1985. Relationship between Petroleum Composition and Depositional Environment of Petroleum Source Rocks. AAPG, 69: 1225-1268. https://doi.org/10.1306/AD462BC8-16F7-11D7-8645000102C1865D
      [22] Neto, E., Hayes, J.M. 1999. Use of Hydrogen and Carbon Stable Isotopes Characterizing Oils from the Potiguar Basin (Onshore), Northeastern Brazil. AAPG Bulletin, 83(3): 496-518. https://doi.org/10.1306/00AA9BE2-1730-11D7-8645000102C1865D
      [23] Ourisson, G., Albrecht, P., Rohmer, M., 1982. Predictive Microbial Biochemistry: From Molecular Fossils to Procaryotic Membranes. Trends in Biochemical Sciences, 7(7): 236-239. https://doi.org/10.1016/0968-0004(82)90028-7
      [24] Peters, K.E., et al., 2004. The Biomarker Guide. Biomarkers and Isotope in the Environment and Human History. Cambridge University Press, Cambridge.
      [25] Schiefelbein, C. F., Zumberge, J. E., Cameron, N. R., et al., 1999. Petroleum Systems in the South Atlantic Margins. Geological Society, London, Special Publications, 153(1): 169-179. https://doi.org/10.1144/gsl.sp.1999.153.01.11
      [26] Schiefelbein, C.F., Zumberge, J.E., Cameron, N.R., et al., 2000. Geochemical Comparison of Crude Oil Along South Atlantic Margins. In: Mello, M.R., Katz, B.J., eds., Petroleum Systems of South Atlantic Margins, American Association of Petroleum Geologists, Tulsa, 15-26. https://dor.org/10.1306/M73705C2
      [27] Scotese, C., Moore. T.L., 2014. Atlas of Phanerozoic Rainfall Maps (Mollweide Projection), Volumes 1-6, PALEOMAP Project PaleoAtlas for ArcGIS, PALEOMAP Project, Evanston, IL.
      [28] Shan, X.L., Li, J.Y., Chen, S.M., et al., 2013. Subaquatic Volcanic Eruptions in Continental Facies and Their Influence on High Quality Source Rocks Shown by the Volcanic Rocks of a Faulted Depression in Northeast China. Science China Earth Sciences. 56(11): 1-7. https://doi.:10.1007/s11430-013-4657-7
      [29] Talbot, M. R., 1988. The Origins of Lacustrine Oil Source Rocks: Evidence from the Lakes of Tropical Africa. Geological Society, London, Special Publications, 40(1): 29-43. https://doi.org/10.1144/gsl.sp.1988.040.01.04
      [30] Tao, C.Z., Deng, C., Bao G, P., et al., 2013. A Comparison Study of Brazilian Campos and Santos Basins: Hydrocarbon Distribution Differences and Control Factors. Journal of JiLin University(Earth and Science Edition), 43(6): 1753-1761(in Chinese with English abstract).
      [31] Volkman, J. K., 1988. Biological Marker Compounds as Indicators of the Depositional Environments of Petroleum Source Rocks. Geological Society, London, Special Publications, 40(1): 103-122. https://doi.org/10.1144/gsl.sp.1988.040.01.10
      [32] Wang, W.G., Yu, L., Nie, M.L., 2012. Comparison of Hydrocarbon Geological Characteristics of Intercoastal Passive Continental Margin Basins, South Atlantic Ocean. Xinjiang Petroleum Geology, 33(2): 250-255(in Chinese with English abstract).
      [33] Wang, X.W., Wu, C.W., Guo, Y.Q., et al., 2013. Accumulation Feature of Lula Oilfield and Its Exploratory Implication for Pre-Salt Reservoirs in Santos Basin, Brazil. China Petroleum Exploration, 18(3): 61-69(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2013.03.010
      [34] Wang, K., Hao, J.R., Yang, S.C., et al., 2019. Effect of Salt on Formation Temperature and Thermal Evolution of Source Rock: a Case Study on the Area of X in Gabon Coastal Basin. Geological Science and Technology Information, 38(1): 142-151(in Chinese with English abstract).
      [35] Wu, C. W., 2015. Petroleum Geology Characteristics and Exploration Targets of Pre-Salt Formations in Santos Basin, Brazil. Petroleum Geology & Experiment, 37(1): 9. https://doi.org/10.7603/s40972-015-0009-3
      [36] Xiong, L.P., Wu, C.W., Guo, Y.Q., et al., 2013. Petroleum Accumulation Characteristics in Campos and Santos Basins, Offshore Brazil. Petroleum Geology & Experiment, 35(4): 419-425(in Chinese with English abstract).
      [37] Zhang, J.W., Hu, J.F., Du, X.M., et al., 2015. Hydrocarbon Accumulation Mode and Exploration Direction of Santos Basin in Brazil. Journal of Yangtze University(Natural Science Edition), 12(17): 8-13 (in Chinese with English abstract).
      [38] Zhang, Z.M., Zhu, Y.X., Zhang, D.M., et al., 2020. Hydrocarbon Accumulation Rules and Exploration Inspiration of Pre-Salt Carbonate Reservoirs in the Great Campos Basin, Brazil. China Petroleum Exploration, 25(4): 75-85(in Chinese with English abstract).
      [39] Zhao, H.Y., Yu, S., Hu, X.L., et al., 2013. Analysis on Deep Water Pre-Salt Reservoir Characteristics of the South Atlantic Passive Continental Margin Basin. Reservoir Evaluation and Development, 3(3): 13-18(in Chinese with English abstract).
      [40] Zhao, J., Zhao, J.F., Ren, K.X., et al., 2021. Distribution and Main Controlling Factors of CO2 in Santos Basin, Brazil. Earth Science, 46(9): 3217-3229(in Chinese with English abstract).
      [41] 程涛, 康洪全, 梁建设, 等, 2019. 巴西桑托斯盆地岩浆岩成因类型划分与活动期次分析. 中国海上油气, 31(4): 55-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201904007.htm
      [42] 何娟, 何登发, 李顺利, 等, 2011. 南大西洋被动大陆边缘盆地大油气田开成条件与分布规律——以巴西桑托斯盆地为例. 中国石油勘探, 3: 57-67. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201103008.htm
      [43] 贾怀存, 康洪全, 李明刚, 等, 2020. 桑托斯盆地盐下CO2聚集条件及对油气成藏影响. 西南石油大学学报(自然科学版), 42(4): 66: 72. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202004007.htm
      [44] 蒋春雷, 王春修, 崔旱云, 2010. 桑托斯盆地盐下成藏条件与成藏规律研究. 石油天然气学报(江汉石油学院学报), 32(6): 346-350. https://www.cnki.com.cn/Article/CJFDTOTAL-JHSX201006087.htm
      [45] 康洪全, 程涛, 李明刚, 等. 2016. 巴西桑托斯盆地油气成藏特征及主控因素分析. 中国海上油气, 28(4): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201604001.htm
      [46] 李明刚, 程涛, 蔡文杰, 等, 2021. 桑托斯盆地盐下裂谷系构造特征及其对油气成藏的控制作用. 中国海上油气, https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202106005.htm
      [47] 梁英波, 张光亚, 刘祚冬, 等, 2011. 巴西坎普斯-桑托斯盆地油气差异富集规律. 海洋地质前沿, 27(12): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201112009.htm
      [48] 刘深艳, 胡孝林, 李进波, 2011. 巴西桑托斯盆地盐下大发现及其勘探意义. 海外勘探, (4): 74-81. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201104016.htm
      [49] 刘绍文, 杨小秋, 邱楠生, 等, 2017. 沉积盆地盐构造热效应及其油气地质意义. 科学通报, 62: 1631-1644. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201715009.htm
      [50] 马安来, 黎玉战, 张玺科, 等, 2015. 桑托斯盆地盐下J油气田CO2成因、烷烃气地球化学特征及成藏模式. 中国海上油气, 27(5): 13-20. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201505002.htm
      [51] 马中振, 2013. 典型大西洋型深水盆地油气地质特征及勘探潜力: 以巴西桑托斯盆地为例. 中南大学学报(自然科学版, )44(3): 1108-1115. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201303039.htm
      [52] 孙旭东, 郑求根, 郭兴伟, 等, 2021. 巴西桑托斯盆地构造演化与油气勘探前景. 海洋地质前沿, 37(2): 37-45. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT202102005.htm
      [53] 陶崇智, 邓超, 白国平, 等, 2013. 巴西坎波斯盆地和桑托斯盆地油气分布差异及主控因素. 吉林大学学报(地球科学版), 43(6): 1753-1761. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201306005.htm
      [54] 王红平, 于兴河, 杨柳, 等, 2020. 巴西桑托斯盆地油气形成的关键条件与勘探方向. 矿产勘查, 11(2): 369-377. https://www.cnki.com.cn/Article/CJFDTOTAL-YSJS202002028.htm
      [55] 王柯, 郝建荣, 杨树春, 等, 2019. 盐岩对地层温度及烃源岩热演化的影响: 以加蓬盆地X区块为例. 地质科技情报, 38(1): 142-151. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201901015.htm
      [56] 汪伟光, 喻莲, 聂明龙, 2012. 南大西洋两岸被动大陆边缘盆地油气地质特征对比. 新疆石油地质, 33(2): 250-255. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD201202038.htm
      [57] 汪新伟, 邬长武, 郭永强, 等, 2013. 巴西桑托斯盆地卢拉油田成藏特征及对盐下勘探的启迪. 中国石油勘探, 18(3): 61-69. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201303011.htm
      [58] 邬长武, 2015. 巴西桑托斯盆地盐下层序油气地质特征与有利区预测. 石油实验地质, 37(1): 53-56. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201501010.htm
      [59] 熊利平, 邬长武, 郭永强, 等, 2013. 巴西海上坎波斯与桑托斯盆地油气成藏特征与对比研究. 石油实验地质, 35(4): 419-425. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201304013.htm
      [60] 张金伟, 胡俊峰, 杜笑梅, 等, 2015. 巴西桑托斯盆地油气成藏模式及勘探方向. 长江大学学报(自科版), 12(17): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-CJDL201517002.htm
      [61] 张忠民, 朱弈璇, 张德民, 等, 2020. 巴西大坎波斯盆地盐下碳酸盐岩油气成藏规律与勘探启示. 中国石油勘探, 25(4): 75-85. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202004008.htm
      [62] 赵红岩, 于水, 胡孝林, 等, 2013. 南大西洋初动大陆边缘盆地深水盐下油气藏特征分析. 油气藏评价与开发, 3(3): 13-18. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ201303005.htm
      [63] 赵健, 赵俊峰, 任康绪, 等, 2021. 巴西桑托斯盆地CO2区域分布及主控因素. 地球科学, 46(9): 3217-3229. doi: 10.3799/dqkx.2020.359
    • 加载中
    图(12) / 表(3)
    计量
    • 文章访问数:  12
    • HTML全文浏览量:  16
    • PDF下载量:  1
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-01-02
    • 刊出日期:  2023-02-25

    目录

      /

      返回文章
      返回