• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    碳酸盐岩储层埋藏溶蚀改造与水岩模拟实验研究进展

    梁金同 文华国 李笑天 乔占峰 佘敏 钟怡江 张浩

    梁金同, 文华国, 李笑天, 乔占峰, 佘敏, 钟怡江, 张浩, 2023. 碳酸盐岩储层埋藏溶蚀改造与水岩模拟实验研究进展. 地球科学, 48(2): 814-834. doi: 10.3799/dqkx.2023.031
    引用本文: 梁金同, 文华国, 李笑天, 乔占峰, 佘敏, 钟怡江, 张浩, 2023. 碳酸盐岩储层埋藏溶蚀改造与水岩模拟实验研究进展. 地球科学, 48(2): 814-834. doi: 10.3799/dqkx.2023.031
    Liang Jintong, Wen Huaguo, Li Xiaotian, Qiao Zhanfeng, She Min, Zhong Yijiang, Zhang Hao, 2023. Research Progress of Burial Dissolution and Modification of Carbonate Reservoirs and Fluid⁃Rock Simulation Experiments. Earth Science, 48(2): 814-834. doi: 10.3799/dqkx.2023.031
    Citation: Liang Jintong, Wen Huaguo, Li Xiaotian, Qiao Zhanfeng, She Min, Zhong Yijiang, Zhang Hao, 2023. Research Progress of Burial Dissolution and Modification of Carbonate Reservoirs and Fluid⁃Rock Simulation Experiments. Earth Science, 48(2): 814-834. doi: 10.3799/dqkx.2023.031

    碳酸盐岩储层埋藏溶蚀改造与水岩模拟实验研究进展

    doi: 10.3799/dqkx.2023.031
    基金项目: 

    国家自然科学基金项目 42202191

    中国石油天然气股份有限公司科学研究与技术开发项目 2021DJ0503

    四川省青年科技创新研究团队项目“天然气成藏物质基础” 22CXTD0064

    详细信息
      作者简介:

      梁金同(1990-),男,博士,研究员,主要从事沉积储层与石油地质领域科研和教学工作. ORCID:0000-0002-3787-177X. E-mail:liangjt@cdut.edu.cn

      通讯作者:

      文华国,ORCID: 0000-0002-5140-1045. E-mail: wenhuaguo08@cdut.edu.cn

    • 中图分类号: P618.13

    Research Progress of Burial Dissolution and Modification of Carbonate Reservoirs and Fluid⁃Rock Simulation Experiments

    • 摘要: 深层-超深层碳酸盐岩是当前全球油气勘探的焦点,也是未来我国有望实现油气商业发现的热点领域. 对于深埋藏环境下优质碳酸盐岩储层形成而言,目前研究普遍强调了早期表生溶蚀作用和晚期埋藏溶蚀改造作用的重要性. 作为表征储层溶蚀作用机理的有效手段,水岩溶蚀模拟实验能够再现实际地质条件下碳酸盐岩和地层流体之间的相互作用过程,为碳酸盐岩储层溶蚀改造研究提供了新视角.为此,系统回顾了近年来碳酸盐岩溶蚀模拟实验的研究进展,并尝试从实验模拟的角度讨论溶蚀作用对深层-超深层碳酸盐岩成储过程的控制作用.首先回顾了碳酸盐岩储层的溶蚀改造作用,同时总结了碳酸盐岩水岩溶蚀模拟实验的技术与方法,其次梳理了基于溶蚀模拟实验取得的碳酸盐岩储层溶蚀改造规律与认识,最后展望了现有研究对深层-超深层油气勘探以及碳封存与再利用中的应用前景.不难看出,开展碳酸盐岩溶蚀模拟实验有望为寻找埋藏成岩过程中的次生孔隙发育带、阐释规模性溶蚀作用发生的有利条件提供依据,同时也可为未来碳酸盐岩成储机制和实验模拟研究提供一定的借鉴意义.

       

    • 图  1  四川盆地三叠系飞仙关组鲕滩储层中的铸模孔形成模式图

      修改自冯林杰等(2021)

      Fig.  1.  Schematic diagram showing formation of moldic pore system in the Triassic Feixianguan oolitic shoal reservoir

      图  2  不同深度范围碳酸盐岩孔隙度分布特征统计图

      修改自马永生等(2019)

      Fig.  2.  Statistical chart of porosity distribution characteristics of carbonate rocks in different depth ranges

      图  3  典型碳酸盐岩水岩溶蚀模拟实验装置原理示意图

      a. 旋转盘水岩溶蚀反应装置与原理图(修改自黄康俊等,2011);b. 高温高压水岩反应实验装置示意图(修改自佘敏等,2014);c. 水热金刚石压腔实验装置示意图(修改自张单明等,2015);d. 熔融毛细硅管胶囊实验装置示意图(修改自王小林等,2017)

      Fig.  3.  Typical schematic diagrams of carbonate water and rock dissolution simulation experimenta

      图  4  (a) 半开放体系中碳酸盐岩的溶蚀质量损失率与温度的关系(数据引自He et al., 2017);(b)含不同有机酸浓度的地层水中碳酸盐岩饱和溶蚀量与温度的关系(数据佘敏等,2020)

      Fig.  4.  (a)Relationship between carbonate dissolution weight loss and temperature in the semi⁃open system(modified after He et al., 2017); (b)Relationship between saturated dissolution and temperature of carbonate rocks in formation water with different organic acid concentrations(modified after She et al., 2020)

      图  5  基于“反应-传输模型”的水岩界面反应示意图(修改自Shabani and Zivar, 2020)

      Fig.  5.  A geochemical⁃transport model⁃based schematic of the brine⁃rock reaction on the interface(modified after Shabani and Zivar, 2020)

      图  6  溶蚀改造后的白云石晶体表面微观形态特征

      修改自Jones(2013);a. 白云石内部沿裂隙优先发生溶蚀;b. 溶蚀作用形成残余“蜂窝状”或“网格状”空间;c. 菱形溶坑扩溶、合并形成“蜂窝状”结构;d,e. 晶体内部的差异性溶蚀作用,CB. 晶体核心与边缘分界,GSB. 晶体生长分区边界

      Fig.  6.  Microarchitecture of dolomite crystals after dissolution

      图  7  不同岩性的碳酸盐岩样品溶蚀改造后孔隙结构和表面溶蚀深度对比

      修改自Jora et al.(2021); a, b. 为Mg含量较高的样品1的核磁T2图谱和CT扫描获得的表面酸蚀深度分布与热图成像; c, d. 为Mg含量较低的样品2的核磁T2图谱和CT扫描获得的表面酸蚀深度分布与热图成像

      Fig.  7.  Pore structure and surface dissolution distance of carbonate rock samples

      图  8  溶蚀过程中岩样的渗透率演化规律

      修改自Qajar and Arns(2016)

      Fig.  8.  Figure showing the evolution of rock permeability during dissolution

      表  1  不同水岩溶蚀模拟实验技术与方法对比

      Table  1.   Comparison of experimental techniques and methods of different water rock dissolution simulations

      研究方法 模拟条件 主要研究内容 样品要求 方法评述 反应前后的溶蚀效果对比 参考文献
      旋转岩盘 温度:0~200 ℃
      压力:0~50 MPa
      (1)溶蚀反应速率
      (2)宏/微观岩石表面形貌演化
      (3)水-岩反应体系成分变化
      柱塞样(直径3.8 cm,长度2.0 cm) 优势:操作步骤简单,实验流程便捷易行
      局限:反应体系封闭,适用条件受限
      范明等(2009)黄康俊等(2011)Yoo et al.(2018)
      高温高压釜 温度:0~600 ℃
      压力:0~120 MPa
      (1)溶蚀反应速率
      (2)岩石饱和溶蚀量
      (3)宏/微观岩石微观形貌演化
      (4)水-岩反应组分原位分析
      (5)渗透率在线检测
      柱塞样(直径2.5 cm,长度3.8 cm);颗粒样(粒径 > 0.85 mm) 优势:可实时检测柱塞样渗透率变化
      局限:无法开展致密岩性的内部溶蚀改造实验
      寿建峰等(2016)彭军等(2018)佘敏等(2020)
      金刚石压腔 温度:0~600 ℃
      压力:0~120 MPa
      (1)微观溶蚀反应能力
      (2)微观矿物溶蚀-沉淀行为
      (3)水-岩反应组分原位分析
      颗粒样(150目,100 μm) 优势:可开展微观矿物尺度研究,与配套方法结合可实现反应过程原位观测
      局限:样品制备与实验流程复杂
      杨云坤等(2014)张单明等(2015)刘诗琦等(2021)
      人工合成包裹体 温度:0~200℃
      压力:0~0.06 MPa
      (1)微观溶蚀反应能力
      (2)微观矿物溶蚀-沉淀行为
      (3)水-岩反应组分原位分析
      颗粒样(粒径 < 0.3 mm) 优势:可与配套方法结合实现反应过程原位观测,开展矿物与富硅流体水岩反应时无需额外引入SiO2
      局限:熔融硅管胶囊制备复杂
      Chou et al.(2008)王小林等(2017)
      注:*表 1所列不同类型实验适用的模拟温压条件来自本文引用的文献中的实际实验条件(统计时间截至2022年8月),并不代表该方法所能达到的极限温压条件.
      下载: 导出CSV
    • [1] Amadi, F. O., Major, R. P., Baria, L. R., 2012. Origins of Gypsum in Deep Carbonate Reservoirs: Implications for Hydrocarbon Exploration and Production. AAPG Bulletin, 96(2): 375-390. https://doi.org/10.1306/05101110179
      [2] Appelo, C. A. J., Parkhurst, D. L., Post, V. E. A., 2014. Equations for Calculating Hydrogeochemical Reactions of Minerals and Gases such as CO2 at High Pressures and Temperatures. Geochimica et Cosmochimica Acta, 125, 49-67. https://doi.org/10.1016/j.gca.2013.10.003
      [3] Bagni, F. L., Erthal, M. M., Tonietto, S. N., et al., 2022. Karstified Layers and Caves Formed by Superposed Epigenic Dissolution along Subaerial Unconformities in Carbonate Rocks-Impact on Reservoir-Scale Permeability. Marine and Petroleum Geology, 138. https://doi.org/10.1016/j.marpetgeo.2022.105523
      [4] Baker, P. A., Kastner, M., 1981. Constraints on the Formation of Sedimentary Dolomite. Science, 213(4504): 214-216. https://doi.org/10.1126/science.213.4504.214
      [5] Berner, R. A., 1978. Rate Control of Mineral Dissolution under Earth Surface Conditions. American Journal of Science, 278(9): 1235-1252. https://doi.org/10.2475/ajs.278.9.1235
      [6] Bjørlykke, K., 2010. Petroleum Geoscience: from Sedimentary Environments to Rock Physics. Springer-Verlag, Berlin Heidelberg, 141-200.
      [7] Bjørlykke, K., Jahren, J., 2012. Open or Closed Geochemical Systems during Diagenesis in Sedimentary Basins: Constraints on Mass Transfer During Diagenesis and the Prediction of Porosity in Sandstone and Carbonate Reservoirs. AAPG Bulletin, 96(12): 2193-2214. https://doi.org/10.1306/04301211139
      [8] Brantley, S. L., Conrad, C. F., 2008. Ananlysis of Rates of Geochemical Reactions. In: Brantley, S. L., Kubicki, J. D., White, A. F., eds., Kinetics of Water-Rock Interaction. Springer, New York, 1-38.
      [9] Cai, C. F., Zhao, L., 2016. Thermochemical Sulfate Reduction and Its Effects on Petroleum Composition and Reservoir Quality: Advances and Problems. Bulletin of Mineralogy, Petrology and Geochemistry, 35(5): 851-859, 806 (in Chinese with English abstract).
      [10] Chen, D. Z., Qian, Y. X., 2017. Deep or Super-Deep Dolostone Reservoirs: Opportunities and Challenges. Journal of Palaeogeography, 19(2): 187-196 (in Chinese with English abstract).
      [11] Chen, Q. L., Huang, C. G., 2018. Research Progress of Modification of Reservoirs by Dissolution in Sedimentary Rock. Advances in Earth Science, 33(11): 1112-1129 (in Chinese with English abstract). doi: 10.11867/j.issn.1001-8166.2018.11.1112.
      [12] Chen, Y., Wang, M., Liu, Q., et al., 2016. Effect of Salts and Common Ions on Solubility of Calcite and Its Geological Implications. Journal of China University of Petroleum (Edition of Natural Science), 40(6): 33-39 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2016.06.004
      [13] Chorover, J., Brusseau, M. L., 2008. Kinetics of Sorption-Desorption. In: Brantley, S. L., Kubicki, J. D., White, A. F., eds., Kinetics of Water-Rock Interaction. Springer, New York, 109-149.
      [14] Chou, I. M., Song, Y., Burruss, R. C., 2008. A New Method for Synthesizing Fluid Inclusions in Fused Silica Capillaries Containing Organic and Inorganic Material. Geochimica et Cosmochimica Acta, 72(21): 5217-5231. https://doi.org/10.1016/j.gca.2008.07.030
      [15] Dai, Z. Y., Kan, A. Zhang, F. F., et al., 2015. A thermodynamic Model for the Solubility Prediction of Barite, Calcite, Gypsum, and Anhydrite, and the Association Constant Estimation of CaSO4 () Ion Pair Up to 250 ℃ and 22 000 psi. Journal of Chemical & Engineering Data, 60(3): 766-774. https://doi.org/10.1021/je5008873
      [16] Ding, Q., He, Z. L., Wang J. B., et al., 2020. Simulation Experiment of Carbonate Reservoir Modification by Source Rock-Derived Acidic Fluids. Oil & Gas Geology, 41(1): 223-234 (in Chinese with English abstract).
      [17] Ding, Q., He, Z. L., Wo Y. J., et al., 2017. Factors Controlling Carbonate Rock Dissolution under High Temperature and Pressure. Oil & Gas Geology, 38(4): 784-791 (in Chinese with English abstract).
      [18] Ehrenberg, S. N., Eberli, G. P., Keramati, M., et al., 2006. Porosity-Permeability Relationships in Interlayered Limestone-Dolostone Reservoirs. AAPG Bulletin, 90(1): 91-114. https://doi.org/10.1306/08100505087
      [19] Ehrenberg, S. N., Nadeau, P. H., 2005. Sandstone vs. Carbonate Petroleum Reservoirs: A Global Perspective on Porosity-Depth and Porosity-Permeability Relationships. AAPG Bulletin, 89(4): 435-445. https://doi.org/10.1306/11230404071
      [20] Ehrenberg, S. N., Walderhaug, O., Bjørlykke, K., 2012. Carbonate Porosity Creation by Mesogenetic Dissolution: Reality or Illusion? AAPG Bulletin, 96(2): 217-233. https://doi.org/10.1306/05031110187
      [21] Fan, M., He, Z. L., Li, Z. M., et al., 2011. Dissolution Window of Carbonate Rocks and Its Geological Significance. Oil & Gas Geology, 32(4): 499-505 (in Chinese with English abstract).
      [22] Fan, M., Hu, K., Jiang, X. Q., et al., 2009. Effect of Acid Fluid on Carbonate Reservoir Reconstruction. Geochimica, 38(1): 20-26 (in Chinese with English abstract). doi: 10.3321/j.issn:0379-1726.2009.01.002
      [23] Fan, M., Jiang, X. Q., Liu, W. X., et al., 2007. Dissolution of Carbonate Rocks in CO2 Solution under the Different Temperatures. Acta Sedimentologica Sinica, 25(6): 825-830 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-0550.2007.06.002
      [24] Fang, Y., Xie, S. Y., He, Z. L., et al., 2016. Thin Section-based Geochemical Dissolution Experiments of Ooid Carbonates. Earth Science. 41(5): 779-791 (in Chinese with English abstract).
      [25] Feng, L. J., Jiang, Y. Q., Liu F., et al., 2021. Reservoir Characteristics and Main Controlling Factors of Oolitic Shoal Reservoir in Feixianguan Formation in the Southern Part of Kaijiang-Liangping Trough, Eastern Sichuan Basin. Acta Petrolei Sinica, 42(10): 1287-1298 (in Chinese with English abstract). doi: 10.7623/syxb202110003
      [26] Garing, C., Gouze, P., Kassab, M., et al., 2015. Anti-Correlated Porosity-Permeability Changes During the Dissolution of Carbonate Rocks: Experimental Evidences and Modeling. Transport in Porous Media, 107(2): 595-621. https://doi.org/10.1007/s11242-015-0456-2
      [27] Gautelier, M., Schott, J., Oelkers, E. H., 2007. An Experimental Study of Dolomite Dissolution Rates at 80 ℃ as a Function of Chemical Affinity and Solution Composition. Chemical Geology, 242(3-4): 509-517. https://doi.org/10.1016/j.chemgeo.2007.05.008
      [28] Griffioen, J., Appelo, C. A. J., 1993. Nature and extent of carbonate precipitation during aquifer thermal energy storage. Applied Geochemistry, 8(2): 161-176. https://doi.org/10.1016/0883-2927(93)90032-C
      [29] Goldstein, R. H., Franseen, E. K., Lipinski, C. J., 2013. Topographic and Sea Level Controls on Oolite-Microbialite-Coralgal Reef Sequences: The Terminal Carbonate Complex of Southeast Spain. AAPG Bulletin, 97(11): 1997-2034. https://doi.org/10.1306/06191312170
      [30] Gong, Z. Z., Huang, Q. D., 1984. Field Corrosion Rate Tests on Carbonate Rocks. Carsologica Sinica, (2): 17-26 (in Chinese with English abstract).
      [31] Guo, R. T., Ma, D. D., Zhang, Y. S., et al., 2019. Characteristics and Formation Mechanism of Overpressure Pore-Fracture Reservoirs for Upper Member of Xiaganchaigou Formation in the West of Yingxiong Ridge, Qaidam Basin, Acta Petrolei Sinica, 40(4): 411-422(in Chinese with English abstract).
      [32] Han, B. P., 1993. Study on Micro-Corrosion Mechanism of Karst. Carsologica Sinica, 12(2): 97-102 (in Chinese with English abstract).
      [33] Hao, F., Zhang, X. F., Wang, C. W., et al., 2015. The Fate of CO2 Derived from Thermochemical Sulfate Reduction (TSR) and Effect of TSR on Carbonate Porosity and Permeability, Sichuan Basin, China. Earth-Science Reviews, 141: 154-177. https://doi.org/10.1016/j.earscirev.2014.12.001
      [34] He, Z. L., Ding, Q., Wo, Y. J., et al., 2017. Experiment of Carbonate Dissolution: Implication for High Quality Carbonate Reservoir Formation in Deep and Ultradeep Basins. Geofluids, 2017: 1-8. https://doi.org/10.1155/2017/8439259
      [35] He, Z. L., Ma, Y. S., Zhang, J. T., 2020. Distribution, Genetic Mechanism and Control Factors of Dolomite and Dolomite Reservoirs in China. Oil & Gas Geology, 41(1): 1-14 (in Chinese with English abstract).
      [36] He, Z. L., Ma, Y. S., Zhu, D. Y., et al., 2021. Theoretical and Technological Progress and Research Direction of Deep and Ultra-Deep Carbonate Reservoirs. Oil & Gas Geology, 42(3): 533-546 (in Chinese with English abstract).
      [37] He, Z. L., Wei, X. C., Qian, Y. X., et al., 2011. Forming Mechanism and Distribution Prediction of Quality Marine Carbonate Reservoirs. Oil & Gas Geology, 32(4): 489-498 (in Chinese with English abstract).
      [38] Hu, A. P., Shen, A. J., Yang, H. X., et al., 2019. Dolomite Genesis and Reservoir-Cap Rock Assemblage in Carbonate-Evaporite Paragenesis System. Petroleum Exploration and Development, 46(5): 916-928 (in Chinese with English abstract).
      [39] Huang, K. J., Wang, W., Bao, Z. Y., et al., 2011. Dissolution and Alteration of Feixianguan Formation in the Sichuan Basin by Organic Acid Fluids under Burial Condition: Kinetic Dissolution Experiments. Geochimica, 40(3): 289-300 (in Chinese with English abstract).
      [40] Huang, S. J., Cheng, X. Y., Zhao, J., et al., 2012. Test on the Dolomite Dissolution under Subaerial Temperature and Pressure. Carsologica Sinica, 31(4): 349-359 (in Chinese with English abstract). doi: 10.3969/j.issn.1001-4810.2012.04.002
      [41] Huang, S. J., Huang, P. P., Huang, K. K., et al., 2010. Chemical Thermodynamics Foundation of Retrograde Solubility for Carbonate: Solution Media Related to H2S and Comparing to CO2. Acta Sedimentologica Sinica, 28(1): 1-9 (in Chinese with English abstract).
      [42] Huang, S. J., Yang, J. J., Zhang, W. Z., et al., 1996. Effects of Gypsum (or Anhydrite) on Dissolution of Dolomite under Different Temperatures and Pressures of Epigensis and Burial Diagenesis. Acta Sedimentologica Sinica, 14(1): 103-109 (in Chinese with English abstract).
      [43] Hurley, N. F. and Budros, R., 1990. Albion-Scipio and Stoney Point Fields, U. S. A., Michigan Basin. In: Beaumont, E. A., Foster, N. H., eds., Stratigraphic Traps Ⅰ: AAPG Treatise of Petroleum Geology, Atlas of Oil and Gas Fields, Tulsa, 1-37
      [44] James, W. S., 1984. Empirical Relation between Carbonate Porosity and Thermal Maturity: An Approach to Regional Porosity Prediction. AAPG Bulletin, 68(11): 1697-1703. https://doi.org/10.1306/ad46197b-16f7-11d7-8645000102c1865d
      [45] Jenden, P. D., Titley, P. A, . Worden, R. H., 2015. Enrichment of Nitrogen and 13C of Methane in Natural Gases from the Khuff Formation, Saudi Arabia, Caused by Thermochemical Sulfate Reduction. Organic Geochemistry, 82: 54-68. https://doi.org/10.1016/j.orggeochem. 2015. 02.008 doi: 10.1016/j.orggeochem.2015.02.008
      [46] Jia, C. Z., Pang X. Q., 2015. Research Processes and Development Directions of Deep Hydrocarbon Geological Theories. Acta Petrolei Sinica, 36(12): 1457-1469 (in Chinese with English abstract). doi: 10.7623/syxb201512001
      [47] Jin, Z. K., Yu, K. H., 2011. Characteristics and Significance of the Burial Dissolution of Dolomite Reservoirs: Taking the Lower Palaeozoic in Eastern Tarim Basin as an Example. Petroleum Exploration and Development, 38(4): 428-434 (in Chinese with English abstract). doi: 10.1016/S1876-3804(11)60045-1
      [48] Jones, B., 2013. Microarchitecture of Dolomite Crystals as Revealed by Subtle Variations in Solubility: Implications for Dolomitization. Sedimentary Geology, 288: 66-80. doi: 10.1016/j.sedgeo.2013.01.004
      [49] Jora, M. Z., de Souza, R. N., Lucas-Oliveira, E., et al., 2021. Static Acid Dissolution of Carbonate Outcrops Investigated by 1H NMR and X-Ray Tomography. Journal of Petroleum Science and Engineering, 207.
      [50] Kang, Z. Y., Li, X. T., Tian, W., et al., 2022. Type Classification of Surface Water/Formation Water and Its Classified Method. Journal of Earth Sciences and Environment, 44(1): 65-77 (in Chinese with English abstract).
      [51] Kastner, M., 1984. Sedimentology: Control of Dolomite Formation. Nature, 311(5985): 410-411.
      [52] Kelemen, S. R., Walters, C. C., Kwiatek, P. J., et al., 2008. Distinguishing Solid Bitumens Formed by Thermochemical Sulfate Reduction and Thermal Chemical Alteration. Organic Geochemistry, 39(8): 1137-1143. https://doi.org/10.1016/j.orggeochem.2008.04.007
      [53] Kurtzman, D., Jennings, J. W., Lucia, F. J., 2007. Dissolution Vugs in Fractured Carbonates: A Complication? Or Perhaps a Key for Simplifying Reservoir Characterization. Geophysical Research Letters, 34(20): 161-172. https://doi.org/10.1029/2007gl031229
      [54] Lambert, L., Durlet, C., Loreau, J. P., et al., 2006. Burial Dissolution of Micrite in Middle East Carbonate Reservoirs (Jurassic–Cretaceous): Keys for Recognition and Timing. Marine and Petroleum Geology, 23(1): 79-92. https://doi.org/10.1016/j.marpetgeo.2005.04.003
      [55] Lasaga, A. C., Lüttge, A., 2003. A Model for Crystal Dissolution. European Journal of Mineralogy, 15(4): 603-615. https://doi.org/10.1127/0935-1221/2003/0015-0603
      [56] Lei, C., Chen, H. H., Su, A., et al., 2014. Study Progress on Buried Dissolution in Carbonate Rock. Fault-Block Oil and Gas Field, 21(2): 165-170 (in Chinese with English abstract).
      [57] Li, K., Xie, S. Y., Lei, L., et al., 2018. Surface Micromorphology of Dissoluted Olitic Carbonate Rocks. Marine Origin Petroleum Geology, 23(4): 61-70 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2018.04.007
      [58] Liu, H., Tan, X. C., Li, Y. H., et al., 2018. Occurrence and Conceptual Sedimentary Model of Cambrian Gypsum-Bearing Evaporites in the Sichuan Basin, SW China. Geoscience Frontiers, 9(4): 1179-1191. https://doi.org/10.1016/j.gsf.2017.06.006
      [59] Liu, S. Q., Chen, S. R., Liu, B., et al., 2021. Pore Evolution of the Permian Qixia-Maokou Formations Dolomite in Sichuan Basin Based on In-Situ Dissolution Simulation Experiment. Oil & Gas Geology, 42(3): 702-716 (in Chinese with English abstract).
      [60] Luquot, L., Gouze, P., 2009. Experimental Determination of Porosity and Permeability Changes Induced by Injection of CO2 into Carbonate Rocks. Chemical Geology, 265(1-2): 148-159. https://doi.org/10.1016/j.chemgeo.2009.03.028
      [61] Machel, H. G., 2004. Concepts and Models of Dolomitization: a Critical Reappraisal. Geological Society, London, Special Publications, 235(1): 7-63. https://doi.org/10.1144/gsl.Sp.2004.235.01.02
      [62] Mangane, P. O., Gouze, P., Luquot, L., 2013. Permeability Impairment of a Limestone Reservoir Triggered by Heterogeneous Dissolution and Particles Migration during CO2-Rich Injection. Geophysical Research Letters, 40(17): 4614-4619. doi: 10.1002/grl.50595
      [63] Ma, Y. S., Cai, X. Y., Guo, X. S., et al., 2010a. The Discovery of Puguang Gas Field. Strategic Study of CAE, 12(10): 14-23 (in Chinese with English abstract).
      [64] Ma, Y. S., Cai, X. Y., Yun, L., et al., 2022. Practice and Theoretical and Technical Progress in Exploration and Development of Shunbei Ultra-Deep Carbonate Oil and Gas Field, Tarim Basin, NW China. Petroleum Exploration and Development, 49(1): 1-17(in Chinese with English abstract). doi: 10.1016/S1876-3804(22)60001-6
      [65] Ma, Y. S., Cai, X. Y., Zhao, P. R., et al., 2010b. Formation Mechanism of Deep-Buried Carbonate Reservoir and Its Model of Three-Element Controlling Reservoir: A Case Study from the Puguang Oilfield in Sichuan. Acta Geologica Sinica, 84(8): 1087-1094 (in Chinese with English abstract).
      [66] Ma, Y. S., He, Z. L., Zhao, P. R., et al., 2019. A New Progress in Formation Mechanism of Deep and Ultra-Deep Carbonate Reservoir. Acta Petrolei Sinica, 40(12): 1415-1425 (in Chinese with English abstract). doi: 10.7623/syxb201912001
      [67] Moore, C. H., Wade, W. J., 2013. Natural Fracturing in Carbonate Reservoirs, Carbonate Reservoirs: Porosity and Diagenesis in a Sequence Stratigraphic Framework. Developments in Sedimentology, 285-300. https://doi.org/10.1016/b978-0-444-53831-4.00011-2
      [68] Morad, D., Paganoni, M., AL Harthi, A., et al., 2018. Origin and Evolution of Microporosity in Packstones and Grainstones in a Lower Cretaceous Carbonate Reservoir, United Arab Emirates. Geological Society, London, Special Publications, 435(1): 47-66. https://doi.org/10.1144/sp435.20
      [69] Morse, J. W., Arvidson, R. S., Luttge, A., 2007. Calcium Carbonate Formation and Dissolution. Chem Rev, 107(2): 342-81. https://doi.org/10.1021/cr050358j
      [70] Newton, R. C., Manning, C. E., 2002. Experimental Determination of Calcite Solubility in H2O-NaCl Solutions at Deep Crust/Upper Mantle Pressures and Temperatures: Implications for Metasomatic Processes in Shear Zones. American Mineralogist, 87(10): 1401-1409. https://doi.org/10.2138/am-2002-1016
      [71] Olanipekun, B. J., Azmy, K., 2016. Genesis and Morphology of Intracrystalline Nanopores and Mineral Micro Inclusions Hosted in Burial Dolomite Crystals: Application of Broad Ion Beam-Scanning Electron Microscope (BIB-SEM). Marine and Petroleum Geology, 74: 1-11. https://doi.org/10.1016/j.marpetgeo.2016.03.029
      [72] Peng, J., Wang, X. L., Han, H. D., et al., 2018. Simulation for the Dissolution Mechanism of Cambrian Carbonate Rocks in Tarim Basin, NW China. Petroleum Exploration and Development, 45(3): 415-425 (in Chinese with English abstract).
      [73] Perlmutter-Hayman, B., 1984. Equilibrium Constants of Chemical Reactions Involving Condensed Phases: Pressure Dependence and Choice of Standard State. Journal of Chemical Education, 61(9): 782-783. https://doi.org/10.1021/ed061p782
      [74] Peter, A. S., 1977. Chalk Diagenesis and Its Relation to Petroleum Exploration: Oil from Chalks, a Modern Miracle? AAPG Bulletin, 61.
      [75] Plummer, L. N., Wigley, T. M. L., Parkhurst, D. L., 1978. The Kinetics of Calcite Dissolution in CO2-Water Systems at 5 to 60c and 0.0 to 1.0 atm CO2. American Journal of Science, 278(2): 179-216.
      [76] Pokrovsky, O. S., Golubev, S. V., Schott, J., 2005. Dissolution Kinetics of Calcite, Dolomite and Magnesite at 25 ℃ and 0 to 50 atm pCO2. Chemical Geology, 217(3-4): 239-255. https://doi.org/10.1016/j.chemgeo.2004.12.012
      [77] Pokrovsky, O. S., Golubev, S. V., Schott J., et al., 2009. Calcite, Dolomite and Magnesite Dissolution Kinetics in Aqueous Solutions at Acid to Circumneutral pH, 25 to 150 ℃ and 1 to 55 atm pCO2: New Constraints on CO2 Sequestration in Sedimentary Basins. Chemical Geology, 265(1/2): 20-32. https://doi.org/10.1016/j.chemgeo.2009.01.013
      [78] Qajar, J., Arns, C. H., 2016. Characterization of Reactive Flow-Induced Evolution of Carbonate Rocks Using Digital Core Analysis: Part 1: Assessment of Pore-Scale Mineral Dissolution and Deposition. Journal of Contaminant Hydrology, 192: 60-86. doi: 10.1016/j.jconhyd.2016.06.005
      [79] Qiao, Z. F., Lv, Y. Z., Chen, W., et al., 2021. Origin and Evolution of Burial Dissolved Vugs in Dolomite: Evidence from High-Temperature and High-Pressure Dissolution Kinetic Simulation. Marine Origin Petroleum Geology, 26(4): 326-334 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2021.04.005
      [80] Robert, B., Halley., James W. S., 1983. High-Porosity Cenozoic Carbonate Rocks of South Florida: Progressive Loss of Porosity with Depth. AAPG Bulletin, 67(2): 191-200. https://doi.org/10.1306/03b5ace6-16d1-11d7-8645000102c1865d
      [81] Sánchez-Román, M., McKenzie, J. A., Wagener, A. D. L. R., et al., 2009. Presence of Sulfate does not Inhibit Low-Temperature Dolomite Precipitation. Earth and Planetary Science Letters, 285(1-2): 131-139. https://doi.org/10.1016/j.epsl.2009.06.003
      [82] Seyyedi, M., Mahmud, H. K. B., Verrall, M., et al., 2020. Pore Structure Changes Occur During CO2 Injection into Carbonate Reservoirs. Sci Rep, 10(1): 3624. https://doi.org/10.1038/s41598-020-60247-4
      [83] Shabani, A., Zivar, D., 2020. Detailed Analysis of the Brine-Rock Interactions during Low Salinity Water Injection by a Coupled Geochemical-Transport Model. Chemical Geology, 537: 1-12. https://doi.org/10.1016/j.chemgeo.2020.119484
      [84] She, M., Jiang, Y. M., Hu, A. P., 2020. The Progress and Application of Dissolution Simulation of Carbonate Rock. Marine Origin Petroleum Geology, 25(1): 12-21 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2020.01.002
      [85] She, M., Shou, J. F., He, X. Y., et al., 2013. Experiment of Dissolution Mechanism of Carbonate Rocks: Surface Dissolution and Internal Dissolution. Marine Origin Petroleum Geology, 18(3): 55-61 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2013.03.007
      [86] She, M., Shou, J. F., Shen, A. J., et al., 2014. Experimental Simulation of Dissolution and Alteration of Buried Organic Acid Fluid on Dolomite Reservoir. Journal of China University of Petroleum (Edition of Natural Science), 38(3): 10-17 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-5005.2014.03.002
      [87] She, M., Shou, J. F., Shen, A. J., et al., 2016. Experimental Simulation of Dissolution Law and Porosity Evolution of Carbonate Rock. Petroleum Exploration and Development, 43(4): 564-572 (in Chinese with English abstract).
      [88] She, M., Zhu, Y., Shen, A. J., et al., 2012. Simulation Experiment for the Dissolution of Carbonate Rocks of the Yingshan Formation on the Northern Slope of Tazhong Uplift, Carsologica Sinica, 31(3): 234-239(in Chinese with English abstract). doi: 10.3969/j.issn.1001-4810.2012.03.002
      [89] Shen, A. J., Qiao, Z. F., She, M., et al., 2021. Prediction of Burial Dissolved Vugs in Carbonates Based on Dissolution Simulation: A Case Study of the Longwangmiao Formation Dolostone Reservoirs, Sichuan Basin. Oil & Gas Geology, 42(3): 690-701 (in Chinese with English abstract).
      [90] Shen, A. J., She, M., Hu, A. P., 2015. Scale and Distribution of Marine Carbonate Burial Dissolutional Pores. Natural Gas Geoscience, 26(10): 1823-1830 (in Chinese with English abstract). doi: 10.11764/j.issn.1672-1926.2015.10.1823
      [91] Shen, A. J., Zhao, W. Z., Hu, A. P., et al., 2015. Major Factors Controlling the Development of Marine Carbonate Reservoirs. Petroleum Exploration and Development, 42(5): 545-554 (in Chinese with English abstract).
      [92] Shi, L. X., Zhou, Z. F., Zhang, H., et al., 2022. Sources of SO42- and NO3- and Their Disturbances to Water Rock Processes in Karst Cave Systems. Earth Science, 47(2): 607-621 (in Chinese with English abstract).
      [93] Shou, J. F., She, M., Shen, A. J., 2016. Experimental Simulation of Dissolution Effect of Carbonate Rock under Deep Burial Condition. Bulletin of Mineralogy, Petrology and Geochemistry, 35(5): 860-867, 806 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2016.05.006
      [94] Simms, M. J., 2014. Karst and Paleokarst. Reference Module in Earth Systems and Environmental Sciences. https://doi.org/10.1016/b978-0-12-409548-9.09370-2
      [95] Smith, M. M., Hao, Y., Carroll, S. A., 2017. Development and Calibration of a Reactive Transport Model for Carbonate Reservoir Porosity and Permeability Changes Based on CO2 Core-Flood Experiments. International Journal of Greenhouse Gas Control, 57: 73-88. https://doi.org/10.1016/j.ijggc.2016.12.004
      [96] Song, H. R., Huang, S. Y., 1993. Chemical Corrosion Effects of Carbonate Rock. Geoscience, 7(3): 363-371 (in Chinese with English abstract).
      [97] Sun, C. H., Zhu, G. Y., Zheng, D. M., et al., 2016. Characteristics and Controlling Factors of Fracture-Cavity Carbonate Reservoirs in the Halahatang Area, Tarim Basin. Bulletin of Mineralogy, Petrology and Geochemistry, 35(5): 1028-1036 (in Chinese with English abstract). doi: 10.3969/j.issn.1007-2802.2016.05.024
      [98] Tan, X. C., Xiao, D., Chen, J. S., et al., 2015. New Advance and Enlightenment of Eogenetic Karstification. Journal of Palaeogeography, 17(4): 441-456 (in Chinese with English abstract).
      [99] Taylor, K. C., Nasr-El-Din, H. A., Mehta, S., 2006. Anomalous Acid Reaction Rates in Carbonate Reservoir Rocks. SPE Journal, 11(4): 488-496. https://doi.org/10.2118/89417-pa
      [100] Taylor, T. R., Giles, M. R., Hathon, L. A., et al., 2010. Sandstone Diagenesis and Reservoir Quality Prediction: Models, Myths, and Reality. AAPG Bulletin, 94(8): 1093-1132. https://doi.org/10.1306/04211009123
      [101] Valencia, F. L, Laya, J. C., 2020. Deep-Burial Dissolution in an Oligocene-Miocene Giant Carbonate Reservoir (Perla Limestone), Gulf of Venezuela Basin: Implications on Microporosity Development. Marine and Petroleum Geology, 113: 1-57. https://doi.org/10.1016/j.marpetgeo.2019.104144
      [102] Wang, X. L, Chou, I. M., Hu, W. X., et al., 2016. Kinetic Inhibition of Dolomite Precipitation: Insights from Raman Spectroscopy of Mg2+-SO42- Ion Pairing in MgSO4/MgCl2/NaCl Solutions at Temperatures of 25 to 200 ℃. Chemical Geology, 435: 10-21. https://doi.org/10.1016/j.chemgeo.2016.04.020
      [103] Wang, X. L., Wan, Y., Hu, W. X., et al., 2017. Experimental Studies on the Interactions between Dolomite and SiO2-Rich Fluids: Implications for the Formation of Carbonate Reservoirs. Geological Review, 33(11): 1112-1129 (in Chinese with English abstract).
      [104] Wen, H. G., Huo, F., Guo, P., et al., 2021. Advances and Prospects of Dolostone-Evaporite Paragenesis System. Acta Sedimentologica Sinica, 39(6): 1321-1343 (in Chinese with English abstract).
      [105] William, J. W., Clyde, H. M. J., 1992. New Constraints on Carbonate Diagenesis from Integrated Sr and S Isotopic and Rare Earth Element Data, Jurassic Smackover Formation, U.S. Gulf Coast. Applied Geochemistry, 7(1): 87-91, https://doi.org/10.1016/0883-2927(92)90017-W
      [106] Xiong, J. B., He D. F., 2022. Distribution Characteristics and Controlling Factors of Global Giant Carbonate Stratigraphic-Lithologic Oil and Gas Fields. Lithologic Reservoirs, 34(1): 187-200 (in Chinese with English abstract).
      [107] Yan, W., Zhang, G. X., Zhang, L., et al., 2022. Carbonate Reservoirs Characteristics and Hydrocarbon Accumulation in Beikang Basin, Southern South China Sea. Earth Science, 47(7): 2549-2561 (in Chinese with English abstract).
      [108] Yang, Y. K., Liu, B., Qin, S., et al., 2013. Dissolution Response Mechanism of the Carbonate Mineral with the Increase of Depth and Its Reservoir Significance. Acta Scientiarum Naturalium Universitatis Pekinensis, 49(5): 859-866 (in Chinese with English abstract).
      [109] Yang, Y. K., Liu, B., Qin, S., et al., 2014. Re-Recognition of Deep Carbonate Dissolution Based on the Observation of In-Situ Simulation Experiment. Acta Scientiarum Naturalium Universitatis Pekinensis, 50(2): 316-322 (in Chinese with English abstract).
      [110] Yoo, H., Kim, Y., Lee, W., et al., 2018. An Experimental Study on Acid-Rock Reaction Kinetics Using Dolomite in Carbonate Acidizing. Journal of Petroleum Science and Engineering, 168: 478-494. doi: 10.1016/j.petrol.2018.05.041
      [111] Zhang, S. M., Qin, S., Liu, B., et al., 2015. In-Situ Simulation Experiment of Carbonate-Hydrogen Sulfide Equilibrium System and Its Geological Significance. Acta Scientiarum Naturalium Universitatis Pekinensis, 51(4): 745-754 (in Chinese with English abstract).
      [112] Zhang, S. M., Liu, B., Qin, S., et al., 2017. Origin of Deep Carbonate Reservoir in Northeastern Sichuan Basin: New Insights from In-Situ Hydrothermal Diamond Anvil Cell Experiments. Journal of Central South University, 24(6): 1450-1464. doi: 10.1007/s11771-017-3549-y
      [113] Zhang, J., Hu, J. Y., Luo, P., et al., 2010. Master Control Factors of Deep High-Quality Dolomite Reservoirs and the Exploration Significance. Petroleum Exploration and Development, 37(2): 203-210 (in Chinese with English abstract).
      [114] Zhang, N. N., He, D. F., Sun, Y. P., et al., 2014. Distribution Patterns and Controlling Factors of Giant Carbonate Rock Oil and Gas Fields Worldwide. China Petroleum Exploration, 19(6): 54-65 (in Chinese with English abstract).
      [115] Zhang, T. F., Bao, Z. Y., Cui, Z. A., et al., 2012. Thermodynamic Analysis of Burial Dissolution of Carbonate Rocks and Its Geological Significance. Xinjiang Petroleum Geology, 33(2): 179-181. https://doi.org/1001-3873. 2012. 02-0179-03
      [116] Zhao, W. Z., Shen, A. J., Hu, S. Y., et al., 2012. Geological Conditions and Distributional Features of Large-Scale Carbonate Reservoirs Onshore China. Petroleum Exploration and Development, 39(1): 1-12 (in Chinese with English abstract). doi: 10.1016/S1876-3804(12)60010-X
      [117] Zhao, X. F., Zhu, G. Y., Liu, Q. F., et al., 2007. Main Control Factors of Pore Development in Deep Marine Carbonate Reservoirs. Natural Gas Geoscience, 18(4): 514-521 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-1926.2007.04.006
      [118] Zheng, J. F., Shen, A. J., Huang, L. L., et al., 2017. Pore Effect of Dolomite Reservoirs Based on Burial Dissolution Simulation: A Case Study of the Lower Cambrian Xiaoerbulake Formation in the Tarim Basin. Petroleum Geology and Experiment, 39(5): 716-723 (in Chinese with English abstract).
      [119] Zhu, G. Y., Sun, C. H., Zhao, B., et al., 2020. Formation, Evaluation Technology and Preservation Lower Limit of Ultra-Deep Ancient Fracture-Cavity Carbonate Reservoirs below 7000m. Natural Gas Geoscience, 31(5): 587-601 (in Chinese with English abstract).
      [120] Zhu, G. Y., Zhang, S. C., Liang, Y. B., et al., 2006. Dissolution and Alteration of the Deep Carbonate Reservoirs by TSR: An Important Type of Deep-Buried High-Quality Carbonate Reservoirs in Sichuan Basin. Acta Petrologica Sinica, 22(8): 2182-2194 (in Chinese with English abstract).
      [121] Zhu, W. H., Qu, X. Y., Qiu, L. W., et al., 2015. Characteristics and Erosion Mechanism of Carbonate in Acetic Acid and Hydrochloride Solutions, an Example from the Nanpu Depression. Bulletin of Mineralogy, Petrology and Geochemistry, 34(3): 619-625 (in Chinese with English abstract).
      [122] 蔡春芳, 赵龙, 2016. 热化学硫酸盐还原作用及其对油气与储集层的改造作用: 进展与问题. 矿物岩石地球化学通报, 35(5): 851-859, 806. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201605009.htm
      [123] 陈代钊, 钱一雄, 2017. 深层—超深层白云岩储集层: 机遇与挑战. 古地理学报, 19(2): 187-196. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201702001.htm
      [124] 陈启林, 黄成刚, 2018. 沉积岩中溶蚀作用对储集层的改造研究进展. 地球科学进展, 33(11): 1112-1129. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201811003.htm
      [125] 陈勇, 王淼, 刘庆, 等, 2016. 盐效应和共同离子效应对方解石溶解度的影响及其地质意义. 中国石油大学学报(自然科学版), 40(6): 33-39. doi: 10.3969/j.issn.1673-5005.2016.06.004
      [126] 丁茜, 何治亮, 王静彬, 等, 2020. 生烃伴生酸性流体对碳酸盐岩储层改造效应的模拟实验. 石油与天然气地质, 41(1): 223-234. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001021.htm
      [127] 丁茜, 何治亮, 沃玉进, 等, 2017. 高温高压条件下碳酸盐岩溶蚀过程控制因素. 石油与天然气地质, 38(4): 784-791. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201704015.htm
      [128] 范明, 何治亮, 李志明, 等, 2011. 碳酸盐岩溶蚀窗的形成及地质意义. 石油与天然气地质, 32(4): 499-505. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201104005.htm
      [129] 范明, 胡凯, 蒋小琼, 等, 2009. 酸性流体对碳酸盐岩储层的改造作用. 地球化学, 38(1): 20-26. doi: 10.3321/j.issn:0379-1726.2009.01.002
      [130] 范明, 蒋小琼, 刘伟新, 等, 2007. 不同温度条件下CO2水溶液对碳酸盐岩的溶蚀作用. 沉积学报, 25(6): 825-830. doi: 10.3969/j.issn.1000-0550.2007.06.002
      [131] 方旸, 谢淑云, 何治亮, 等, 2016. 基于岩石薄片的鲕粒碳酸盐岩地球化学溶蚀. 地球科学, 41(5): 779-791. doi: 10.3799/dqkx.2016.066
      [132] 冯林杰, 蒋裕强, 刘菲, 等, 2021. 川东地区开江-梁平海槽南段飞仙关组鲕滩储层特征及主控因素. 石油学报, 42(10): 1287-1298. doi: 10.7623/syxb202110003
      [133] 龚自珍, 黄庆达, 1984. 碳酸盐岩岩块野外溶蚀速度试验. 中国岩溶, (2): 17-26. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR198402002.htm
      [134] 郭荣涛, 马达德, 张永庶, 等, 2019. 柴达木盆地英西地区下干柴沟组上段超压孔缝型储层特征及形成机理. 石油学报, 40(4): 411-422. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201904003.htm
      [135] 韩宝平, 1993. 喀斯特微观溶蚀机理研究. 中国岩溶, 12(2): 97-102. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR199302000.htm
      [136] 何治亮, 马永生, 张军涛, 等, 2020. 中国的白云岩与白云岩储层: 分布、成因与控制因素. 石油与天然气地质, 41(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202001002.htm
      [137] 何治亮, 马永生, 朱东亚, 等, 2021. 深层-超深层碳酸盐岩储层理论技术进展与攻关方向. 石油与天然气地质, 42(3): 533-546. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202103002.htm
      [138] 何治亮, 魏修成, 钱一雄, 等, 2011. 海相碳酸盐岩优质储层形成机理与分布预测. 石油与天然气地质, 32(4): 489-498. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201104004.htm
      [139] 胡安平, 沈安江, 杨翰轩, 等, 2019. 碳酸盐岩-膏盐岩共生体系白云岩成因及储盖组合. 石油勘探与开发, 46(5): 916-928. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201905011.htm
      [140] 黄康俊, 王炜, 鲍征宇, 等, 2011. 埋藏有机酸性流体对四川盆地东北部飞仙关组储层的溶蚀改造作用: 溶解动力学实验研究. 地球化学, 40(3): 289-300. https://www.cnki.com.cn/Article/CJFDTOTAL-DQHX201103009.htm
      [141] 黄思静, 成欣怡, 赵杰, 等, 2012. 近地表温压条件下白云岩溶解过程的实验研究. 中国岩溶, 31(4): 349-359. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201204003.htm
      [142] 黄思静, 黄培培, 黄可可, 等, 2010. 碳酸盐倒退溶解模式的化学热力学基础——与H2S有关的溶解介质及其与CO2的对比. 沉积学报, 28(1): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201001002.htm
      [143] 黄思静, 杨俊杰, 张文正, 等, 1996. 石膏对白云岩溶解影响的实验模拟研究. 沉积学报, 14(1): 103-109. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB601.011.htm
      [144] 贾承造, 庞雄奇, 2015. 深层油气地质理论研究进展与主要发展方向. 石油学报, 36(12): 1457 -1469. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201512001.htm
      [145] 金振奎, 余宽宏, 2011. 白云岩储集层埋藏溶蚀作用特征及意义——以塔里木盆地东部下古生界为例. 石油勘探与开发, 38(4): 428-434. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201104007.htm
      [146] 康志勇, 李晓涛, 田文, 等, 2022. 地表水/地层水水型分类及其划分方法. 地球科学与环境学报, 44(1): 65-77. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX202201004.htm
      [147] 雷川, 陈红汉, 苏奥, 等, 2014. 碳酸盐岩埋藏溶蚀研究进展. 断块油气田, 21(2): 165-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT201402008.htm
      [148] 李开, 谢淑云, 雷蕾, 等, 2018. 鲕粒碳酸盐岩溶蚀的微观形貌特征实验研究. 海相油气地质, 23(4): 61-70. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201804007.htm
      [149] 刘诗琦, 陈森然, 刘波, 等, 2021. 基于原位溶蚀模拟实验的四川盆地二叠系栖霞组-茅口组白云岩孔隙演化. 石油与天然气地质, 42(3): 702-716. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202103016.htm
      [150] 马永生, 蔡勋育, 郭旭升, 等, 2010a. 普光气田的发现. 中国工程科学, 12(10): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201010005.htm
      [151] 马永生, 蔡勋育, 云露, 等, 2022. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展. 石油勘探与开发, 49(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202201001.htm
      [152] 马永生, 蔡勋育, 赵培荣, 等, 2010b. 深层超深层碳酸盐岩优质储层发育机理和"三元控储"模式——以四川普光气田为例. 地质学报, 84(8): 1087-1094. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201008002.htm
      [153] 马永生, 何治亮, 赵培荣, 等, 2019. 深层-超深层碳酸盐岩储层形成机理新进展. 石油学报, 40(12): 1415-1425. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201912017.htm
      [154] 彭军, 王雪龙, 韩浩东, 等, 2018. 塔里木盆地寒武系碳酸盐岩溶蚀作用机理模拟实验. 石油勘探与开发, 45(3): 415-425. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201803007.htm
      [155] 乔占峰, 吕玉珍, 陈薇, 等, 2021. 白云岩埋藏溶蚀孔洞的形成机理与演化——来自高温高压溶蚀模拟的证据. 海相油气地质, 26(4): 326-334. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202104005.htm
      [156] 佘敏, 蒋义敏, 胡安平, 等, 2020. 碳酸盐岩溶蚀模拟实验技术进展及应用. 海相油气地质, 25(1): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202001002.htm
      [157] 佘敏, 寿建峰, 贺训云, 等, 2013. 碳酸盐岩溶蚀机制的实验探讨: 表面溶蚀与内部溶蚀对比. 海相油气地质, 18(3): 55-61. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201303008.htm
      [158] 佘敏, 寿建峰, 沈安江, 等, 2014. 埋藏有机酸性流体对白云岩储层溶蚀作用的模拟实验. 中国石油大学学报(自然科学版), 38(3): 10-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX201403002.htm
      [159] 佘敏, 寿建峰, 沈安江, 等, 2016. 碳酸盐岩溶蚀规律与孔隙演化实验研究. 石油勘探与开发, 43(4): 564-572. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604009.htm
      [160] 佘敏, 朱吟, 沈安江, 等, 2012. 塔中北斜坡鹰山组碳酸盐岩溶蚀的模拟实验研究. 中国岩溶, 31(3): 234-239. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGYR201203002.htm
      [161] 沈安江, 乔占峰, 佘敏, 等, 2021. 基于溶蚀模拟实验的碳酸盐岩埋藏溶蚀孔洞预测方法——以四川盆地龙王庙组储层为例. 石油与天然气地质, 42(3): 690-701. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202103015.htm
      [162] 沈安江, 佘敏, 胡安平, 等, 2015a. 海相碳酸盐岩埋藏溶孔规模与分布规律初探. 天然气地球科学, 26(10): 1823-1830. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201510002.htm
      [163] 沈安江, 赵文智, 胡安平, 等, 2015b. 海相碳酸盐岩储集层发育主控因素. 石油勘探与开发, 42(5): 545-554. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201505001.htm
      [164] 石亮星, 周忠发, 张恒, 等, 2022. 岩溶洞穴系统SO42-、NO3-来源及其对水岩作用的影响. 地球科学, 47(2): 607-621. doi: 10.3799/dqkx.2021.115
      [165] 寿建峰, 佘敏, 沈安江, 2016. 深层条件下碳酸盐岩溶蚀改造效应的模拟实验研究. 矿物岩石地球化学通报, 35(5): 860-867, 806. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201605011.htm
      [166] 宋焕荣, 黄尚瑜, 1993. 碳酸盐岩化学溶蚀效应. 现代地质, 7(3): 363-371. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ199303014.htm
      [167] 孙崇浩, 朱光有, 郑多明, 等, 2016. 塔里木盆地哈拉哈塘地区超深碳酸盐岩缝洞型储集层特征与控制因素. 矿物岩石地球化学通报, 35(5): 1028-1036. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201605037.htm
      [168] 谭秀成, 肖笛, 陈景山, 等, 2015. 早成岩期喀斯特化研究新进展及意义. 古地理学报, 17(4): 441-456. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201504002.htm
      [169] 王小林, 万野, 胡文瑄, 等, 2017. 白云石与富硅流体的水——岩反应实验及其储层地质意义. 地质论评, 63(6): 1639-1652. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201706021.htm
      [170] 文华国, 霍飞, 郭佩, 等, 2021. 白云岩——蒸发岩共生体系研究进展及展望. 沉积学报, 39(6): 1321-1343. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB202106002.htm
      [171] 熊加贝, 何登发, 2022. 全球碳酸盐岩地层-岩性大油气田分布特征及其控制因素. 岩性油气藏, 34(1): 187-200. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202201018.htm
      [172] 鄢伟, 张光学, 张莉, 等, 2022. 南海南部北康盆地碳酸盐岩储层特征及油气成藏. 地球科学, 47(7): 2549-2561. doi: 10.3799/dqkx.2022.073
      [173] 杨云坤, 刘波, 秦善, 等, 2013. 碳酸盐矿物随埋深增加的溶蚀响应机制及其储层意义. 北京大学学报(自然科学版), 49(5): 859-866. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201305014.htm
      [174] 杨云坤, 刘波, 秦善, 等, 2014. 基于模拟实验的原位观察对碳酸盐岩深部溶蚀的再认识. 北京大学学报(自然科学版), 50(2): 316-322. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201402015.htm
      [175] 张单明, 秦善, 刘波, 等, 2015. 碳酸盐岩-H2S平衡体系原位溶蚀模拟实验及其地质意义. 北京大学学报(自然科学版), 51(4): 745-754. https://www.cnki.com.cn/Article/CJFDTOTAL-BJDZ201504021.htm
      [176] 张静, 胡见义, 罗平, 等, 2010. 深埋优质白云岩储集层发育的主控因素与勘探意义. 石油勘探与开发, 37(2): 203-210. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201002012.htm
      [177] 张宁宁, 何登发, 孙衍鹏, 等, 2014. 全球碳酸盐岩大油气田分布特征及其控制因素. 中国石油勘探, 19(6): 54-65. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201406007.htm
      [178] 赵文智, 沈安江, 胡素云, 等, 2012. 中国碳酸盐岩储集层大型化发育的地质条件与分布特征. 石油勘探与开发, 39(1): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201201002.htm
      [179] 赵雪凤, 朱光有, 刘钦甫, 等, 2007. 深部海相碳酸盐岩储层孔隙发育的主控因素研究. 天然气地球科学, 18(4): 514-521. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX200704006.htm
      [180] 郑剑锋, 沈安江, 黄理力, 等, 2017. 基于埋藏溶蚀模拟实验的白云岩储层孔隙效应研究--以塔里木盆地下寒武统肖尔布拉克组为例. 石油实验地质, 39(5): 716-723. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201705020.htm
      [181] 朱光有, 孙崇浩, 赵斌, 等, 2020. 7 000 m以深超深层古老缝洞型碳酸盐岩油气储层形成、评价技术与保存下限. 天然气地球科学, 31(5): 587-601. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202005001.htm
      [182] 朱光有, 张水昌, 梁英波, 等, 2006. TSR对深部碳酸盐岩储层的溶蚀改造--四川盆地深部碳酸盐岩优质储层形成的重要方式. 岩石学报, 22(8): 2182-2194. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200608007.htm
      [183] 朱文慧, 曲希玉, 邱隆伟, 等, 2015. 盐酸及乙酸介质中的碳酸盐岩溶蚀表面特征及机理——以南堡凹陷为例. 矿物岩石地球化学通报, 34(3): 619-625. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH201503023.htm
    • 加载中
    图(8) / 表(1)
    计量
    • 文章访问数:  16
    • HTML全文浏览量:  1
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2023-01-13
    • 刊出日期:  2023-02-25

    目录

      /

      返回文章
      返回