Key Evaluation Aspects for Economic Development of Continental Shale Oil
-
摘要: 我国陆相页岩油已经取得一系列重大勘探开发突破,但大规模开发的抗风险能力和可持续发展能力存在较大挑战.实现陆相页岩油规模效益开发,理念变革是关键,为此提出“全生命周期可接受经济指标条件下最大化采收率、最小化环境影响为根本目标”的效益开发理念.为了支撑上述开发理念,提出需系统性评价陆相页岩油的流动能力、改造能力和提高采收率能力并梳理出关键评价内容,对前人较少关注的页岩油原油性质空间非均质性、微观润湿性、大分子滞留、细观—宏观多尺度力学性质、主动应力干扰机理等关键评价问题进行剖析阐述.指出:页岩油流动能力是甜点评价和提高采收率的基础,地质时间尺度页岩油流—固耦合演化过程形成的累积效应具有控制性作用;页岩复杂组构多尺度力学性质及诱导应力场动态演化行为是改造能力的关键,可通过主动应力干扰提高“人工渗流体”的有效性;陆相页岩油在工作介质介入条件下的可流动能力是微观驱油效率的核心,在立体开发条件下构建和强化特殊的提高采收率机制;流体非均质性、微观润湿性、细观力学性质及人工渗流体基质有效渗透率是需要高度关注的基础性评价参数并强化其定量表征和理论建模.建议加强针对性实验装备研制和实验方法创新,强化陆相页岩油现场科学实验室规划与建设,发展数字化智能化仿真技术与评价方法,构建基于“数字孪生”多尺度映射与建模技术.Abstract: A series of exploration and development breakthroughs for continental shale oil have been achieved in recent years in China. However, there are great challenges to the risk resistance capability and sustainable ability of large-scale development. The reformation of cognition and mentality is critical to achieve large-scale economic development. A constructive view is proposed that the goal is to achieve reasonable economic returns with maximized recovery and minimized environmental impacts in the lifecycle of an asset project. Adhering to this idea, it is emphasized that the fluid transfer capability, reservoir stimulation potential and oil recovery enhancement potential of continental shale oil with associated key contents must be systematically evaluated. Some important factors are reviewed and discussed in depth such as fluid heterogeneities, micro wettability, macro molecular retention, meso-to-macro geomechanical characteristics, mechanism of proactive utilization of stress interference, and so on, which had been paid insufficient attentions previously. It is concluded that fluid transfer capability is the basis of sweet-spot evaluation and enhanced oil recovery. The cumulative effect formed by the coupling evolution process of shale oil in geologic time plays a key role at present. The multi-scale mechanical properties of shale with complex fabrics and the dynamic evolution behavior of induced stress field are key factors for reservoir stimulation potential. The effectiveness of an artificial reservoir can be significantly improved through proactive utilization of stress interference. The oil mobility in nano pores is the core of micro displacement efficiency. Unique recovery mechanisms with the artificial reservoir can be promoted and utilized through stereoscopic development. The fundamental evaluation properties can at least include fluid heterogeneity, micro wettability, mesoscopic geomechanics and the effective matrix permeability of stimulated reservoir volume. It is vital to have proper characterization and theoretical models for them. It is suggested that development of innovative lab equipment and approaches, establishment of on-site scientific laboratory for continental shale oil, research of digital and intelligent emulation technology and associated evaluation methods, and construction of multi-scale mapping and modeling technology based on "digital twins".
-
图 4 页岩垂向组构对水力裂缝扩展的影响
据Diaz et al.(2017,2018)修改
Fig. 4. The influence of vertical shale fabrics on hydraulically created fracture propagation
表 1 陆相页岩油效益开发实验室关键评价内容
Table 1. Key evaluation aspects for continental shale oil economic development in lab
页岩油流动能力 页岩油改造能力 页岩油提高采收率能力 1.页岩油性质空间非均质性及成因机制 1.岩石微观组构特征及细观力学性质表征 1.不同组构页岩相自发渗吸和原位渗吸能力 2.页岩油微观润湿性及动态赋存状态 2.岩石宏观组构特征及高分辨率地质力学参数表征 2.微‒纳孔隙体系非均质原油相态变化规律 3.页岩油吸附‒束缚‒滞留和动态自封闭机制 3.裂缝扩展及空间展布规律和控制机理 3.油藏流体‒工作介质‒岩石相互作用机理及提高采收率机制 4.不同组构页岩相含油饱和度及不同驱动能量下可动油饱和度 4.空间应力场干扰利用与控制机理 4.基质‒裂缝‒井筒多尺度多场耦合渗流‒流动机制 5.页岩油微运移及多相微流动机理 5.有效改造体积及动态泄油体积评价 5.长周期提高采收率机理与机制 表 2 陆相页岩油类型划分
Table 2. Type division of continental shale oil
页岩层系内非常规油 广义页岩油 狭义页岩油 致密油 岩石组构类型 纯页岩型 纹层型 混积型 夹层型 互层型 厚层型 源储配置 源储一体 源储分异 源储分异 聚集方式 原位滞留 原位滞留+微运移 微运移+原位滞留 超短距运移 超短距运移 短距运移 -
[1] Armstrong, R. T., Sun, C. H., Mostaghimi, P., et al., 2021. Multiscale Characterization of Wettability in Porous Media. Transport in Porous Media, 140(1): 215-240. https://doi.org/10.1007/s11242-021-01615-0 [2] Bao, Y. S., Wang, Y. S., Li, Z., et al., 2021. Accumulation Conditions for Deep Light Oil and Condensate Gas from Member 4 of Shahejie Formation in Jiyang Depression. Acta Petrolei Sinica, 42(12): 1615-1624, 1639 (in Chinese with English abstract). doi: 10.7623/syxb202112007 [3] Ciezobka, J., 2021. Overview of Hydraulic Fracturing Test Site 2 in the Permian Delaware Basin (HFTS-2). In: The 9th Unconventional Resources Technology Conference. American Association of Petroleum Geologists, Houston. [4] Dai, C. L., Cao, M. J., Wu, Y. N., et al., 2021. Research Progress on Oil-Water-Rock Interface Interaction in Micro-Nano Porous Medium. Journal of Shenzhen University (Science and Engineering), 38(6): 551-562 (in Chinese with English abstract). doi: 10.3724/SP.J.1249.2021.06551 [5] Deglint, H., Ghanizadeh, A., DeBuhr, C., et al., 2017. Comparison of Micro- and Macro-Wettability Measurements for Unconventional Reservoirs: The Devil is in the Detail. In: The 5th Unconventional Resources Technology Conference. American Association of Petroleum Geologists, Austin. [6] Diaz, H. G., Desroches, J., Williams, R., et al., 2018. Rock Fabric Analysis Based on Borehole Image Logs: Applications to Modeling Fracture Height Growth. In: SPE International Hydraulic Fracturing Technology Conference and Exhibition. SPE, Muscat. [7] Diaz, H. G., Mohsin, L., Desroches, J., et al., 2017. Importance of Borehole Images and Dipole Sonic Data for Optimal Stimulation in a Tectonic Compressive Setting. In: Abu Dhabi International Petroleum Exhibition & Conference. SPE, Abu Dhabi. [8] Du, J. H., Hu, S. Y., Pang, Z. L., et al., 2019. The Types, Potentials and Prospects of Continental Shale Oil in China. China Petroleum Exploration, 24(5): 560-568 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2019.05.003 [9] Esmaili, S., Deng, J., Wolfram, E., et al., 2021. Understanding the Interaction between Parent and Child Using Analytical and Numerical Approaches in Permian Basin—An Operator Perspective. In: The 9th Unconventional Resources Technology Conference. American Association of Petroleum Geologists, Houston. [10] Fan, J. C., De Coninck, J., Wu, H. G., et al., 2020. Microscopic Origin of Capillary Force Balance at Contact Line. Physical Review Letters, 124(12): 125502. https://doi.org/10.1103/PhysRevLett.124.125502 [11] Fan, J. C., Yu, H., Chen, J., et al., 2017. Research Progress of Micro/Nano Mechanical Problems in Unconventional Oil and Gas Exploitation. Journal of University of Science and Technology of China, 47(2): 142-154 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-2778.2017.02.005 [12] Fragoso, A., Selvan, K., Aguilera, R., 2018. Breaking a Paradigm: Can Oil Recovery from Shales be Larger than Oil Recovery from Conventional Reservoirs? The Answer is Yes! In: SPE Canada Unconventional Resources Conference. SPE, Calgary. [13] Frank, F., Liu, C., Alpak, F. O., et al., 2018. Direct Numerical Simulation of Flow on Pore-Scale Images Using the Phase-Field Method. SPE Journal, 23(5): 1833-1850. https://doi.org/10.2118/182607-PA [14] Fu, J. H., Guo, W., Li, S. X., et al., 2021. Characteristics and Exploration Potential of Muti-Type Shale Oil in the 7th Member of Yanchang Formation, Ordos Basin. Natural Gas Geoscience, 32(12): 1749-1761 (in Chinese with English abstract). [15] Gherabati, A., Browning, J. R., Male, F., et al., 2017. Evaluating Hydrocarbon-in-Place and Recovery Factor in a Hybrid Petroleum System: Case of Bakken and Three Forks in North Dakota. In: The 5th Unconventional Resources Technology Conference. American Association of Petroleum Geologists, Austin. [16] Gherabati, S. A., Hammes, U., Male, F., et al., 2018. Assessment of Hydrocarbon in Place and Recovery Factors in the Eagle Ford Shale Play. SPE Reservoir Evaluation & Engineering, 21(2): 291-306. https://doi.org/10.2118/189982-PA [17] Gherabati, S. A., Smye, K. M., McDaid, G., et al., 2020. New Engineering and Geologic Parameters to Predict Infill Well Performance in the Wolfcamp of the Delaware Basin. In: The 8th Unconventional Resources Technology Conference. American Association of Petroleum Geologists, Tulsa. [18] Guo, X. S., Zhao, Y. Q., Zhang, W. T., et al., 2021. Accumulation Conditions and Controlling Factors for the Enrichment of Shale Oil and Gas in the Jurassic Qianfoya Formation, Yuanba Area, Sichuan Basin. Petroleum Geology & Experiment, 43(5): 749-757 (in Chinese with English abstract). [19] Gupta, I., Rai, C., Devegowda, D., et al., 2020. A Data-Driven Approach to Detect and Quantify the Impact of Frac-Hits on Parent and Child Wells in Unconventional Formations. In: The 8th Unconventional Resources Technology Conference. American Association of Petroleum Geologists, Tulsa. [20] He, W. Y., Meng, Q., Feng, Z. H., et al., 2022. In-Situ Accumulation Theory and Exploration & Development Practice of Gulong Shale Oil in Songliao Basin. Acta Petrolei Sinica, 43(1): 1-14 (in Chinese with English abstract). doi: 10.1038/s41401-021-00641-4 [21] Hu, D. F., Wei, Z. H., Liu, R. B., et al., 2021. Enrichment Control Factors and Exploration Potential of Lacustrine Shale Oil and Gas: A Case Study of Jurassic in the Fuling Area of the Sichuan Basin. Natural Gas Industry, 41(8): 113-120 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2021.08.011 [22] Hu, S. Y., Zhao, W. Z., Hou, L. H., et al., 2020. Development Potential and Technical Strategy of Continental Shale Oil in China. Petroleum Exploration and Development, 47(4): 819-828 (in Chinese with English abstract). [23] Hu, W. R., 2017. Geology-Engineering Integration—A Necessary Way to Realize Profitable Exploration and Development of Complex Reservoirs. China Petroleum Exploration, 22(1): 1-5 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2017.01.001 [24] Huckabee, P., Ugueto, G., Haustveit, K., et al., 2022. Completions and Stimulation Experimental Design, Execution, Analysis & Application for the Permian Delaware Basin Hydraulic Fracture Test Site 2. In: SPE Hydraulic Fracturing Technology Conference and Exhibition. SPE, The Woodlands. [25] Jacobs, T., 2017. Oil and Gas Producers Find Frac Hits in Shale Wells: A Major Challenge. Journal of Petroleum Technology, 69(4): 29-34. https://doi.org/10.2118/0417-0029-jpt [26] Jacobs, T., 2021. What is Really Happening When Parent and Child Wells Interact? Journal of Petroleum Technology, 73(11): 28-31. https://doi.org/10.2118/1121-0028-jpt [27] Jia, C. Z., 2020. Development Challenges and Future Scientific and Technological Researches in China's Petroleum Industry Upstream. Acta Petrolei Sinica, 41(12): 1445-1464 (in Chinese with English abstract). doi: 10.7623/syxb202012001 [28] Jia, C. Z., Pang, X. Q., Song, Y, 2021. The Mechanism of Unconventional Hydrocarbon Formation: Hydrocarbon Self-Containment and Intermolecular Forces. Petroleum Exploration and Development, 48(3): 437-452 (in Chinese with English abstract). [29] Jiao, F. Z., 2021. Theoretical Technologies and Practices Concerning "Volume Development" of Low Pressure Continental Shale Oil: Case Study of Shale Oil in Chang 7 Member, Ordos Basin, China. Natural Gas Geoscience, 32(6): 836-844 (in Chinese with English abstract). [30] Jiao, F. Z., Zou, C. N., Yang, Z., 2020. Geological Theory and Exploration & Development Practice of Hydrocarbon Accumulation inside Continental Source Kitchens. Petroleum Exploration and Development, 47(6): 1067-1078 (in Chinese with English abstract). [31] Jin, Z. J., Bai, Z. R., Gao, B., et al., 2019. Has China Ushered in the Shale Oil and Gas Revolution? Oil & Gas Geology, 40(3): 451-458 (in Chinese with English abstract). [32] Jin, Z. J., Wang, G. P., Liu, G. X., et al., 2021a. Research Progress and Key Scientific Issues of Continental Shale Oil in China. Acta Petrolei Sinica, 42(7): 821-835 (in Chinese with English abstract). [33] Jin, Z. J., Zhu, R. K., Liang, X. P., et al., 2021b. Several Issues Worthy of Attention in Current Lacustrine Shale Oil Exploration and Development. Petroleum Exploration and Development, 48(6): 1276-1287 (in Chinese with English abstract). [34] Koroteev, D., Dinariev, O., Evseev, N., et al., 2014. Direct Hydrodynamic Simulation of Multiphase Flow in Porous Rock. Petrophysics, 55(4): 294-303. http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=3&SID=W2yB4RJoGnhXQPiUTNZ&page=1&doc=1 [35] Krishnamurthy, J., Srinivasan, K., Layton, N., et al., 2019. Frac Hits: Good or Bad? A Comprehensive Study in the Bakken. In: SPE Annual Technical Conference and Exhibition. SPE, Calgary. [36] Li, G. X., Luo, K., Shi, D. Q., 2020a. Key Technologies, Engineering Management and Important Suggestions of Shale Oil/Gas Development: Case Study of a Duvernay Shale Project in Western Canada Sedimentary Basin. Petroleum Exploration and Development, 47(4): 739-749 (in Chinese with English abstract). [37] Li, G. X., Qin, J. H., Xian, C. G., et al., 2020b. Theoretical Understandings, Key Technologies and Practices of Tight Conglomerate Oilfield Efficient Development: A Case Study of the Mahu Oilfield, Junggar Basin, NW China. Petroleum Exploration and Development, 47(6): 1185-1197 (in Chinese with English abstract). [38] Li, G. X., Zhu, R. K., 2020. Progress, Challenges and Key Issues of Unconventional Oil and Gas Development of CNPC. China Petroleum Exploration, 25(2): 1-13 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2020.02.001 [39] Li, G. X., Zhu, R. K., Zhang, Y. S., et al., 2022. Geological Characteristics, Evaluation Criteria and Discovery Significance of Paleogene Yingxiongling Shale Oil in Qaidam Basin, NW China. Petroleum Exploration and Development, 49(1): 18-31 (in Chinese with English abstract). [40] Liu, H., Kuang, L. C., Li, G. X., et al., 2020. Considerations and Suggestions on Optimizing Completion Methods of Continental Shale Oil in China. Acta Petrolei Sinica, 41(4): 489-496 (in Chinese with English abstract). [41] Liu, H. M., 2022. Exploration Practice and Prospect of Shale Oil in Jiyang Depression. China Petroleum Exploration, 27(1): 73-87 (in Chinese with English abstract). [42] Liu, Y. W., Gao, D. P., Li, Q., et al., 2019. Mechanical Frontiers in Shale-Gas Development. Advances in Mechanics, 49(0): 1-236 (in Chinese with English abstract). [43] Lu, H. D., Anifowosh, O., Xu, L. L, 2018. Understanding the Impact of Production Slugging Behavior on Near-Wellbore Hydraulic Fracture and Formation Integrity. In: SPE International Conference and Exhibition on Formation Damage Control. SPE, Lafayette. [44] MacDonald, R. M., Geetan, S. I., Klemin, D., et al., 2018. Flow Behavior from Organic and Mineral-Hosted Porosity Systems—From Pores to Production. In: The 6th Unconventional Resources Technology Conference. American Association of Petroleum Geologists, Houston. [45] Maity, D., Ciezobka, J., 2019. An Interpretation of Proppant Transport within the Stimulated Rock Volume at the Hydraulic-Fracturing Test Site in the Permian Basin. SPE Reservoir Evaluation & Engineering, 22(2): 477-491. https://doi.org/10.2118/194496-PA [46] Michael, A., Gupta, I., 2021. A Semianalytical Modeling Approach for Hydraulic Fracture Initiation and Orientation from Perforated Wells. SPE Production & Operations, 36(3): 501-515. https://doi.org/10.2118/204480-PA [47] Mukherjee, S., Dang, S. T., Rai, C., et al., 2020. Revisiting the Concept of Wettability for Organic-Rich Tight Rocks: Application in Formation Damage-Water Blockage. Petrophysics, 61(5): 473-481. https://doi.org/10.30632/pjv61n5-2020a5 [48] Mullins, O. C., Dumont, H., Forsythe, J. C., et al., 2018. Asphaltene Gradients and Connectivity Analysis in Reservoirs, Asphaltene onset Pressure, Bitumen and Tar Mats all Treated within a Simple, Unified Chemistry Treatment. In: SPE Annual Technical Conference and Exhibition. SPE, Dallas. [49] Mullins, O. C., Zuo, J. Y., Pomerantz, A. E., et al., 2017. Reservoir Fluid Geodynamics: The Chemistry and Physics of Oilfield Reservoir Fluids after Trap Filling. Energy & Fuels, 31(12): 13088-13119. https://doi.org/10.1021/acs.energyfuels.7b02945 [50] Pomerantz, A. E., Wu, Q. H., Mullins, O. C., et al., 2015. Laser-Based Mass Spectrometric Assessment of Asphaltene Molecular Weight, Molecular Architecture, and Nanoaggregate Number. Energy & Fuels, 29(5): 2833-2842. https://doi.org/10.1021/ef5020764 [51] Potapenko, D. I., Williams, R. D., Desroches, J., et al., 2017. Securing Long-Term Well Productivity of Horizontal Wells through Optimization of Postfracturing Operations. In: SPE Annual Technical Conference and Exhibition. SPE, San Antonio. [52] Pudugramam, V. S., Zhao, Y., Bessa, F., et al., 2021. Analysis and Integration of the Hydraulic Fracturing Test Site-2 (HFTS-2) Comprehensive Dataset. In: The 9th Unconventional Resources Technology Conference. American Association of Petroleum Geologists, Houston. [53] Qin, Z. Q., Barsotti, E., Piri, M., 2021. Sub-Nanometer Scale Investigation of in Situ Wettability Using Environmental Transmission Electron Microscopy. Journal of Colloid and Interface Science, 593: 266-275. https://doi.org/10.1016/j.jcis.2021.02.075 [54] Ravi, V. R., Ali, S., Dash, T., et al., 2020. Water Saturation in Unconventionals: Myth Busted. In: The 8th Unconventional Resources Technology Conference. American Association of Petroleum Geologists, Tulsa. [55] Schuler, B., Meyer, G., Peña, D., et al., 2015. Unraveling the Molecular Structures of Asphaltenes by Atomic Force Microscopy. Journal of the American Chemical Society, 137(31): 9870-9876. https://doi.org/10.1021/jacs.5b04056 [56] Sochovka, J., George, K., Melcher, H., et al., 2021. Reducing the Placement Cost of a Pound of Proppant Delivered Downhole. In: SPE Hydraulic Fracturing Technology Conference and Exhibition. SPE, Virtual. [57] Sun, L. D., Liu, H., He, W. Y., et al., 2021. An Analysis of Major Scientific Problems and Research Paths of Gulong Shale Oil in Daqing Oilfield, NE China. Petroleum Exploration and Development, 48(3): 453-463 (in Chinese with English abstract). [58] Tang, H. J., Yang, L. H., Zhu, F., et al., 2018. Molecular Size and Structure Characteristics of Tight Oil of Lucaogou Formation in Jimusar Depression. Earth Science, 43(5): 1587-1593 (in Chinese with English abstract). [59] Uhlig, M. R., Garcia, R., 2021. In Situ Atomic-Scale Imaging of Interfacial Water under 3D Nanoscale Confinement. Nano Letters, 21(13): 5593-5598. https://doi.org/10.1021/acs.nanolett.1c01092 [60] Wang, L. S., Ye, Y. P., Qin, J. H., et al., 2022. Microscopic Pore Structure Characterization and Oil-Bearing Property Evaluation of Lacustrine Shale Reservoir: A Case Study of the Permian Lucaogou Formation in Jimsar Sag, Junggar Basin. Oil & Gas Geology, 43(1): 149-160 (in Chinese with English abstract). [61] Wang, X. H., Zhang, F. S., Tang, M. R., et al., 2022. Effect of Stress Shadow Caused by Multistage Fracturing from Multiple Well Pads on Fracture Initiation and Near-Wellbore Propagation from Infill Wells. SPE Journal, 27(1): 204-225. https://doi.org/10.2118/208577-PA [62] Weng, X., Xu, L., Magbagbeola, O., et al., 2018. Analytical Model for Predicting Fracture Initiation Pressure from a Cased and Perforated Wellbore. In: SPE International Hydraulic Fracturing Technology Conference and Exhibition. SPE, Muscat. [63] Wu, Q., Liang, X., Xian, C. G., et al., 2015. Geoscience- to-Production Integration Ensures Effective and Efficient South China Marine Shale Gas Development. China Petroleum Exploration, 20(4): 1-23 (in Chinese with English abstract). [64] Yang, Q., Sun, P. Z., Fumagalli, L., et al., 2020. Capillary Condensation under Atomic-Scale Confinement. Nature, 588(7837): 250-253. https://doi.org/10.1038/s41586-020-2978-1 [65] Zhang, B. W., Zhang, J. H., Feng, Z. H., et al., 2021. Geological Conditions and Resource Potential for the Formation of Light Crude Oil from Gulong Shale in Qingshankou Formation, Songliao Basin. Acta Petrolei Sinica, 42(12): 1625-1639 (in Chinese with English abstract). [66] Zhang, K. Y., Du, F. S., Nojabaei, B., 2019. Effect of Pore Size Heterogeneity on Hydrocarbon Fluid Distribution and Transport in Nanometer-Sized Porous Media. In: SPE Eastern Regional Meeting. SPE, Charleston. [67] Zhao, W. Z., Hu, S. Y., Hou, L. H., et al., 2020. Types and Resource Potential of Continental Shale Oil in China and Its Boundary with Tight Oil. Petroleum Exploration and Development, 47(1): 1-10 (in Chinese with English abstract). [68] Zhao, X. Z., Pu, X. G., Zhou, L. H., et al., 2021. Enrichment Theory, Exploration Technology and Prospects of Shale Oil in Lacustrine Facies Zone of Deep Basin: A Case Study of the Paleogene in Huanghua Depression, Bohai Bay Basin. Acta Petrolei Sinica, 42(2): 143-162 (in Chinese with English abstract). [69] Zhou, L. H., Chen, C. W., Han, G. M., et al., 2021. Difference Characteristics between Continental Shale Oil and Tight Oil and Exploration Practice: A Case from Huanghua Depression, Bohai Bay Basin. Earth Science, 46(2): 555-571 (in Chinese with English abstract). [70] Zhou, X. H., Chen, D. X., Xia, Y. X., et al., 2022. Spontaneous Imbibition Characteristics and Influencing Factors of Chang 7 Shale Oil Reservoirs in Longdong Area, Ordos Basin. Earth Science, 47(8): 3045-3055 (in Chinese with English abstract). [71] Zou, C. N., Ding, Y. H., Lu, Y. J., et al., 2017. Concept, Technology and Practice of "Man-Made Reservoirs" Development. Petroleum Exploration and Development, 44(1): 144-154 (in Chinese with English abstract). [72] 包友书, 王永诗, 李政, 等, 2021. 济阳坳陷深层沙河街组四段轻质油—凝析气成藏条件. 石油学报, 42(12): 1615-1624, 1639. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202112007.htm [73] 戴彩丽, 曹梦娇, 吴一宁, 等, 2021. 微纳孔隙油—水—岩石微观界面相互作用研究进展. 深圳大学学报(理工版), 38(6): 551-562. https://www.cnki.com.cn/Article/CJFDTOTAL-SZDL202106001.htm [74] 杜金虎, 胡素云, 庞正炼, 等, 2019. 中国陆相页岩油类型、潜力及前景. 中国石油勘探, 24(5): 560-568. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201905003.htm [75] 范竞存, 余昊, 陈杰, 等, 2017. 非常规油气开采中的微纳米力学问题研究进展. 中国科学技术大学学报, 47(2): 142-154. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJD201702005.htm [76] 付金华, 郭雯, 李士祥, 等, 2021. 鄂尔多斯盆地长7段多类型页岩油特征及勘探潜力. 天然气地球科学, 32(12): 1749-1761. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202112001.htm [77] 郭旭升, 赵永强, 张文涛, 等, 2021. 四川盆地元坝地区千佛崖组页岩油气富集特征与主控因素. 石油实验地质, 43(5): 749-757. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202105004.htm [78] 何文渊, 蒙启安, 冯子辉, 等, 2022. 松辽盆地古龙页岩油原位成藏理论认识及勘探开发实践. 石油学报, 43(1): 1-14. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202201001.htm [79] 胡东风, 魏志红, 刘若冰, 等, 2021. 湖相页岩油气富集主控因素与勘探潜力——以四川盆地涪陵地区侏罗系为例. 天然气工业, 41(8): 113-120. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG202108017.htm [80] 胡素云, 赵文智, 侯连华, 等, 2020. 中国陆相页岩油发展潜力与技术对策. 石油勘探与开发, 47(4): 819-828. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202004021.htm [81] 胡文瑞, 2017. 地质工程一体化是实现复杂油气藏效益勘探开发的必由之路. 中国石油勘探, 22(1): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201701001.htm [82] 贾承造, 2020. 中国石油工业上游发展面临的挑战与未来科技攻关方向. 石油学报, 41(12): 1445-1464. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202012001.htm [83] 贾承造, 庞雄奇, 宋岩, 2021. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力. 石油勘探与开发, 48(3): 437-452. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103001.htm [84] 焦方正, 2021. 陆相低压页岩油体积开发理论技术及实践——以鄂尔多斯盆地长7段页岩油为例. 天然气地球科学, 32(6): 836-844. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202106006.htm [85] 焦方正, 邹才能, 杨智, 2020. 陆相源内石油聚集地质理论认识及勘探开发实践. 石油勘探与开发, 47(6): 1067-1078. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006002.htm [86] 金之钧, 白振瑞, 高波, 等, 2019. 中国迎来页岩油气革命了吗? 石油与天然气地质, 40(3): 451-458. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201903002.htm [87] 金之钧, 王冠平, 刘光祥, 等, 2021a. 中国陆相页岩油研究进展与关键科学问题. 石油学报, 42(7): 821-835. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202107001.htm [88] 金之钧, 朱如凯, 梁新平, 等, 2021b. 当前陆相页岩油勘探开发值得关注的几个问题. 石油勘探与开发, 48(6): 1276-1287. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202106021.htm [89] 李国欣, 罗凯, 石德勤, 2020a. 页岩油气成功开发的关键技术、先进理念与重要启示——以加拿大都沃内项目为例. 石油勘探与开发, 47(4): 739-749. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202004012.htm [90] 李国欣, 覃建华, 鲜成钢, 等, 2020b. 致密砾岩油田高效开发理论认识、关键技术与实践——以准噶尔盆地玛湖油田为例. 石油勘探与开发, 47(6): 1185-1197. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202006013.htm [91] 李国欣, 朱如凯, 2020. 中国石油非常规油气发展现状、挑战与关注问题. 中国石油勘探, 25(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202002001.htm [92] 李国欣, 朱如凯, 张永庶, 等, 2022. 柴达木盆地英雄岭页岩油地质特征、评价标准及发现意义. 石油勘探与开发, 49(1): 18-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202201002.htm [93] 刘合, 匡立春, 李国欣, 等, 2020. 中国陆相页岩油完井方式优选的思考与建议. 石油学报, 41(4): 489-496. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004013.htm [94] 刘惠民, 2022. 济阳坳陷页岩油勘探实践与前景展望. 中国石油勘探, 27(1): 73-87. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202201007.htm [95] 刘曰武, 高大鹏, 李奇, 等, 2019. 页岩气开采中的若干力学前沿问题. 力学进展, 49: 1-236. https://www.cnki.com.cn/Article/CJFDTOTAL-LXJZ201900001.htm [96] 孙龙德, 刘合, 何文渊, 等, 2021. 大庆古龙页岩油重大科学问题与研究路径探析. 石油勘探与开发, 48(3): 453-463. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103002.htm [97] 唐红娇, 杨立辉, 朱峰, 等, 2018. 吉木萨尔凹陷芦草沟组致密油分子尺寸及结构特征. 地球科学, 43(5): 1587-1593. doi: 10.3799/dqkx.2017.560 [98] 王林生, 叶义平, 覃建华, 等, 2022. 陆相页岩油储层微观孔喉结构表征与含油性分级评价——以准噶尔盆地吉木萨尔凹陷二叠系芦草沟组为例. 石油与天然气地质, 43(1): 149-160. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202201011.htm [99] 吴奇, 梁兴, 鲜成钢, 等, 2015. 地质—工程一体化高效开发中国南方海相页岩气. 中国石油勘探, 20(4): 1-23. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201504001.htm [100] 张博为, 张居和, 冯子辉, 等, 2021. 松辽盆地青山口组古龙页岩轻质原油形成地质条件与资源潜力. 石油学报, 42(12): 1625-1639. [101] 赵文智, 胡素云, 侯连华, 等, 2020. 中国陆相页岩油类型、资源潜力及与致密油的边界. 石油勘探与开发, 47(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202001002.htm [102] 赵贤正, 蒲秀刚, 周立宏, 等, 2021. 深盆湖相区页岩油富集理论、勘探技术及前景——以渤海湾盆地黄骅坳陷古近系为例. 石油学报, 42(2): 143-162. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202102001.htm [103] 周立宏, 陈长伟, 韩国猛, 等, 2021. 陆相致密油与页岩油藏特征差异性及勘探实践意义: 以渤海湾盆地黄骅坳陷为例. 地球科学, 46(2): 555-571. doi: 10.3799/dqkx.2020.081 [104] 周小航, 陈冬霞, 夏宇轩, 等, 2022. 鄂尔多斯盆地陇东地区长7段页岩油储层自发渗吸特征及影响因素. 地球科学, 47(8): 3045-3055. doi: 10.3799/dqkx.2022.208 [105] 邹才能, 丁云宏, 卢拥军, 等, 2017. "人工油气藏"理论、技术及实践. 石油勘探与开发, 44(1): 144-154. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701019.htm