• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    综合物探技术在河套盆地深层油气勘探中的先导性应用:以临河坳陷为例

    索孝东 张锐锋 石东阳 杨俊 杨战军 张宇飞 李燕丽 王泽丹

    索孝东, 张锐锋, 石东阳, 杨俊, 杨战军, 张宇飞, 李燕丽, 王泽丹, 2023. 综合物探技术在河套盆地深层油气勘探中的先导性应用:以临河坳陷为例. 地球科学, 48(2): 749-763. doi: 10.3799/dqkx.2022.465
    引用本文: 索孝东, 张锐锋, 石东阳, 杨俊, 杨战军, 张宇飞, 李燕丽, 王泽丹, 2023. 综合物探技术在河套盆地深层油气勘探中的先导性应用:以临河坳陷为例. 地球科学, 48(2): 749-763. doi: 10.3799/dqkx.2022.465
    Suo Xiaodong, Zhang Ruifeng, Shi Dongyang, Yang Jun, Yang Zhanjun, Zhang Yufei, Li Yanli, Wang Zedan, 2023. Application of Comprehensive Geophysical Prospecting Technology in Deep Oil and Gas Exploration in Hetao Basin: Taking Linhe Depression as an Example. Earth Science, 48(2): 749-763. doi: 10.3799/dqkx.2022.465
    Citation: Suo Xiaodong, Zhang Ruifeng, Shi Dongyang, Yang Jun, Yang Zhanjun, Zhang Yufei, Li Yanli, Wang Zedan, 2023. Application of Comprehensive Geophysical Prospecting Technology in Deep Oil and Gas Exploration in Hetao Basin: Taking Linhe Depression as an Example. Earth Science, 48(2): 749-763. doi: 10.3799/dqkx.2022.465

    综合物探技术在河套盆地深层油气勘探中的先导性应用:以临河坳陷为例

    doi: 10.3799/dqkx.2022.465
    基金项目: 

    中国石油集团公司课题:物探采集处理解释关键技术研究——复杂区深层及火成岩重磁电震一体化关键技术研究 2021DJ3706

    详细信息
      作者简介:

      索孝东(1965-),男,高级工程师,博士,主要从事重磁电及化探资料处理与综合地质解释. ORCID:0000-0001-8625-5351. E-mail:suoxd@sina.com

    • 中图分类号: P618.4

    Application of Comprehensive Geophysical Prospecting Technology in Deep Oil and Gas Exploration in Hetao Basin: Taking Linhe Depression as an Example

    • 摘要: 河套盆地勘探程度低,有利勘探层系埋藏深,40余年未获突破,为实现河套盆地油气勘探快速突破,整体开展了高精度重磁和时频电磁勘探工作. 针对盆地主力生烃区不清、构造难以厘定的问题,应用基于有限井震资料松约束多界面反演、基底背景密度法正演剥层为核心的深层目标重力异常提取技术,对临河坳陷的地质结构重新进行了认识,快速圈定了主力生烃凹陷分布,指出坳陷北部巴彦淖尔凹陷的淖西深洼槽为最有利的生烃区,新发现黄河断陷槽及淖西深洼槽周缘分布的中央兴隆断垒式潜山披覆构造带、吉西凸起东翼鼻状潜山披覆构造带等近源油气有利勘探目标,引导了地震针对性快速高效部署和钻探. 针对成藏目标不清、突破井位难以落实的问题,提出并应用了基于井震模拟目标层靶向采集、电磁井震联合约束反演等提高深层勘探分辨率及油气储层预测精度的时频电磁勘探配套技术,快速锁定了JHZK2井、吉华2x及临华1x等有利目标靶区,为河套盆地油气勘探高效突破发挥了关键先导性作用,为类似复杂区特别是盆地深层油气勘探提供了成功范例与技术方法.

       

    • 图  1  河套盆地构造单元分布图

      Fig.  1.  Structural unit division map of Hetao Basin

      图  2  临河坳陷北部三维重力多界面反演技术流程图

      Fig.  2.  Flow chart of 3D gravity multi⁃interface inversion technique in northern Linhe Depression

      图  3  临河坳陷北部重力多界面反演拟合残差等值线分布图

      Fig.  3.  The Distribution map of residual contours fitted by gravity multi⁃interface inversion in the northern Linhe Depression

      图  4  不同剥层方法重力异常与深层目标层相关关系模型论证

      地层符号:Ar为太古界、K为白垩系、E为古近系、N为新近系

      Fig.  4.  Model demonstration diagram of the relationship between gravity anomaly and deep target layer of different peeling methods

      图  5  临河坳陷北部白垩系剥层剩余重力异常(a)与厚度分布图(b)

      Fig.  5.  The stripping residual gravity anomaly (a) and thickness distribution (b) of the Cretaceous in the northern Linhe Depression

      图  6  时频电磁深部目标层靶向加密采集效果

      Fig.  6.  Effect of time⁃frequency electromagnetic targeted encryption acquisition of deep target layer

      图  7  时频电磁OCCAM自由反演(a)与井震联合约束反演(b)效果对比

      红色曲线为电测井曲线

      Fig.  7.  Comparison of the effects of time⁃frequency electromagnetic OCCAM free inversion (top) and well⁃seismic joint constrained inversion (bottom)

      图  8  临河坳陷地质结构图

      Fig.  8.  Structural unit division map of Linhe Depression

      图  9  河坳陷北部局部重力异常及潜山构造带分布

      Fig.  9.  Local gravity anomalies and buried hill structural belt distribution in the northern Linhe Depression

      图  10  西凸起及周缘重力-时频电磁油气综合预测图

      地层符号:Ar为太古界、K为白垩系、E为古近系、N为新近系、Q为第四系

      Fig.  10.  The ravity⁃time frequency electromagnetic comprehensive prediction map of oil and gas in Jixi high and its periphery

      图  11  隆构造带临华1X-兴华1井时频电磁综合油气预测图

      地层符号:Ar为太古界、K为白垩系、E为古近系、N为新近系、Q为第四系

      Fig.  11.  Time⁃frequency electromagnetic comprehensive oil and gas prediction map of well Linhua 1X⁃Xinghua 1 in Xinglong structural belt

    • [1] Chen, C., Xu, S. F., Wang, G. C., et al., 2021. Comprehensive Geophysical Survey and Practice in Geological Investigation of Gobi Desert Covered Area. Earth Science, 46(8): 3028-3038(in Chinese with English abstract).
      [2] Du, W., Dong, J. S., Chen, X. Z., et al., 2022. Calculation of Curie Depth in Qinghai Province Based on an Improved Parker-Oldenburg Interface Inversion Method. Chinese Journal of Geophysics, 65(3): 1096-1106(in Chinese with English abstract).
      [3] Du, X. Y., Ding, W. L., Jiao, B., C., et al., 2019. Fluid Potential and Hydrocarbon Migration-Accumulation Unit Classification in Linhe Depression of Hetao Basin. Special Oil & Gas Reservoirs, 26(4): 9-14(in Chinese with English abstract).
      [4] Feng, J., Meng, X. H., Chen, Z. X., et al., 2014. The Investigation and Application of Three-Dimensional Density Interface. Journal of Geophysics, 57(1): 287-294(in Chinese with English abstract).
      [5] Fu, S. T., Fu, J. H., Yu, J., et al., 2018. Petroleum Geological Features and Exploration Prospect of Linhe Depression in Hetao Basin, China. Petroleum Exploration and Development, 45(5): 749-762(in Chinese with English abstract).
      [6] Gu, W. B., Chen, Q. L., Wang, Y. Q., et al., 2016. Part-Constrained 3D Gravity Inversion for the Hubabei Buried Hill in Raoyang Sag. Oil Geophysical Prospecting, 51(6): 1219-1226(in Chinese with English abstract).
      [7] Guo, Z. M., Yu, Z. P., 1990. Structural Characteristics, Mechanism of Evolution and Petroleum Prospecting of Hetao Graben System. Petroleum Exploration and Development, 17(3): 11-20(in Chinese with English abstract).
      [8] Han, B., Zhang, F. F., Tian, Z. X., 2020. Inversion of Density Interface with Parker Variable Technology in Bohai Region by Gravity Data. High Tech Communications, 30(6): 637-643(in Chinese with English abstract).
      [9] He, Z. X., Yang, G. S., Chen, S. Q., et al., 2019. Time-Frequency Electromagnetic(TFEM) Method: Data Acquisition Design. Oil Geophysical Prospecting, 54(4): 908-914(in Chinese with English abstract).
      [10] He, Z. X., Hu, Z. Z., Wang, Z. G., et al., 2020. Time-Frequency Electromagnetic(TFEM) Technique: Step-by-Step Constraint Inversion Based on Artificial Fish Swarm Algorithm. Oil Geophysical Prospecting, 55(4): 898-905(in Chinese with English abstract).
      [11] Liu, F., Wang, W. Y., Ji, X. L., 2019. Influence Factors and Stability Analysis of Plane Potential Field Continuation in Space and Frequency Domains. Geophysical and Geochemical Exploration, 43(2): 320-328(in Chinese with English abstract).
      [12] Luo, L. R., Li, J. F., Zhao, Z. L., et al., 2019. Cenozoic Oil-Source Correlation and Exploration Significance in Linhe Depression, the Hetao Basin. China Petroleum Exploration, 24(3): 323-330(in Chinese with English abstract).
      [13] Men, X. Y., Zhao, W. Z., Zhang, Y., et al., 2006. Characteristics of High-Resolution Sequence Stratigraphy of Lower Shihezi Formation in Sulige Gas Field, Ordos Basin. Natural Gas Industry, 26(1): 20-22(in Chinese with English abstract).
      [14] Sun, L. Y., Pu, R. H., Ma, Z. R., et al., 2018. Source Rock Distribution and Exploration Prospect of Jilantai Sag in Hetao Basin, China. Journal of Earth Science and Environment, 40(5): 612-626(in Chinese with English abstract).
      [15] Suo, X. D., Dong, W. B., Shi, D. Y., et al., 2021. Inversion of Time-Frequency Electromagnetic Well Seismic Modeling to Probe the Inner Structure of Deep Volcanic Reservoir: A Case Study of LD Area in Bohai Bay Basin. Bulletin of Geological Science and Technology, 40(5): 1-10(in Chinese with English abstract).
      [16] Wang, W. Y., Pan, Z. Q., 1993. Fast Solution of Forward and Inverse Problems for Gravity Field in a Dual Interface Model. Geophysical Prospecting for Petroleum, 32(2): 81-122(in Chinese with English abstract).
      [17] Wang, Z. G., He, Z. X., Qin, J. C., et al., 2015. New Progress and Application Effect of Time-Frequency Electromagnetic Technology. Oil Geophysical Prospecting, 51(S): 144-151(in Chinese with English abstract).
      [18] Xiao, P. F., Chen, S. C., Meng, L. S., et al., 2007. The Density Interface Inversion of High-Precision Gravity Data. Geophysical and Geochemical Exploration, 31(1): 29-33(in Chinese with English abstract).
      [19] Yan, L. J., Hu, W. B., Yao, C. L., 2006. Filtering Enhancement of Gravity and Magnetic Data in the Dense Ladder-Like Zone. Progress in Exploration Geophysics, 29(2): 102-103(in Chinese with English abstract).
      [20] Zhao, C. Y., Guo, Z. M., Hui, B. Y., 1984. Hetao Actuate Tectonic System and Their Mechanism of Formation and Evolution. Oil & Gas Geology, 5(4): 349-361(in Chinese with English abstract).
      [21] Zhang, H. Z., 2015. Research of Hydrocarbon Accumulation Conditions in Linhe Depression of Hetao Basin(Dissertation). Xi'an Shiyou University, Xi'an(in Chinese).
      [22] Zhao, M. W., 1988. Charaeteristics of the Fault Activity in Hetao Basin and Its Relation with Oi1 and Gas. Journal of Northwest University: Natural Sciences, 18(2): 85-94(in Chinese with English abstract).
      [23] Zhang, R. F., He, H. Q., Chen, S. G., et al., 2020. New Understandings of Petroleum Geology and Great Discovery in the Linhe Depression Hetao Basin. China Petroleum Exploration, 25(6): 1-12(in Chinese with English abstract).
      [24] Zhang, Y. M., Zhang, R. F., Wang, S. C., et al., 2018. Practice and Understanding of Great Discovery in Oil and Gas Exploration in Linhe Depression of Hetao Basin. China Petroleum Exploration, 23(5): 1-11(in Chinese with English abstract).
      [25] Zhang, Y. Q., Teng, J. W., Wang, Q. S., et al., 2013. Crustal Structure and the Geodynamic Process Beneath the Hetao Basin and Adjacent Area. Progress in Geophysics, 28(5): 2264-2272(in Chinese with English abstract).
      [26] Zhang, Z. Y., H, X. Y., Wang, D. Y., et al., 2021. Geophysical Field Characteristics of Dongyang Region, Fujian Province. Earth Science, 46(10): 3717-3729(in Chinese with English abstract).
      [27] 陈超, 许顺芳, 王国灿, 等, 2021. 戈壁荒漠覆盖区地质调查中综合地球物理方法与实践. 地球科学, 46(8): 3028-3038. doi: 10.3799/dqkx.2020.386
      [28] 杜威, 董金生, 陈祥忠, 等, 2002. 基于改进Parker-Oldenburg界面反演方法计算青海省居里面深度. 地球物理学报, 65(3): 1096-1106. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202203023.htm
      [29] 杜晓宇, 丁文龙, 焦保程, 等, 2019. 河套盆地临河坳陷流体势特征及油气运聚单元划分. 特种油气藏, 26(4): 9-14. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201904002.htm
      [30] 冯娟, 孟小红, 陈召曦, 等, 2014. 三维密度界面的正反演研究和应用. 地球物理学报, 57(1): 287-294. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201401024.htm
      [31] 付锁堂, 付金华, 喻建, 等, 2018. 河套盆地临河坳陷石油地质特征及勘探前景. 石油勘探与开发, 45(5): 749-762. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805002.htm
      [32] 谷文彬, 陈清礼, 王余泉, 等, 2016. 饶阳凹陷虎8北潜山重力三维松约束反演. 石油地球物理勘探, 51(6): 1219-1226. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201606023.htm
      [33] 郭忠铭, 于忠平, 1990. 河套弧形地堑系构造特征和演化机制及其油气勘探. 石油勘探与开发, 17(3): 11-20. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK199003002.htm
      [34] 韩波, 张菲菲, 田振兴, 2020. 利用Parker变密度多层界面快速反演技术反演渤海地区密度界面. 高技术通讯, 30(6): 637-643. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSX202006012.htm
      [35] 何展翔, 杨国世, 陈思琪, 等, 2019. 时频电磁(TFEM)技术: 数据采集参数设计. 石油地球物理勘探, 54(4): 908-914. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201904023.htm
      [36] 何展翔, 胡祖志, 王志刚, 等, 2020. 时频电磁(TFEM)技术: 数据联合约束反演. 石油地球物理勘探, 55(4): 898-905. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202004022.htm
      [37] 刘芬, 王万银, 纪晓琳, 2019. 空间域和频率域平面位场延拓影响因素和稳定性分析. 物探与化探, 43(2): 320-328. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH201902011.htm
      [38] 罗丽荣, 李剑锋, 赵占良, 等, 2019. 河套盆地临河坳陷新生界油源对比及其勘探意义. 中国石油勘探, 24(3): 323-330. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201903005.htm
      [39] 门相勇, 赵文智, 张研, 等, 2006. 河套盆地临河坳陷石油地质特征. 天然气工业, 26(1): 20-22. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG200601006.htm
      [40] 孙六一, 蒲仁海, 马占荣, 等, 2018. 河套盆地吉兰泰凹陷烃源岩展布与勘探潜力. 地球科学与环境学报, 40(5): 612-626. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGX201805010.htm
      [41] 索孝东, 董卫斌, 石东阳, 等, 2021. 时频电磁井震联合建模反演探测深部火山岩储层内幕结构: 渤海湾盆地LD地区实例研究. 地质科技通报, 40(5): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ202105002.htm
      [42] 王万银, 潘作枢, 1993. 双界面模型重力场快速正反演问题. 石油物探, 32(2): 81-122. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT199302008.htm
      [43] 王志刚, 何展翔, 覃荆城, 等, 2016. 时频电磁技术的新进展及应用效果. 石油地球物理勘探, 51(增刊): 144-151. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2016S1024.htm
      [44] 肖鹏飞, 陈生昌, 孟令顺, 等, 2007. 高精度重力资料的密度界面反演. 物探与化探, 31(1): 29-33. https://www.cnki.com.cn/Article/CJFDTOTAL-WTYH200701006.htm
      [45] 严良俊, 胡文宝, 姚长利, 2006. 重磁资料面积处理中的滤波增强技术与应用. 勘探地球物理进展, 29(2): 102-103. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ200602006.htm
      [46] 赵重远, 郭忠铭, 惠斌耀, 等, 1984. 河套弧形构造体系及其形成和演化机制. 石油与天然气地质, 5(4): 349-361. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT198404006.htm
      [47] 张昊祉, 2015. 河套盆地临河坳陷油气成藏地质条件分析(博士学位论文). 西安: 西安石油大学.
      [48] 赵孟为, 1988. 河套盆地断裂活动的特征及其与油气的关系. 西北大学学报: 自然科学版, 18(2): 85-94. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDZ198802018.htm
      [49] 张锐锋, 何海清, 陈树光, 等, 2020. 河套盆地临河坳陷石油地质新认识与重大发现. 中国石油勘探, 25(6): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202006001.htm
      [50] 张以明, 张锐锋, 王少春, 等, 2018. 河套盆地临河坳陷油气勘探重要发现的实践与认识. 中国石油勘探, 23(5): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201805001.htm
      [51] 张永谦, 滕吉文, 王谦身, 等, 2013. 河套盆地及其邻近地域的地壳结构与深层动力学过程. 地球物理学进展, 28(5): 2264-2272. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201305009.htm
      [52] 张振宇, 胡祥云, 王大勇, 等, 2021. 福建东洋地区地球物理场特征. 地球科学, 46(10): 3717-3729. doi: 10.3799/dqkx.2021.058
    • 加载中
    图(11)
    计量
    • 文章访问数:  16
    • HTML全文浏览量:  29
    • PDF下载量:  2
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-12-11
    • 刊出日期:  2023-02-25

    目录

      /

      返回文章
      返回