Hydrocarbon Charging Stages and Their Differences in Different Structural Units of the Deep Zhuhai Formation in Wenchang A Sag, Pearl River Mouth Basin
-
摘要: 珠江口盆地文昌A凹陷深部的古近系珠海组油气资源丰富,但不同区带油气成藏分布复杂,油气成藏时期的关键证据——包裹体的研究相对薄弱.为了准确厘定文昌A凹陷珠海组烃类充注时期,以研究区珠海组砂岩储层中的烃包裹体及其伴生盐水包裹体为研究对象,利用荧光光谱测定、激光拉曼光谱分析、显微测温等实验测试,结合包裹体捕获压力计算、埋藏史、热演化史、生烃演化史等分析,开展了凹陷中心及近珠三南断裂带油气成藏期次与差异性研究.结果表明,储层砂岩中烃包裹体及其伴生盐水包裹体成分主要为CH4、C2H6、CO2和H2O,同期盐水包裹体均一温度集中分布于95~180 ℃. 断裂带与凹陷中心均存在3期烃类充注,但油气充注时间有差别. 其中,凹陷中心第1期发生在21.9~13.9 Ma,第2期油充注发生在12.0~8.9 Ma,第3期油气充注时间7.8~4.8 Ma;断裂带第1期油充注发生在约21.7~10.2 Ma,第2期油充注发生在约9.1~4.9 Ma,第3期油气充注时间约为3.9~1.5 Ma.差异性构造沉降导致的烃源岩埋深的差异,以及多期断裂活动强度及其时空配置关系的不同,是造成凹陷中心及断裂带烃源岩生烃高峰的差异及油气成藏时间有先后之分的主要原因. 该结果为研究区油气勘探目标的选取与部署提供科学依据.Abstract: The Paleogene Zhuhai Formation in the deep Wenchang A Sag of the Pearl River Mouth Basin is rich in oil and gas resources, but the distribution of oil and gas reservoirs in different regions is complex, and the study of inclusions, the key evidence of oil and gas accumulation period, is relatively weak. In order to accurately determine the hydrocarbon charging periods of Zhuhai Formation in Wenchang A Sag, the hydrocarbon inclusions and their associated brine inclusions in the sandstone reservoirs of Zhuhai Formation in the study area were taken as the research object. Fluorescence spectroscopy, laser Raman spectroscopy, micro thermometry and other related experiment were used, combined with the analysis of inclusion capture pressure calculation, burial history, paleogeothermal evolution history, and thermal evolution history of hydrocarbon source rocks. The research on hydrocarbon charging stages and their differences in the central depression and the fault zone has been carried out. The results show that there are three kinds of inclusions, including high⁃density single⁃phase oil inclusions, two⁃phase of gas⁃liquid hydrocarbon inclusions and two⁃phase of gas⁃liquid saline inclusions in the sandstonereservoir. The components of hydrocarbon inclusions and the associated brine inclusions are mainly CH4, C2H6, SO2, CO2 and H2O, and the homogenization temperature of brine inclusions distributed mainly from 95 to 180 ℃. Three stages of hydrocarbon filling occurred both in the central depression and the fault zone, but the hydrocarbon filling time is different. The first hydrocarbon charging occurred in the central depression rangesfrom 21.9 to 13.9 Ma, the second oil filling occurred at 12.0 to 8.9 Ma, and the third oil and gas filling occurred at 7.8 to 4.8 Ma. However, in the fault zone, the first oil charging occurred at 21.7 to 10.2 Ma, the second one occurred at 9.1 to 4.9 Ma, and the third oil and gas filling was about 3.9 to 1.5 Ma. The difference of source rock burial depth, multi⁃stage fault activity and their spatio⁃temporal configuration caused by different tectonic subsidence is the main reason for the difference of hydrocarbon generation peak and hydrocarbon accumulation time in the central depression and fault zone. The research results provide a scientific basis forselection and deployment of oil and gas exploration targets in the study area.
-
图 1 研究区构造特征及井位与地层分布综合图
据陈林等(2021)修改
Fig. 1. Comprehesive diagram shows structural characteristics and well and formationdistribution in the study area
图 3 文昌A凹西区珠海组储层中孔隙内的烃类荧光及光谱特征
a,b. 同一视域孔隙内烃类物质,3 565.62 m,W112;a.单偏光,b.荧光,c.黄色荧光包裹体光谱图;d,e. 同一视域孔隙内烃类物质,3553.45 m,W97;d.单偏光,e.荧光,f.黄绿色荧光包裹体光谱图;g,h,i. 同一视域孔隙内烃类物质,3 341.8 m,W102;g.单偏光,h.荧光,i.蓝绿色荧光包裹体光谱图
Fig. 3. Hydrocarbon fluorescence and spectral characteristics of pore filling in Zhuhai Formation reservoir in western area of Wenchang A Sag
图 4 文昌A凹西区珠海组储层中包裹体岩相学特征
a.包裹体分布在石英粒内愈裂缝及颗粒内,单偏光,3752.53 m,W103;b.含烃包裹体在偏光下边缘呈灰黑色,单偏光,3 752.53 m,W103;c.包裹体在紫外光照射下发荧光,3 752.53 m,W103;d.椭圆状包裹体,4 375.4 m,W101;e.方形包裹体,3 205.3 m,W92;f.不规则状包裹体,单偏光,3 769.53 m,W94
Fig. 4. Petrographic characteristics of inclusions in Zhuhai Formation reservoir in western area of Wenchang A Sag
图 5 文昌A凹陷西区珠海组储层中的原油包裹体及其典型光谱
a,b. 同一视域黄色荧光油包裹体,3 684.17 m,W102;a.单偏光,b. 荧光,c.黄色荧光包裹体光谱图;d,e. 同一视域黄绿色荧光包裹体,3 769.53 m,W915;d. 单偏光,e.荧光,f. 黄绿色荧光包裹体光谱图;g,h,i. 同一视域蓝绿色荧光包裹体,4 375.4 m,W101;g. 单偏光,h. 荧光,i. 黄绿色荧光包裹体光谱图
Fig. 5. Crude oil inclusions and their typical spectra in Zhuhai Formation reservoir in west area of Wenchang A Sag
图 6 文昌A凹陷珠海组典型包裹体激光拉曼光谱及岩相学特征
a. 包裹体单偏光,3 684.17 m,W102;b. 同期次油包裹体荧光谱峰;c. 包裹体激光拉曼谱图;d.包裹体单偏光,3 760.8 m,W915;e.同期次油包裹体荧光谱峰;f.包裹体激光拉曼谱图;g.包裹体单偏光,3 760.8 m,W915;h.同期次油包裹体荧光谱;i.包裹体激光拉曼谱图
Fig. 6. Laser Raman spectra and petrographic characteristics of typical inclusions in Zhuhai Formation in Wenchang A Sag
图 10 文昌A凹陷构造特征及成藏模式图
剖面位置见图 1
Fig. 10. Sketch showing structural characteristics and hydrocarbon pool forming mode of Wenchang A Sag
表 1 样品及包裹体信息
Table 1. Information of samples and inclusions
井号 深度段(m) 层位 制片数量(铸体片/多功能片) 包裹体数量(油包裹体/盐水包裹体) W101 4 374~4 381 珠二段~珠三段 2/2 3/17 W102 3 341~3 688 珠二段~珠三段 5/3 3/27 W103 3 332~3 764 珠一段~珠三段 3/3 2/15 W112 3 564~3 566 珠二段 2/1 3/7 W144 2 246~2 386 珠一段 3/3 2/12 W84 2 629~2 726 珠一段 3/3 2/10 W911 3 407~3 746 珠二段~珠三段 3/3 4/27 W912 3 230~3 243 珠二段 3/3 3/18 W915 3 759~3 769 珠三段 3/3 2/15 W92 3 984~3 996 珠二段 3/2 2/15 W93 3 750~3 846 珠二段 2/1 2/11 W94 3 204~4 383 珠一段~珠三段 6/5 12/32 W97 3 544~3 553 珠二段 2/1 2/7 W98 3 795~3 852 珠三段 3/3 4/13 表 2 文昌A凹陷珠海组部分原油包裹体荧光光谱参数
Table 2. Fluorescence spectral parameters of some crude oil inclusions in Zhuhai Formation of Wenchang Sag
井号 深度(m) 颜色 幕次 λmax Q QF535 W102 3 684.17 黄绿色 第1 545.8 0.905 1.12 黄绿色 第1 545.8 0.691 1.08 蓝绿色 第2 512.7 0.417 0.90 蓝绿色 第2 512.7 0.455 0.91 黄绿色 第1 545.8 0.745 1.09 蓝色 第3 470.1 0.307 0.80 W915 3 759.51 蓝色 第3 470.1 0.215 0.71 黄绿色 第1 545.8 0.644 1.07 3 769.53 蓝绿色 第2 512.7 0.360 0.87 蓝绿色 第2 512.7 0.367 0.87 蓝绿色 第2 512.7 0.555 0.96 W101 4 375.40 蓝色 第3 470.1 0.306 0.80 表 3 激光拉曼包裹体成分测定计算结果
Table 3. Calculation result of laser Raman inclusion composition measurement
相态 荧光颜色 CO2(%) CH4(%) C4H6(%) C2H6(%) 包裹体个数 气相 黄色 8 68 24 0 18 黄绿色 8 69 13 10 14 蓝绿色 2 98 0 0 12 液相 黄色 32 45 23 0 13 黄绿色 15 78 0 7 13 蓝绿色 0 95 0 5 10 表 4 文昌A凹陷珠海组砂岩储层中盐水包裹体均一温度测试结果
Table 4. The test results of the brine inclusion in sandstone reservoir in Zhuhai Formation of Wenchang A sag
井号 构造单元 深度(m) 层位 均一温度范围(℃) W102 断裂带 3 395.65~3 341.80 珠二段 139.1~147.5(n=6) 3 684.17~3 688.25 珠三段 129.1~160.8(n=8) W103 断裂带 3 340.30 珠一段 125.5~135.3(n=6) 3 752.53 珠三段 158.2~178.6(n=6) W112 断裂带 3 565.62 珠二段 119.4~162.7(n=5) W144 断裂带 2 367.11~2 369.48 珠一段 103.3~131.2(n=9) W101 凹陷中心 4 375.40~4 381.50 珠三段 155.5~181.7(n=14) W84 凹陷中心 2 695.77~2 726.70 珠一段 102.7~122.8(n=8) W911 凹陷中心 3 407.20 珠二段 138.4~151.2(n=11) 3 746.70 珠三段 131.1~159.4(n=13) W912 凹陷中心 3 234.00 珠二段 95.3~121.6(n=15) W915 凹陷中心 3 759.51~3 769.53 珠三段 143.1~161.1(n=13) W92 凹陷中心 3 990.23~3 990.93 珠二段 141.5~169.8(n=12) W93 凹陷中心 3 845.61 珠二段 141.9~162.2(n=9) W94 凹陷中心 3 205.30~3 659.60 珠一段 121.3~163.0(n=7) 4 216.83 珠三段 155.1~171.3(n=20) W97 凹陷中心 3 553.45 珠二段 135.5~165.7(n=5) W98 凹陷中心 3 851.50 珠三段 140.0~144.2(n=10) 表 5 珠海组砂岩含烃流体包裹体捕获压力及古压力系数计算结果
Table 5. Calculation of trapping pressure and paleopressure coefficient based onmeasurement of the hydrocarbon bearing fluid inclusions in sandstone of Zhuhai Formation
荧光颜色 盐度(%) 捕获压力(MPa) 古压力系数 样品数(个) 范围 平均值 范围 平均值 范围 平均值 黄色 0.18~13.83 4.59 28.48~29.66 29.11 0.80~1.00 0.9 104 黄绿色 0.88~14.97 6.26 29.76~30.84 30.31 0.80~1.21 1.1 51 蓝绿色 0.53~12.28 7.03 30.67~33.83 31.76 1.10~1.32 1.2 38 -
[1] Burnham, A. K., Sweeney, J. J., 1989. A Chemical Kinetic Model of Vitrinite Maturation and Reflectance. Geochimica et Cosmochimica Acta, 53(10): 2649-2657. doi: 10.1016/0016-7037(89)90136-1 [2] Cao, Y. C., Jia, Y. C., Wang, Y. Z., et al., 2014. Diagenetic Fluid Evolution of Reservoirs in Es_4~s in the North Zone of the Bonan Sag. Geoscience, 28(1): 197-207(in Chinese with English abstract). [3] Chen, L., Fan, C., Liu, X., et al., 2021. Hydrocarbon Enrichment Laws and Favorable Exploration Directions of Wenchang A Sag, Western Pearl River Mouth Basin. China Offshore Oil and Gas, 33(5): 14-23(in Chinese with English abstract). [4] Chen, Y., Ernst, A. J., Burke., 2009. Laser Raman Microspectroscopy of Fluid Inclusions: Theory, Method, Problems and Future Trends. Geological Review(in Chinese with English abstract). [5] Gan, J., Zhang, Y., Deng, Y., et al., 2009. Main Controls over Palaeogene Natural Gas Accumulation and Its Exploration Direction in Wenchang A Sag The Western Pearl River Mouth Basin. China Offshore Oil and Gas, 21(6): 367-371(in Chinese with English abstract). [6] Gong, Z. S., Li, S. T., 2004. A Study on the Dynamics of Hydrocarbon Accumulation in the Northern Continental Margin Basin of the South China Sea. Science Press, Beijing, 289-298. [7] Guo, X., Liu, K., Sheng, H., et al., 2012. Petroleum Generation and Charge History of the Northern Dongying Depression, Bohai Bay Basin, China: Insight from Integrated Fluid Inclusion Analysis and Basin Modelling. Marine & Petroleum Geology, 32(1): 21-35. https://doi.org/10.1016/j.marpetgeo.2011.12.007 [8] Hall, D. L., Sterner, S. M., Bodnar, R. J., 1988. Freezing Point Depression of NaCl-H2O Solution. Economic Geology, 83(1): 197-202. https://doi.org/10.2113/gsecongeo.83.1.197 [9] Haszeldine, R. S., Samson, I. M., Cornford, C., 1984. Dating Diagenesis in a Petroleum Basin, A New Fluid Inclusion Method. Nature, 307(5949): 354-357. https://doi.org/10.16509/j.georeview.2009.06.010 [10] Huang, B. J., Li, J. L., Li, L., et al., 2007. A Discussion on the Hydrocarbon Accumulation Characteristics and Distribution in Wenchang A Sag. China Offshore Oil and Gas, (6): 361-366(in Chinese with English abstract). [11] Jiang, P., Wang, Z., Zou, M. et al., 2021. Development Characteristics of Carbonate Cement and Its Influence onReservoir Quality in Sandstones from Zhuhai Formation in WenchangA Depression. Journal of Earth Science, 46(2): 600-620. (in Chinese with English abstract). [12] Li, H., Chen, S., Zhang, Y., et al., 2014. Faults in the Zhu-3 Depression of Pearl River Mouth Basin and Their Control over Hydrocarbon Accumulation. Marine Geology & Quaternary Geology, (3): 115-124(in Chinese with English abstract). [13] Li, M. J., Wang, T. G., Liu, J. et al., 2007. A Discussion on Hydrocarbon Accumulation Dating Determined by Homogenization Temperature and Burial History of Fluid Inclusions: An Example from The Fushan Depression, Beibuwan Basin. Oil & Gas Geology, 28(02): 151-158(in Chinese with English abstract). [14] Li, S. S., Peng, S., Chen, L. et al., 2019. Sedimentary Characteristics and Main Controlling Factors of the Fan Delta of Oligocene Enping Formation in Wenchang G Block, Pearl River Mouth Basin. Marine oil and gas geology, 24(4): 57-66(in Chinese with English abstract). [15] Lin, X. R., Sun, Z. P., 1999. Conditions of Natural Gas Accumulation in Wenchang A Depression. Natural Gas Industry, (1): 71-75+18-19(in Chinese with English abstract). [16] Liu, D., Xiao, X., Tian, H., et al., 2008. Fluid Inclusion Types and Their Geological Significance in Petroliferous Basins. Oil & Gas Geology, 29(4): 491-501, 478, 484(in Chinese with English abstract). [17] Liu, G., 2008. Petroleum Geology. Petroleum Industry Press, Beijing(in Chinese). [18] Lu, H., 2004. Fluid Inclusion. Science Press, Beijing, 231-240 (in Chinese). [19] Lu, X. S., Liu, K. Y., Zhuo, Q. G., et al., 2012. Palaeo-Fluid Evidence for The Multi-Stage Hydrocarbon Charges in Kela-2 Gas Field, Kuqa Foreland Basin, Tarim Basin. Petroleum Exploration and Development, 39(5): 537-544. [20] Mao, C., Chen, Y., Zhou, Y. Q., et al., 2015. Improved Simulation Method of Petroleum Inclusions Thermodynamic and Its Application in Hydrocarbon Accumulations. Journal of Jilin University: Earth Science Edition, 45(5). 1352-1364. [21] Mi, J., Xiao, X., Liu, D., et al., 2003. Using PVT Characteristics of Reservoir Fluid Inclusions to Simulate The Formation Pressure of Natural Gas Reservoirs: A Case Study of Upper Paleozoic Deep Basin Gas Reservoirs in Ordos Basin. Scientia Sinica (D: Earth Science), (7): 679-685(in Chinese with English abstract). [22] Ping, H., Chen, H., George, S. C., et al., 2018. Relationship Between the Fluorescence Color of Oil Inclusions and Thermal Maturity in the Dongying Depression, Bohai Bay Basin, China: Part 1. Fluorescence Evolution of Oil in the Context of Hydrous Pyrolysis Experiments with Increasing Maturity. Marine and Petroleum Geology, 100: 1-19. https://doi.org/10.1016/j.marpetgeo.2018.10.053 [23] Ping, H., Chen, H., R, Thiéry., et al., 2017. Effects of Oil Cracking on Fluorescence Color, Homogenization Temperature and Trapping Pressure Reconstruction of Oil Inclusions from Deeply Buried Reservoirs in the Northern Dongying Depression, Bohai Bay Basin, China. Marine & Petroleum Geology, 80: 538-562. https://doi.org/10.1016/j.marpetgeo.2016.12.024 [24] Schubert, F., Diamond, L. W., TM, Tóth., 2007. Fluid-Inclusion Evidence of Petroleum Migration through A Buried Metamorphic Dome in The Pannonian Basin. Hungary. Chemical Geology, 244(3-4): 357-381. https://doi.org/10.1016/j.chemgeo.2007.05.019 [25] Shi, G., Zhang, J., Xuan, T., et al., 2014. Timing and Stages of Oil and Gas Accumulation in Western Tanhai. Special Oil & Gas Reservoirs, 21(3): 41-44+152(in Chinese with English abstract). [26] Si, S., Chen, H., Feng, Y., et al., 2013. Two Sources and Three Charging Events of Hydrocarbons in Lower Cretaceous Reservoirs in Shaya Uplift, Tarim Basin: Evidence from Fluid Inclusion Analysis. Acta Petrolei Sinica, 34(1): 12-21(in Chinese with English abstract). [27] Si, S., Chen, H., Yuan, B., et al., 2018. Identification of Hydrocarbon Charging Events by Using Fluorescence Spectrum Multiparameter of Oil Inclusions: A Case Study of Carboniferous in Bashituo Structural Belt of Markit Slope of Tarim Basin. Marine Origin Petroleum Geology, 23(2): 25-30(in Chinese with English abstract). [28] Volk, H., Dutkiewicz A., George, S., et al., 2003. Oil Migration in the Middle Proterozoic Roper Superbasin, Australia: Evidence from Oil Inclusions and Their Geochemistries. Journal of Geochemical Exploration, 2003, 78(3): 437-441. https://doi.org/10.1016/S0375-6742(3)00152-3 [29] Wang, B., Xu, X., Wu, Y., et al., 2020. Oil-Gas Origin and Accumulation Characteristics of Wenchang Depression, Western Pearl River Mouth Basin. Natural Gas Geoscience, 1(7): 980-992(in Chinese with English abstract). . https://doi.org/10.11764/j.issn.1672-1926.2020.01.008 [30] Wang, K., 2014. Differences in Oil and Gas Distribution Patterns in the Wenchang A Sag of Pearl River Mouth Basin. Marine Geology Frontiers, 30(6): 40-46(in Chinese with English abstract). [31] Wang, K., Ye, J., Wu, J., et al., 2014. Characteristics and Evolution History of Formation Pressure in the Wenchang A Sag, Pearl River Mouth Basin. Geological Science and Technology Information, 33(4): 111-116+122(in Chinese with English abstract). [32] Xia, Q., Huang, C., Lu, J., 2019. Response Relationship between Hydrocarbon Charging and Diagenesis of Reservoirs inSedimentary Basin. Journal of Geoscience and environment, 41 (2): 185-196(in Chinese with English abstract). [33] Xu, X., He, J. X., He, L. J., et al., 2011. Distribution of Heat Flow in Cenozoic Basins of South China Sea and Its Connection with Oil and Gas Migration and Accumulation. Marine Geology & Quaternary Geology, 31(6): 99-108. [34] Xu, Y., Yang, X., Mei, L., et al., 2020. Diagenetic Characteristics and Porosity Evolution of Low Permeability Sandstone Reservoir in Zhuhai Formation, Wenchang A Sag. Journal of Earth Science, 45(6): 2172-2185(in Chinese with English abstract). [35] Xue, N., Zhu, G., Lv, X., et al., 2020. Advances in Geochronology of Hydrocarbon Accumulation. Natural Gas Geoscience, 31(12): 1733-1748(in Chinese with English abstract). [36] Ye, M., Wang, Z., Tang, N., 2009. Quantitative Analysis of Common Anion Groups in Brine Solution by Laser Raman Spectroscopy. Northwestern Geology, (3)(in Chinese with English abstract). [37] Yong, S., Yi, A., Ying, L. A., et al., 2019. Control of Magmatism on Gas Accumulation in Linxing Area, Ordos Basin, NW China: Evidence from Fluid Inclusions. Journal of Petroleum Science and Engineering, 180: 1077-1087. https://doi.org/10.1016/j.petrol.2019.06.034 [38] Zhang, N., Zhao, R., Zhang, D., et al., 2010. Fluorescence Characteristics of the Ordovician Hydrocarbon Inclusions in the Tazhong-Ⅰ Slope-Break Zone and the Timing of Hydrocarbon Accumulation. Oil & Gas Geology, 31(1): 63-68, 75(in Chinese with English abstract). [39] Zhang, Y. G., Frantz, J. D., 1987. Determination of the Homogenization Temperatures and Densities of Supercritical Fluids in the System NaCl-KCl-CaCl2 H2O Using Synthetic Fluid Inclusions. Chemical Geology, 64(3/4): 335-350. https://doi.org/10.1016/0009-2541(87)90012-x [40] Zhong, Z., Liu, F., He, W., et al., 2018. Sedimentary Facies in Oligocene Zhuhai Member-2 in Wenchang Sag and Adjacent Area, Pearl River Mouth Basin. Marine Origin Petroleum Geology, 23(3): 53-64(in Chinese with English abstract). [41] 操应长, 贾艳聪, 王艳忠, 等, 2014. 渤南洼陷北带沙四上亚段储层成岩流体演化. 现代地质, 28(1): 197-207. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201401022.htm [42] 陈林, 范彩伟, 刘新宇, 等, 2021. 珠江口盆地西部文昌A凹陷油气富集规律与有利勘探方向. 中国海上油气, 33(5): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202105002.htm [43] 陈勇, Ernst, A. J., Burke, 2009. 流体包裹体激光拉曼光谱分析原理、方法、存在的问题及未来研究方向. 地质论评, 55(6): 851-861. https://www.cnki.com.cn/Article/CJFDTOTAL-DZLP200906012.htm [44] 甘军, 张迎朝, 邓勇, 等, 2009. 珠江口盆地西部文昌A凹陷古近系天然气富集主控因素与勘探方向. 中国海上油气, 21(6): 367-371. doi: 10.3969/j.issn.1673-1506.2009.06.002 [45] 龚再升, 李思田, 2004. 南海北部大陆边缘盆地油气成藏动学研究. 北京: 科学出版社, 289-298. [46] 黄保家, 李俊良, 李里, 等, 2007. 文昌A凹陷油气成藏特征与分布规律探讨. 中国海上油气, 2007(6): 361-366. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD200706002.htm [47] 姜平, 王珍珍, 邹明生, 等, 2021. 文昌A凹陷珠海组砂岩碳酸盐胶结物发育特征及其对储层质量的影响. 地球科学, 46(2): 600-620. doi: 10.3799/dqkx.2020.075 [48] 李辉, 陈胜红, 张迎朝, 等, 2014. 珠江口盆地珠三坳陷断裂特征与油气成藏. 海洋地质与第四纪地质, 34(3): 115-124. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201403018.htm [49] 李美俊, 王铁冠, 刘菊, 等, 2007. 由流体包裹体均一温度和埋藏史确定油气成藏时间的几个问题——以北部湾盆地福山凹陷为例. 石油与天然气地质, (2): 151-158. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200702007.htm [50] 李珊珊, 彭松, 陈林, 等, 2019. 珠江口盆地西部文昌G区渐新统恩平组扇三角洲沉积特征与储层主控因素. 海相油气地质, 24(4): 57-66. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201904006.htm [51] 林兴荣, 孙志鹏, 1999. 文昌A凹陷天然气成藏条件. 天然气工业, (1): 71-75+18-19. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG901.012.htm [52] 刘德汉, 肖贤明, 田辉, 等, 2008. 含油气盆地中流体包裹体类型及其地质意义. 石油与天然气地质, 29(4): 491-501. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200804015.htm [53] 柳广弟, 2008. 石油地质学. 北京: 石油工业出版社. [54] 卢焕章, 2004. 流体包裹体. 北京: 科学出版社, 231-240. [55] 鲁雪松, 刘可禹, 卓勤功, 等, 2012. 库车克拉2气田多期油气充注的古流体证据. 石油勘探与开发, 39(5): 537-544. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201205003.htm [56] 毛毳, 陈勇, 周瑶琪, 等, 2015. 改进后的烃类流体包裹体热力学模拟方法及其在油气成藏研究中的应用. 吉林大学学报(地球科学版), 45(5): 1352-1364. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201505009.htm [57] 米敬奎, 肖贤明, 刘德汉, 等, 2003. 利用储层流体包裹体的PVT特征模拟计算天然气藏形成古压力——以鄂尔多斯盆地上古生界深盆气藏为例. 中国科学(D辑: 地球科学), (7): 679-685. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200307009.htm [58] 石刚, 张金川, 唐玄, 等, 2014. 辽河滩海西部地区油气成藏时间和成藏期次. 特种油气藏, 21(3): 41-44+152. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201403009.htm [59] 斯尚华, 陈红汉, 丰勇, 等, 2013. 塔里木盆地沙雅隆起下白垩统双源三幕油气充注成藏的流体包裹体证据. 石油学报, 34(1): 12-21. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201301001.htm [60] 斯尚华, 陈红汉, 袁丙龙, 等, 2018. 利用油包裹体荧光光谱多参数划分油气充注幕次——以塔里木盆地麦盖提斜坡巴什托构造带石炭系为例. 海相油气地质, 23(2): 25-30. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201802004.htm [61] 王碧维, 徐新德, 吴杨瑜, 等, 2020. 珠江口盆地西部文昌凹陷油气来源与成藏特征. 天然气地球科学, 31(7): 980-992. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202007011.htm [62] 王柯, 2014. 珠江口盆地文昌A凹陷油气差异分布特征. 海洋地质前沿, 30(6): 40-46. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDT201406007.htm [63] 王柯, 叶加仁, 吴景富, 等, 2014. 珠江口盆地文昌A凹陷地层压力特征及演化史. 地质科技情报, 33(4): 111-116+122. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKQ201404018.htm [64] 徐行, 何家雄, 何丽娟, 等, 2011. 南海北部与南部新生代沉积盆地热流分布与油气运聚富集关系. 海洋地质与第四纪地质, 31(6): 99-108. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201106017.htm [65] 徐燕红, 杨香华, 梅廉夫, 等, 2020. 文昌A凹陷珠海组低渗砂岩成岩特征与孔隙演化. 地球科学, 45(6): 2172-2185. doi: 10.3799/dqkx.2020.055 [66] 薛楠, 朱光有, 吕修祥, 等, 2020. 油气成藏年代学研究进展. 天然气地球科学, 31(12): 1733-1748. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202012007.htm [67] 叶美芳, 王志海, 唐南安, 2009. 盐水溶液中常见阴离子团的激光拉曼光谱定量分析研究. 西北地质, (3). [68] 张鼐, 赵瑞华, 张蒂嘉, 等, 2010. 塔中Ⅰ号带奥陶系烃包裹体荧光特征与成藏期. 石油与天然气地质, 31(1): 63-68+75. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201001016.htm [69] 钟泽红, 刘芳, 何卫军, 等, 2018. 珠江口盆地文昌凹陷渐新统珠海组二段沉积相. 海相油气地质, 23(3): 53-64. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201803006.htm