The Sedimentary System and Hydrocarbon Potential of Upper Cretaceous Donga Formation, East Niger Basin Group
-
摘要: 东尼日尔盆地群属于西非裂谷系.基于地震、钻井、井壁取心和地球化学分析数据等资料,针对下组合新层系Donga组,从沉积体系分析入手,探讨其成藏组合和勘探潜力.Donga组为晚白垩世海侵背景下发育的一套正旋回沉积层序,下粗-中上部细,顶部发育薄层碳酸盐岩.该层序在东尼日尔盆地群跨多个盆地广泛发育和连续沉积,预示着晚白垩世盆地群形成了暂时统一盆地.海侵事件显著影响了晚白垩世的沉积体系,控制了其含油气系统发育和油气成藏.Donga组广泛沉积的泥岩为有效烃源岩和盖层.Donga组主要发育侧向对接供烃“上生下储”和“自生自储”成藏模式.储层是Donga组成藏主控因素,盆地群埋藏适中、近物源的北部和东南部边缘相带储层发育,具备较好勘探潜力.Abstract: The East Niger basin group belongs to the West African Rift System. Based on seismic, drilling, side wall core, and geochemical analysis data of Donga formation, this paper analyses its depositional system, play and exploration potential. Donga formation is a normal cycle sequence formed in late Cretaceous transgression, and the top is developed with thin carbonate rocks. This sequence is widely developed in the Upper Cretaceous of the East Niger Basin Group, which indicates that seawater flooded these basins during the Late Cretaceous and forms a temporarily unified basin. The transgression event significantly affected the sedimentary system of the Late Cretaceous basin and controlled its petroleum system and hydrocarbon accumulation. The widely deposited mudstone can be a good hydrocarbon source rock and cap rock. There are two plays in Donga formation, upper generation and lower reservoir, supply hydrocarbon laterally, and self⁃generated and self⁃stored. Reservoir is the control factor of Donga formation hydrocarbon accumulation, the moderate buried and near provenance area in the north and southeast margin could develop good reservoir and has good exploration potential.
-
Key words:
- Eastern Niger /
- Termit basin /
- Upper Cretaceous /
- sedimentary system /
- hydrocarbon potential /
- Donga Formation /
- petroleum geology
-
图 2 Termit盆地综合柱状图
据袁圣强等(2018)修改;海平面曲线、温度等资料据Edegbai et al.(2019)
Fig. 2. The composite histogram of Termit basin
图 3 东尼日尔盆地群典型地震剖面图(位置见图 1)
Fig. 3. Typical seismic profiles of the East Niger basin group
-
[1] Cheng, D. S., Dou, L. R., Zhang, G. Y. et al., 2020. Development Pattern of Two Types of Exceptional Cretaceous Source Rocks in the Rift Systems in West and Central Africa. Acta Geologica Sinica, 94(11): 3449-3460 (in Chinese with English abstract). [2] Dou, L. R., Yuan, S. Q., Liu, X. B., 2022. Progress and Development Countermeasures of Overseas Oil and Gas Exploration of Chinese Oil Corporations. China Petroleum Exploration, 27(2): 1-10 (in Chinese with English abstract). [3] Dou, L. R., Bai, G. S., Liu, B., et al., 2022. Sedimentary Environment of the Upper Cretaceous Yogou Formation in Termit Basin and Its Significance for High-Quality Source Rocks and Trans-Saharan Seaway. Marine and Petroleum Geology, 142: 105732. doi: 10.1016/j.marpetgeo.2022.105732 [4] Edegbai, A. J., Schwark, L., Oboh-Ikuenobe, F. E., 2019. A Review of the Latest Cenomanian to Maastrichtian Geological Evolution of Nigeria and Its Stratigraphic and Paleogeographic Implications. Journal of African Earth Sciences, 150: 823-837. https://doi.org/10.1016/j.jafrearsci.2018.10.007 [5] Genik, G. J., 1992. Regional Framework Structural and Petroleum Aspects of Rift Basins in Niger, Chad and the Central African Republic (CAR). Tectonophysics, 213(1): 169-185. https://doi.org/10.1016/0040-1951(92)90257-7 [6] Genik, G. J., 1993. Petroleum Geology of Cretaceous-Tertiary Rift Basins in Niger, Chad, and Central African Republic. AAPG Bulletin, 77(8): 1405-1434. [7] Guiraud, R., Issawi, B., Bosworth, W., 2001. Phanerozic History of Egypt and Surrounding Areas. In: Ziegler, P. A., Cavazza, W., Robertson, A. H. F., eds., Peri-Tethys Memoir 6: Peri-Tethyan Rift/Wrench Basins and Passive Margins. Mémoires du Muséum national d'Histoire naturelle de Paris, 186: 469-509 (in French). [8] Guiraud, R., Bosworth, W., Thierry, J., et al., 2005. Phanerozoic Geological Evolution of Northern and Central Africa: An Overview. Journal of African Earth Sciences, 43(1-3): 83-143. https://doi.org/10.1016/j.jafrearsci.2005.07.017 [9] Huang, X. X., Xia, B., Wan, Z. F., et al., 2008. Characteristics of Structure and Hydrocarbon Accumulation in Lake Chad Basin. Geotectonica et Metallogenia, 32(3): 326-331(in Chinese with English abstract). doi: 10.3969/j.issn.1001-1552.2008.03.009 [10] Li, M. J., Lai, H. F., Mao, F. J., et al., 2018. Geochemical Assessment of Source Rock within a Stratigraphic Geochemical Framework: Taking Termit Basin(Niger) as an Example. Earth Science, 43(10): 3603-3615(in Chinese with English abstract). [11] Liu, B., Pan, X. H., Wan, L. K., et al., 2011. Marine Transgression of the Eastern Niger Basin in the Late Cretaceous: Paleontological and Geochemical Evidences. Geoscience, 25(5): 995-1006(in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2011.05.020 [12] Liu, B., Pan, X. H., Wan, L. K., et al., 2012. Evaluation and Exploration Potential of Upper Cretaceous Marine Source Rocks in Tenere Depression, Eastern Niger Basin. Marine Origin Petroleum Geology, 17(1): 29-34(in Chinese with English abstract). [13] Liu, J. G., Zhang, G. Y., Li, Z. H., et al., 2019. Oil Charge History of Paleogene-Eocene Reservoir in the Termit Basin (Niger). Australian Journal of Earth Sciences, 66(4): 597-606. https://doi.org/10.1080/08120099.2019.1568301 [14] Lv, M. S., Xue, L. Q., Su, Y. D., et al., 2012. Rifting Controls on Sequence Stratigraphic Architecture: A Case Study in the Lower Cretaceous of Termit Basin, West African Rift System. Journal of Jilin University (Earth Science Editor), 42(3): 647-656(in Chinese with English abstract). [15] Mao, F. J., Liu, B., Liu, J. G., et al., 2019. The Reservoir Characteristics and Controlling Factors of the Upper Cretaceous Sandstones in the Termit Basin, Niger. Acta Petrologica Sinica, 35(4): 1257-1268(in Chinese with English abstract). doi: 10.18654/1000-0569/2019.04.18 [16] Mao, F. J., Liu, R. H., Liu, B., et al., 2016. Palaeogeographic Evolution of the Upper Cretaceous in Termit Basin and Its Adjacent Areas, Niger. Earth Science Frontiers, 23(3): 186-197(in Chinese with English abstract). [17] Pascal, A., Mathey, B., Alzouma, K., et al., 1993. Late Cenomanian-Early Turonian Shelf Ramp, Niger (West Africa). In: Simo, T., eds., Atlas of Cretaceous Carbonate Platforms. American Association of Petroleum Geology Memoir, 56: 145-154. [18] Tang, G., Sun, Z. H., Su, J. Q., et al., 2015. Study of Cretaceous Sequential Stratigraphy and Sedimentary System in Termit Basin of West Africa. China Petroleum Exploration, 20(4): 81-88(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2015.04.009 [19] Wan, L. K., Liu, J. G., Mao, F. J., et al., 2014. The Petroleum Geochemistry of the Termit Basin, Eastern Niger. Marine and Petroleum Geology, 51: 167-183. https://doi.org/10.1016/j.marpetgeo.2013.11.006 [20] Wan, L. K., Su, Y. D., Mao, F. J., 2012. Tectonic Evolution and Sedimentary Filling Characteristics of East Niger Basin. In: Abstracts of the 12th National Conference on Paleogeography and Sedimentology, 21(in Chinese with English abstract). [21] Wang, J. H., Pang, X., Wang, H., et al., 2022. Tide Current-Reworked Sandy Submarine Fans Deposits in the Miocene Zhujiang Formation, Baiyun Sag of Pearl River Mouth Basin. Earth Science: 1-13(in Chinese with English abstract). [22] Yuan, S. Q., Mao, F. J., Zheng, F. Y., et al., 2018. Analysis of Hydrocarbon Accumulation Condition and Exploration Tactics of the Upper Cretaceous Strata in the Termit Basin, Niger. Earth Science Frontiers, 25(2): 42-05 (in Chinese with English abstract). [23] Zhang, Q. L., Zhang, X. T., Li, H. B., et al., 2022. Large Submarine Fan System Controlled by Narrow Continental Shelf-Faulted Continental Slope in Northern South China Sea. Earth Science, 47(7): 2421-2432(in Chinese with English abstract). [24] Zhou, L. H., Su, J. Q., Dong, X. W., et al., 2017. Controlling Factors of Hydrocarbon Accumulation in Termit Rift Superimposed Basin, Niger. Petroleum Exploration and Development, 44(3): 330-339 (in Chinese with English abstract). [25] 程顶胜, 窦立荣, 张光亚, 等, 2020. 中西非裂谷盆地白垩系两类优质烃源岩发育模式. 地质学报, 94(11): 3449-3460. doi: 10.3969/j.issn.0001-5717.2020.11.018 [26] 窦立荣, 袁圣强, 刘小兵, 2022. 中国油公司海外油气勘探进展和发展对策. 中国石油勘探, 27(2): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202202001.htm [27] 黄先雄, 夏斌, 万志峰, 等, 2008. 乍得湖盆地构造特征与油气成藏规律初探. 大地构造与成矿学, 32(3): 326-331. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK200803010.htm [28] 李美俊, 赖洪飞, 毛凤军, 等, 2018. 层序地层格架下烃源岩地球化学研究: 以尼日尔Termit盆地为例. 地球科学, 43(10): 3603-3615. doi: 10.3799/dqkx.2018.223 [29] 刘邦, 潘校华, 万仑坤, 等, 2011. 东尼日尔盆地海侵的微体古生物和地球化学证据. 现代地质, 25(5): 995-1006. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201105022.htm [30] 刘邦, 潘校华, 万仑坤, 等, 2012. 东尼日尔盆地Tenere坳陷上白垩统海相烃源岩评价及勘探潜力. 海相油气地质, 17(1): 29-34. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201201007.htm [31] 吕明胜, 薛良清, 苏永地, 等, 2012. 裂谷作用对层序地层充填样式的控制-以西非裂谷系Termit盆地下白垩统为例. 吉林大学学报(地球科学版), 42(3): 647-656. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201203008.htm [32] 毛凤军, 刘若涵, 刘邦, 等, 2016. 尼日尔Termit盆地及其周缘晚白垩世古地理演化. 地学前缘, 23(3): 186-197. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201603027.htm [33] 毛凤军, 刘邦, 刘计国, 等, 2019. 尼日尔Termit盆地上白垩统储层岩石学特征及控制因素分析. 岩石学报, 35(4): 1257-1268. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201904018.htm [34] 汤戈, 孙志华, 苏俊青, 等, 2015. 西非Termit盆地白垩系层序地层与沉积体系研究. 中国石油勘探, 20(4): 81-88. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201504010.htm [35] 万仑坤, 苏永地, 毛凤军, 等, 2012. 东尼日尔盆地构造演化及沉积充填特征. 第十二届全国古地理学及沉积学学术会议论文摘要集, 21. [36] 王家豪, 庞雄, 王华, 等, 2022. 珠江口盆地白云凹陷中新统珠江组潮流改造的砂质海底扇沉积. 地球科学: 1-13. [37] 袁圣强, 毛凤军, 郑凤云, 等, 2018. 尼日尔Termit盆地上白垩统成藏条件分析与勘探策略. 地学前缘, 25(2): 42-50. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201802006.htm [38] 张青林, 张向涛, 李洪博, 等, 2022. 南海北部狭窄陆架-断裂陆坡控制的大型深水扇体系. 地球科学, 47(7): 2421-2432. doi: 10.3799/dqkx.2022.157 [39] 周立宏, 苏俊青, 董晓伟, 等, 2017. 尼日尔Termit裂谷型叠合盆地油气成藏特征与主控因素. 石油勘探与开发, 44(3): 330-339. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201703003.htm