Characteristics of Carbonate Cements in Sandstone of Shahejie Formation in Western Depression, Liaohe Basin
-
摘要:
碳酸盐胶结物中氧碳同位素组成研究是分析成岩过程中流体-岩石相互作用的重要技术方法.综合运用岩石学、矿物学和地球化学方法,对辽河盆地西部凹陷沙河街组砂岩中碳酸盐胶结物的化学组成和碳酸盐胶结物及成岩流体同位素组成特征进行系统分析.研究表明,研究区碳酸盐岩主要为方解石和白云石,胶结物主要类型为嵌晶式胶结、孔隙式胶结、斑块状胶结和星点状胶结.碳、氧稳定同位素组成能有效地反映成岩-成矿流体及其他物质的来源,碳酸盐胶结物与现今浅层地下水氧同位素组成差异巨大而与变质水同位素组成具有相似性,反映了盆地演化过程中活动热流体对成岩作用的影响.包裹体的氢、氧同位素组成可表征成矿溶液的演化特征,砂岩碳酸盐胶结物包裹体更富集氢的轻同位素和氧的重同位素,表明发生了明显的“氧-18漂移”.碳酸盐胶结的成矿溶液表现出“受热雨水”的同位素组成特征,反映了深源活动热流体对成岩作用的影响.
Abstract:The study of oxygen and carbon isotopic compositions of carbonate cements is an important technical method to analyze fluid-rock interaction during diagenesis. By means of petrology, mineralogy and geochemistry, the chemical composition and isotopic composition of carbonate cements and diagenetic fluids in sandstones of Shahejie Formation in western depression of Liaohe basin are systematically analyzed. The results show that the carbonate rocks in the study area are mainly calcite and dolomite, and the main types of cementation are inlaid cementation, pore cementation, patchy cementation and star-point cementation. The stable isotopic composition of carbon and oxygen can effectively reflect the origin of diagenetic and ore-forming fluids and other materials. The oxygen isotopic composition of carbonate cements is very different from that of shallow groundwater but similar to that of metamorphic water, which reflects the influence of active thermal fluid on diagenesis during basin evolution. The hydrogen and oxygen isotopic compositions of the inclusions can represent the evolution characteristics of the ore-forming solutions. The inclusions of the sandstone carbonate cements are enriched with light isotopes of hydrogen and heavy isotopes of oxygen, indicating the obvious "oxygen-18 drift". The carbonate cemented ore-forming solution shows the isotopic composition of "heated rain", which reflects the influence of deep active thermal fluid on diagenesis.
-
Key words:
- Liaohe basin /
- Shahejie Formation /
- carbonate cement /
- isotopic geochemistry /
- petroleum geology
-
图 7 欢喜岭上台阶砂岩中碳酸盐胶结物包裹体的氢氧同位素组成及其与不同来源水同位素组成的比较(底图据Sheppard,1977)
Fig. 7. Hydrogen and oxygen isotopic compositions of carbonate cement inclusions in sandstones from Huanxingling upper bench and their comparison with water isotopic compositions from different sources (modified Sheppard, 1977)
表 1 欢喜岭上台阶沙河街组砂岩中碳酸盐胶结物的碳氢同位素组成
Table 1. Hydrocarbon isotopic compositions of carbonate cements in sandstones of Shahejie Formation, Huanxiling upper bench
井号 深度(m) 层位 岩性 δ18O(‰) δ13C
(‰)H127 1 090.62 S3 粉砂岩 28.37 4.818 Q5 1 442.90 S4 平行层理砂岩 13.92 8.872 Q91 1 207.69 S1+2 蜂窝状砂岩 22.13 0.429 Q5 1 395.13 S4 平行层理砂岩 15.65 12.309 HG3 797.85 S1+2 粉砂岩 17.94 10.538 Q214 890.23 S3 生物碎屑砂岩 19.24 -0.355 Q91 1 748.79 S4 粉砂岩 22.35 0.298 D150 980.37 S1+2 粗砂岩 21.69 16.077 Q18 2 032.99 S4 细砂岩 11.61 7.046 Q80 2 269.13 S4 块状中砂岩 13.84 -5.313 Q91 1 686.50 S4 块状砂砾岩 17.17 10.647 D150 1 858.83 S4 水平纹理粉砂岩 15.07 1.701 Q91 1 210.75 S1+2 块状中砂岩 21.37 1.981 D150 1 859.08 S4 中砂岩 14.37 4.742 表 2 欢喜岭上台阶沙河街组砂岩中方解石沉淀时成矿热液的氢、氧同位素组成
Table 2. Hydrogen and oxygen isotopic compositions of ore-forming hydrothermal fluids during calcite precipitation in sandstones of Shahejie Formation in the upper step of Huanxingling
井号 深度(m) 层位 胶结物 δ18O$ {}_{\mathrm{C}\mathrm{a}\mathrm{C}{\mathrm{O}}_{3}} $*(‰) δ18O$ {}_{{\mathrm{H}}_{2}} $$ {}_{\mathrm{O}} $**(‰) δ18D$ {}_{{\mathrm{H}}_{2}} $$ {}_{\mathrm{O}} $(‰) H127 1 090.62 S3 贫铁方解石 23.87 8.87 -122.7 Q5 1 442.90 S4 低铁方解石 13.92 0.92 -71.7 Q91 1 207.69 S1+2 低铁方解石 22.13 7.63 -154.7 Q5 1 395.13 S4 低铁方解石 15.65 1.15 -166.3 HG3 797.85 S1+2 低铁方解石 17.94 3.54 120.7 Q214 890.23 S3 贫铁方解石 19.24 4.24 -99.4 Q18 2 032.99 S4 低铁方解石 11.61 8.61 -109.8 Q80 2 269.13 S4 低铁方解石 13.84 0.84 -65.2 Q91 1 686.50 S4 低铁方解石 17.19 4.19 -163.2 D150 1 858.83 S4 低铁方解石 15.07 2.07 -75.3 Q91 1 210.75 S1+2 低铁方解石 21.37 6.87 -134.9 D150 1 859.08 S4 低铁方解石 14.37 1.37 -100.1 注:*相当国际标准SMOW之值,**包裹体的δ18O值通过同位素平衡温度计算求得. -
[1] Carlos, R., Rafaela, M., Karl, R., et al., 2001. Facies-Related Diagenesis and Multiphase Siderite Cementation and Dissolution in the Reservoir Sandstones of the Khatatba Formation, Egypt's Western Desert. Journal of Sedimentary Research, 71(3): 459-472. https://doi.org/10.1306/d4268d38-2b26-11d7-8648000102c1865d [2] Deng, S. B., 2016. Application of H and O Isotopes in Isotopic Geochemistry. West-China Exploration Engineering, 28(10): 145-147(in Chinese with English abstract). doi: 10.3969/j.issn.1004-5716.2016.10.045 [3] Liu, S. B., Huang, S. J., Shen, Z. M., et al., 2014. Diagenetic Fluid Evolution and Water-Rock Interaction Model of Carbonate Cements in Sandstone: An Example from the Reservoir Sandstone of the Fourth Member of the Xujiahe Formation of the Xiaoquan-Fenggu Area, Sichuan Province, China. Science China: Earth Sciences, 44(7): 1403-1417(in Chinese). [4] Macaulay, C. I., Haszel, R. S., 1993. Distribution, Chemistry, Isotopic Composition and Origin of Diagenetic Carbonates: Magnus Sandstone, North Sea. SEPM Journal of Sedimentary Research, 63: 33-43. https://doi.org/10.1306/d4267a82-2b26-11d7-8648000102c1865d [5] Morad, S., de Ros, L. F., Nystuen, J. P., et al., 1998. Carbonate Diagenesis and Porosity Evolution in Sheet-Flood Sandstones: Evidence from the Middle and Lower Lunde Members (Triassic) in the Snorre Field, Norwegian North Sea. Carbonate Cementation in Sandstones. Blackwell Publishing Ltd., Oxford, UK, 53-85. https://doi.org/10.1002/9781444304893.ch3 [6] Mostafa, F., Harrison, T. M., Grove, M., 2001. In Situ Stable Isotopic Evidence for Protracted and Complex Carbonate Cementation in a Petroleum Reservoir, North Coles Levee, San Joaquin Basin, California, USA. Journal of Sedimentary Research, 71(3): 444-458. https://doi.org/10.1306/2dc40954-0e47-11d7-8643000102c1865d [7] Sheppard, S. M. F., 1977. Identification of the Origin of Ore-Forming Solutions by the Use of Stable Isotopes. Geological Society, London, Special Publications, 7(1): 25-41. https://doi.org/10.1144/gsl.sp.1977.007.01.04 [8] Sun, G. Q., Ma, J. Y., Wang, H. F., et al., 2012. Characteristics and Significances of Carbonate Cements in Northern Mahai Region, Northern Margin of Qaidam Basin. Petroleum Geology & Experiment, 34(2): 134-139(in Chinese with English abstract). [9] Sun, Z. X., Sun, Z. L., Lu, H. J., et al., 2010. Characteristics of Carbonate Cements in Sandstone Reservoirs: A Case from Yanchang Formation, Middle and Southern Ordos Basin, China. Petroleum Exploration and Development, 37(5): 543-551 (in Chinese with English abstract). doi: 10.1016/S1876-3804(10)60054-7 [10] Tan, X. F., Huang, J. H., Li, J., et al., 2015. Origin of Carbonate Cements and the Transformation of the Reservoir in Sandstone under the Deep Burial Condition: A Case Study on Eocene Kongdian Formation in Jiyang Depression, Bohai Bay Basin. Geological Review, 61(5): 1107-1120(in Chinese with English abstract). [11] Wang, Q., Hao, L. W., Chen, G. J., et al., 2010. Forming Mechanism of Carbonate Cements in Siliciclastic Sandstone of Zhuhai Formation in Baiyun Sag. Acta Petrolei Sinica, 31(4): 553-558, 565(in Chinese with English abstract). [12] Yao, J. L., Wang, Q., Zhang, R., et al., 2011. Origin and Spatial Distribution of Carbonate Cements in Yanchang Fm. (Triassic) Sandstones within the Lacustrine Center of Ordos Basin, NW China. Natural Gas Geoscience, 22(6): 943-950 (in Chinese with English abstract) [13] You, L., Li, C., Zhang, Y. Z., et al., 2012. Distribution and Genetic Mechanism of Carbonate Cements in the Zhuhai Formation Reservoirs in Wenchang: A Sag, Pear River Mouth Basin. Oil & Gas Geology, 33(6): 883-889, 899(in Chinese with English abstract). [14] Zeng, J. H., Wu, Q., Yang, H. J., et al., 2008. Chemical Characteristics of Formation Water in Tazhong Area of the Tarim Basin and Their Petroleum Geological Significance. Oil & Gas Geology, 29(2): 223-229 (in Chinese with English abstract). [15] Zhu, F. B., Zhou, H., Liu, R., 2015. Geochemical Characteristics and Origin of Formation Water in Western Depression, Liaohe Basin. Earth Science, 40(11): 1870-1875(in Chinese with English abstract). [16] 邓声保, 2016. 同位素地球化学中H、O同位素应用的探讨. 西部探矿工程, 28 (10): 145-147. https://www.cnki.com.cn/Article/CJFDTOTAL-XBTK201610047.htm [17] 刘四兵, 黄思静, 沈忠民, 等, 2014. 砂岩中碳酸盐胶结物成岩流体演化和水岩作用模式: 以川西孝泉-丰谷地区上三叠统须四段致密砂岩为例. 中国科学: 地球科学, 44(7): 1403-1417. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201407005.htm [18] 孙国强, 马进业, 王海峰, 等, 2012. 柴达木盆地北缘马北地区碳酸盐胶结物特征及意义. 石油实验地质, 34(2): 134-139. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201202008.htm [19] 孙致学, 孙治雷, 鲁洪江, 等, 2010. 砂岩储集层中碳酸盐胶结物特征: 以鄂尔多斯盆地中南部延长组为例. 石油勘探与开发, 37(5): 543-551. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201005005.htm [20] 谭先锋, 黄建红, 李洁, 等, 2015. 深部埋藏条件下砂岩中碳酸盐胶结物的成因及储层改造: 以济阳坳陷始新统孔店组为例. 地质论评, 61(5): 1107-1120. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP201505014.htm [21] 王琪, 郝乐伟, 陈国俊, 等, 2010. 白云凹陷珠海组砂岩中碳酸盐胶结物的形成机理. 石油学报, 31(4): 553-558, 565. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201004005.htm [22] 姚泾利, 王琪, 张瑞, 等, 2011. 鄂尔多斯盆地中部延长组砂岩中碳酸盐胶结物成因与分布规律研究. 天然气地球科学, 22(6): 943-950. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201106003.htm [23] 尤丽, 李才, 张迎朝, 等, 2012. 珠江口盆地文昌A凹陷珠海组储层碳酸盐胶结物分布规律及成因机制. 石油与天然气地质, 33(6): 883-889, 899. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201206009.htm [24] 曾溅辉, 吴琼, 杨海军, 等, 2008. 塔里木盆地塔中地区地层水化学特征及其石油地质意义. 石油与天然气地质, 29(2): 223-229. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200802010.htm [25] 朱芳冰, 周红, 刘睿, 2015. 辽河盆地西部凹陷稠油分布区地层水化学特征. 地球科学, 40(11): 1870-1875. doi: 10.3799/dqkx.2015.167