• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    塔河南奥陶系多相态油气藏成因及富集模式

    李斌 赵星星 邬光辉 韩剑发 张银涛 谢舟

    李斌, 赵星星, 邬光辉, 韩剑发, 张银涛, 谢舟, 2023. 塔河南奥陶系多相态油气藏成因及富集模式. 地球科学, 48(2): 657-672. doi: 10.3799/dqkx.2022.445
    引用本文: 李斌, 赵星星, 邬光辉, 韩剑发, 张银涛, 谢舟, 2023. 塔河南奥陶系多相态油气藏成因及富集模式. 地球科学, 48(2): 657-672. doi: 10.3799/dqkx.2022.445
    Li Bin, Zhao Xingxing, Wu Guanghui, Han Jianfa, Zhang Yingtao, Xie Zhou, 2023. Study on the Origin and Accumulation Model of Ordovician Multiphase Oil and Gas Reservoirs in South Tahe Area. Earth Science, 48(2): 657-672. doi: 10.3799/dqkx.2022.445
    Citation: Li Bin, Zhao Xingxing, Wu Guanghui, Han Jianfa, Zhang Yingtao, Xie Zhou, 2023. Study on the Origin and Accumulation Model of Ordovician Multiphase Oil and Gas Reservoirs in South Tahe Area. Earth Science, 48(2): 657-672. doi: 10.3799/dqkx.2022.445

    塔河南奥陶系多相态油气藏成因及富集模式

    doi: 10.3799/dqkx.2022.445
    基金项目: 

    四川省科技厅区域创新合作项目“复杂油藏高效开发相关技术研究及推广应用” 21QYCX0048

    详细信息
      作者简介:

      李斌(1977-),男,博士,副教授,主要从事石油天然气地质综合研究. ORCID:0000-0002-4967-0131. E-mail:libinxnsy@outlook.com

    • 中图分类号: P624.5

    Study on the Origin and Accumulation Model of Ordovician Multiphase Oil and Gas Reservoirs in South Tahe Area

    • 摘要: 针对塔里木盆地塔河南奥陶系多相态油气藏成因模式认识不清的问题,采用油藏地球化学、构造解析及地球物理等方法,查明奥陶系油藏流体具有“四低一高”特征,且干气与湿气并存,发育凝析气藏、挥发油气藏、轻质油藏3种相态,平面上呈现“东气西油”的分布格局. 奥陶系原油成熟度正常,未经历大规模裂解及TSR作用,但玉科地区遭受了较为强烈的蒸发分馏作用,晚期高熟油裂解气的充注改造是凝析气藏形成的重要原因. 塔河南主体区奥陶系轻质油藏具有“早期成藏、垂向运聚、侧向调整、分段富集”的特点,玉科地区奥陶系凝析气藏具有“多源供烃、早油晚气、垂向充注、侧向运聚”的特点. 综合认为:南部坳陷区域走滑断裂带内部可能仍具有巨大的石油资源.

       

    • 图  1  塔河南区域构造位置及井位分布图

      Fig.  1.  Structural location and well position distribution diagram in the southern region of Tahe

      图  2  塔河南地区奥陶系原油组分交会图

      Fig.  2.  Composition cross map of Ordovician crude oil in south Tahe area

      图  3  塔河南奥陶系天然气性质交会图

      Fig.  3.  Cross plot of Ordovician natural gas properties in south Tahe area

      图  4  塔河南奥陶系油气组分及相态分布图

      Fig.  4.  Composition and phase distribution map of Ordovician oil and gas in south Tahe area

      图  5  塔河南奥陶系原油饱和烃色谱分析图

      Fig.  5.  Saturated hydrocarbon chromatographic analysis of Ordovician crude oil in the south Tahe area

      图  6  塔河南地区奥陶系原油C22TT/C21TT与C24TT/C23TT(a)、C29ββ/(αα+ββ)与C2920S/(20S+20R)(b)、CPI与OEP(c)、C27重排甾烷/(重排甾烷+规则甾烷)与Ts/(Tm+Ts)(d)交会图

      Fig.  6.  Plot of the intersection between C22TT/C21TT and C24TT/C23TT(a), C29ββ/(αα+ββ) and C2920S/(20S+20R)(b), CPI and OEP(c), C27 rearranged steranes /(rearranged steranes + regular steranes) and Ts/(Tm+Ts)(d) of Ordovician crude oils in the south Tahe area

      图  7  塔河南地区奥陶系原油甲基菲参数拟合等效镜质体反射率分布图

      Rc1(%)=0.6×MPI1+0.4,MPI1=1.5×(3-MP+2-MP)/(P+9-MP+1-MP);Rc2(%)=0.166+F1×2.242,F1=(3-MP+2-MP)/(1-+2-+3-+9-)MP;顺北地区数据来源于马安来等(2021)

      Fig.  7.  Equivalent vitrine reflectance distribution map fitted with methylphenanthrene parameters of Ordovician crude oil in the south Tahe area

      图  8  塔河南地区奥陶系原油3-MH+2, 4-DMP与2-MH+2, 3-DMP、DBT/P与DBTs/Ars交会图Fi.8 Intersection diagram of 3-MH+2,4-DMP and 2-MH+2,3-DMP,DBT/P and DBTs/Ars of Ordovician crude oil in the southern Tahe area

      塔中4数据来Song et al.(2017)

      图  9  塔河南地区原油nC7/MCH与Tol/nC7、天然气Ro-C1与原油Rc1-MPI1交会图

      轮古东数据来源于池林贤(2020)

      Fig.  9.  Intersection diagram of crude oil nC7/MCH and Tol/nC7, natural gas Ro-C1 and crude oil Rc1-MPI1 in the south of Tahe

      图  10  塔河南地区奥陶系天然气甲烷碳同位素与乙丙烷碳同位素差值交会图

      Fig.  10.  The Cross plot of carbon isotope difference between methane and epropane of Ordovician natural gas in Tahenan area

      图  11  塔河南地区奥陶系原油成熟度参数、气油比与埋深交会图

      TMNr=1,3,7-/(1,3,7+1,2,5)-三甲基萘;GOR为气油比

      Fig.  11.  Plot of Ordovician oil maturity parameters, gas-oil ratio and burial depth intersection in the southern Tahe area

      图  12  塔河南地区奥陶系油气运移趋势图

      Fig.  12.  Hydrocarbon migration trend of Ordovician in Tahenan area

      图  13  玉科地区古生界丘滩体地震反射特征图Fi.13 Seismic reflection characteristics of Paleozoic mounds and shoals in Yuke area

      图  14  塔河南-塔北奥陶系油藏成藏演化模式图

      Fig.  14.  Reservoir formation and evolution model map of Ordovician reservoirs in south Tahe and north Tahe

      图  15  玉科地区奥陶系凝析气藏成藏演化模式

      Fig.  15.  Formation and evolution model of Ordovician condensate gas reservoir in Yuke area

    • [1] Abrams, M., 2017. Evaluation of Near-Surface Gases in Marine Sediments to Assess Subsurface Petroleum Gas Generation and Entrapment. Geosciences, 7(2): 35. https://doi.org/10.3390/geosciences7020035
      [2] Bernard, F. P., Connan, J., Magot, M., 1992. Indigenous Microorganisms in Connate Water of Many Oil Fields: a New Tool in Exploration and Production Techniques. SPE Annual Technical Conference and Exhibition. OnePetro.
      [3] Cai, C. F., Amrani, A., Worden, R. H., et al., 2016. Sulfur Isotopic Compositions of Individual Organosulfur Compounds and their Genetic Links in the Lower Paleozoic Petroleum Pools of the Tarim Basin, NW China. Geochimica et Cosmochimica Acta, 182(6-7): 88-108. https://doi.org/10.1016/j.gca.2016.02.036
      [4] Chai, Z., Chen, Z. H., Liu, H., et al., 2020. Light Hydrocarbons and Diamondoids of Light Oils in Deep Reservoirs of Shuntuoguole Low Uplift, Tarim Basin: Implication for the Evaluation on Thermal Maturity, Secondary Alteration and Source Characteristics. Marine and Petroleum Geology, 117: 104388. https://doi.org/10.1016/j.marpetgeo.2020.104388
      [5] Chi, L. X., 2020. The Effect of Gas Invasion on the Molecular Composition of Crude Oil in Lungu Area of the Tarim Basin(Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [6] Ding, Z. W., Wang, R. J., Cheng, F. F., et al., 2020. Origin, Hydrocarbon Accumulation and Oil-Gas Enrichment of Fault-Karst Carbonate Reservoirs: A Case Study of Ordovician Carbonate Reservoirs in South The Area of Halahatang Oilfield, Tarim Basin. Petroleum Exploration and Development, 47(2): 286-297 (in Chinese with English abstract).
      [7] Feng, J., Zhang, Y. J., Zhang, Z. W., et al., 2022. Characteristics and Main Control Factors of Ordovician Shoal Dolomite Gas Reservoir in Gucheng Area, Tarim Basin, NW China. Petroleum Exploration and Development, 49(1): 45-55 (in Chinese with English abstract).
      [8] Han, J. F., Su, Z., Chen, L. X., et al., 2019. Reservoir-Controlling and Accumulation-Controlling of Strike-Slip Faults and Exploration Potential in the Platform of Tarim Basin. Acta Petrolei Sinica, 40(11): 1296-1310 (in Chinese with English abstract). doi: 10.7623/syxb201911002
      [9] Han, J. F., Wu, G. H., Xiao, Z. Y., et al., 2020. A New Understanding of the Distribution of Cambrian Source Rocks in Tarim Basin and Its Significance. Geoscience, 55(1): 17-29 (in Chinese with English abstract).
      [10] Han, Y. K., Zhang, Z. Y., Cheng, W. Y., et al., 2021. Geological Conditions and Evolution for the Accumulation of the Ultra-Deep Oil Pools in the Yueman Area, Tarim Basin. Natural Gas Geoscience, 32(11): 1634-1645 (in Chinese with English abstract).
      [11] Jiao, F. Z., 2019. Practice and Knowledge of Volumetric Development of Deep Fractured-Vuggy Carbonate Reservoirs in Tarim Basin, NW China. Petroleum Exploration and Development, 46(3): 552-558 (in Chinese with English abstract).
      [12] Jones, D. M., Head, I. M., Gray, N. D., et al., 2007. Crude-Oil Biodegradation Via Methanogenesis in Subsurface Petroleum Reservoirs. Nature, 451(7175): 176-180. https://doi.org/10.1038/nature06484
      [13] Li, F., Zhu, G. Y., Lv, X. X., et al., 2021. The Disputes on the Source of Paleozoic Marine Oil and Gas and the Determination of the Cambrian System as the Main Source Rocks in Tarim Basin. Acta Petrolei Sinica, 42(11): 1417-1437 (in Chinese with English abstract).
      [14] Li, J. F., Zhang, Z. Y., Zhu, G. Y., et al., 2020. The Origin and Accumulation of Ultra-Deep Oil in Halahatang Area, Northern Tarim Basin. Journal of Petroleum Science and Engineering, 195(4): 107898. https://doi.org/10.1016/j.petrol.2020.107898
      [15] Li, M. C., 2004. Basic Principles of Migration and Hydrocarbon Exploration. Earth Science, 4: 379-383 (in Chinese with English abstract).
      [16] Li, S. M., Pang, X. Q., Yang, H. J., et al., 2010. Geochemical Characteristics and Families of the Crude Oils in the Yingmaili Oilfield Tarim Basin. Geoscience, 24(4): 643-653 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-8527.2010.04.001
      [17] Liu, H., Jing, C., Liu, Y. L., et al., 2018. Optimization of Hydrocarbon Migration Parameters and Identification of Migration Pattern. Petroleum Geology & Experiment, 40(3): 126-132+140 (in Chinese with English abstract). http://en.cnki.com.cn/Article_en/CJFDTotal-SYSD201803017.htm
      [18] Liu, Y. N., 2022. Characteristics and Impacts on Favorable Reservoirs of Carbonate Ramp Microfacies: A Case Study of the Middle-Lower Ordovician in Gucheng Area, Tarim Basin, NW China. Petroleum Exploration and Development, 49(1): 93-105 (in Chinese with English abstract).
      [19] Ma, A. L., He, Z. L., Yun, L., et al., 2021. The Geochemical Characteristics and Origin of Ordovician Ultra-Deep Natural Gas in the North Shuntuoguole Area, Tarim Basin, NW China. Natural Gas Geoscience, 32(7): 1047-1060 (in Chinese with English abstract).
      [20] Ma, A. L., Jing, Z. J., Zhu, C. S., et al., 2018. Effect of TSR on the Crude Oil in Ordovician Reservoirs of Well Luosi-2 from Maigaiti Slope, Tarim Basin: Evidences from molecular markers. Oil & Gas Geology, 39(4): 730-737+748 (in Chinese with English abstract).
      [21] Ma, Y. S., Cai, X. Y., Yun, L., et al., 2022. Practice and Theoretical and Technical Progress in Exploration and Development of Shunbei Ultra-Deep Carbonate Oil and Gas Field, Tarim Basin, NW China. Petroleum Exploration and Development, 49(1): 1-17 (in Chinese with English abstract). doi: 10.1016/S1876-3804(22)60001-6
      [22] Machel, H. G., 2001. Bacterial and Thermochemical Sulfate Reduction in Diagenetic Settings: Old and New Insights. Sedimentary Geology, 140(1/2): 143-175. https://doi.org/10.1016/s0037-0738(0)00176-7
      [23] Mango, F. D., 1987. An Invariance in the Isoheptanes of Petroleum. Science, 237(4814): 514-517. https://doi.org/10.1126/science.237.4814.514
      [24] Qi, L. X., Yun, L, 2022. Carbonate Reservoir-Forming Model and Exploration Practice in Tarim Basin. Petroleum Geology & Experiment, 42(5): 867-876 (in Chinese with English abstract).
      [25] Radke, M., Welte, D. H., Willsch, H., 1986. Maturity Parameters Based on Aromatic Hydrocarbons: Influence of the Organic Matter Type. Organic Geochemistry, 10(1/2/3): 51-63. https://doi.org/10.1016/0146-6380(86)90008-2
      [26] Song, D. F., Zhang, C. M., Li, S. M., et al., 2017. Elevated Mango's K1 Values Resulting from Thermochemical Sulfate Reduction within the Tazhong Oils, Tarim Basin. Energy & Fuels, 31(2): 1250-1258. https://doi.org/10.1021/acs.energyfuels.6b02503
      [27] Sun, Q. Q., Fan, T. L., Gao, Z. Q., et al., 2021. New Insights on the Geometry and Kinematics of the Shunbei 5 Strike-Slip Fault in the Central Tarim Basin, China. Journal of Structural Geology, 150(1‐4): 104400. https://doi.org/10.1016/j.jsg.2021.104400
      [28] Ten Haven, H. L., 1996. Applications and Limitations of Mango's Light Hydrocarbon Parameters in Petroleum Correlation Studies. Organic Geochemistry, 24(10/11): 957-976. https://doi.org/10.1016/s0146-6380(96)00091-5
      [29] Tian, J., Yang, H. J., Zhu, Y. F., et al., 2021. Geological Conditions for Hydrocarbon Accumulation and Key Technologies for Exploration and Development in Fuman Oilfield, Tarim Basin. Acta Petrolei Sinica, 42(8): 971-985 (in Chinese with English abstract).
      [30] Thompson, K. F. M., 1979. Light Hydrocarbons in Subsurface Sediments. Geochimica et Cosmochimica Acta, 43(5): 657-672. https://doi.org/10.1016/0016-7037(79)90251-5
      [31] Wang, Y., Zhang, X. N., Liu, Y. L., et al., 2022. Controls of Strike-Slip Fault Activities on Hydrocarbon Accumulation in Tahe Oilfield, Tarim Basin. Petroleum Geology & Experiment, 44(3): 394-401 (in Chinese with English abstract).
      [32] Wang, Q. H., Yang, H. J., Wang, R. J., et al., 2021. Discovery and Exploration Technology of Fault-Controlled Large Oil and Gas Fields of Ultra-Deep Formation in Strike Slip Fault Zone in Tarim Basin. China Petroleum Exploration, 26(4): 58-72 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2021.04.005
      [33] Wang, Y. Y., Chen, J. F., Pang, X. Q., et al., 2018. Faulting Controls on Oil and Gas Composition in the Yingmai 2 Oilfield, Tarim Basin, NW China. Organic Geochemistry, 123(Suppl. 1): 48-66. https://doi.org/10.1016/j.orggeochem.2018.04.007
      [34] Wang, Z., Tang, D. Q., Kang, Z. J., et al., 2022. Development Characteristics and Reservoir Control of the Middle-North Segment of Shunbei 5 Strike-Slip Fault Zone, Tarim Basin. Earth Science. https://doi.org/10.3799/dqkx.2022.0911-29 (in Chinese with English abstract).
      [35] Wu, X., Li, D., Han, J., et al., 2022. Characteristics of Present Ultra-Deep Geothermal Field in the Northern Shuntuoguole Low Uplift, Tarim Basin. Acta Petrolei Sinica, 43(1): 29-40 (in Chinese with English abstract).
      [36] Yang, S., Wu, G. H., Zhu, Y. F., et al., 2022. Key Oil Accumulation Periods of Ultra-Deep Fault-Controlled Oil Reservoir in Northern Tarim Basin, NW China. Petroleum Exploration and Development, 49(2): 249-261 (in Chinese with English abstract).
      [37] Yang, H. J., Chen, Y. Q., Tian, J., et al., 2020. Great Discovery and Significance of Ultra-Deep Oil and Gas Exploration in Well LunTan-1 of the Tarim Basin. China Petroleum Exploration, 25(2): 62-72 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2020.02.007
      [38] Zhang, S. C., S., J., Zhang, B., et al., 2021. Genetic Mechanism and Controlling Factors of Deep Marine Light Oil and Condensate Oil in Tarim Basin. Acta Petrolei Sinica, 42(12): 1566-1580 (in Chinese with English abstract).
      [39] Zhang, S. C., Liang, D. G., Li, M. W., et al., 2002. Molecular Fossils and Oil Source Correlation in Tarim Basin. Scientific Bulletin, (S1): 16-23 (in Chinese with English abstract).
      [40] Zhang, Y., Tian, Z. J., Wu, Y. P., 2018. ESR Dating Method of Hydrocarbon Inclusions-Hosting Minerals and Its Application in Timing of Hydrocarbon Accumulation: a Case Study of Cambrian-Ordovician Reservoirs in the Northern Tarim Basin. China Petroleum Exploration, 23(3): 47-56 (in Chinese with English abstract).
      [41] Zhang, Z., Zhang, Y., Zhu, G., et al., 2019. Variations of Diamondoids Distributions in Petroleum Fluids during Migration Induced Phase Fractionation: A Case Study from the Tazhong Area, NW China. Journal of Petroleum Science and Engineering, 179: 1012-1022. doi: 10.1016/j.petrol.2019.05.016
      [42] Zhang, Z., Zhu, G., Zhang, Y., et al., 2018. The Origin and Accumulation of Multi-Phase Reservoirs in the East Tabei Uplift, Tarim Basin, China. Marine and Petroleum Geology, 98: 533-553. doi: 10.1016/j.marpetgeo.2018.08.036
      [43] Zhu, G., Li, J., Chi, L., et al., 2020. The Influence of Gas Invasion on the Composition of Crude Oil and the Controlling Factors for the Reservoir Fluid Phase. Energy & Fuels, 34(3): 2710-2725.
      [44] Zhu, G., Milkov, A. V., Zhang, Z., et al., 2019. Formation and Preservation of a Giant Petroleum Accumulation in Superdeep Carbonate Reservoirs in the Southern Halahatang Oil Field Area, Tarim Basin, China. AAPG Bulletin, 103(7): 1703-1743. https://doi.org/10.1306/11211817132
      [45] Zhu, G., Zhang, B., Yan, G. H., et al., 2014. Origin of Deep Strata Gas of Tazhong in Tarim Basin, China. Organic Geochemistry, 74: 85-97. https://doi.org/10.1016/j.orggeochem.2014.03.003
      [46] Zhu, G. Y., Li, J. F., Zhang, Z. Y. 2022. Origin and Intensity of Secondary Geochemistry of Deep Hydrocarbon Facies Diversity: A Case Study of Marine Hydrocarbon in Tarim Basin. Earth Science, 1-17 (in Chinese with English abstract).
      [47] 池林贤, 2020. 气侵作用对塔里木盆地轮古地区原油分子组成的影响(博士毕业论坛). 北京: 中国地质大学.
      [48] 丁志文, 汪如军, 陈方方, 等, 2020. 断溶体油气藏成因、成藏及油气富集规律——以塔里木盆地哈拉哈塘油田塔河南岸地区奥陶系为例. 石油勘探与开发, 47(2): 286-297. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002009.htm
      [49] 冯军, 张亚金, 张振伟, 等, 2022. 塔里木盆地古城地区奥陶系滩相白云岩气藏特征及主控因素. 石油勘探与开发, 49(1): 45-55. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202201004.htm
      [50] 韩剑发, 苏洲, 陈利新, 等, 2019. 塔里木盆地台盆区走滑断裂控储控藏作用及勘探潜力. 石油学报, 40(11): 1296-1310. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201911002.htm
      [51] 韩剑发, 邬光辉, 肖中尧, 等, 2020. 塔里木盆地寒武系烃源岩分布的重新认识及其意义. 地质科学, 55(1): 17-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202001002.htm
      [52] 韩永科, 张志遥, 陈玮岩, 等, 2021. 塔里木盆地跃满地区超深油藏成藏地质条件与演化过程. 天然气地球科学, 32(11): 1634-1645. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202111004.htm
      [53] 焦方正, 2019. 塔里木盆地深层碳酸盐岩缝洞型油藏体积开发实践与认识. 石油勘探与开发, 46(3): 552-558. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201903014.htm
      [54] 李峰, 朱光友, 吕修祥, 等, 2021. 塔里木盆地古生界海相油气来源争议与寒武系主力烃源岩的确定. 石油学报, 42(11): 1417-1437. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202111003.htm
      [55] 李明诚, 2004. 油气运移基础理论与油气勘探. 地球科学, 2004(4): 379-383. http://www.earth-science.net/article/id/1516
      [56] 李素梅, 庞雄奇, 杨海军, 等, 2010. 塔里木盆地英买力地区原油地球化学特征与族群划分. 现代地质, 2010, 24(4): 643-653. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ201004001.htm
      [57] 刘华, 景琛, 刘雅利, 等, 2018. 油气运移表征参数优选及运移方式判识. 石油实验地质, 40(3): 126-132+140. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201803017.htm
      [58] 刘艺妮, 2022. 碳酸盐缓坡沉积微相特征及其对储集层发育的制约——以塔里木盆地古城地区中一下奥陶统为例. 石油勘探与开发, 49(1): 93-105. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202201008.htm
      [59] 马安来, 何治亮, 云露, 等, 2021. 塔里木盆地顺北地区奥陶系超深层天然气地球化学特征及成因. 天然气地球科学, 32(7): 1047-1060. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX202107011.htm
      [60] 马安来, 金之钧, 朱翠山, 等, 2018. 塔里木盆地麦盖提斜坡罗斯2井奥陶系油气藏的TSR作用: 来自分子标志物的证据. 石油与天然气地质, 39(4): 730-737+748. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201804011.htm
      [61] 马永生, 蔡勋育, 云露, 等, 2022. 塔里木盆地顺北超深层碳酸盐岩油气田勘探开发实践与理论技术进展. 石油勘探与开发, 49(1): 1-17. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202201001.htm
      [62] 漆立新, 云露, 2022. 塔里木台盆区碳酸盐岩成藏模式与勘探实践. 石油实验地质, 42(5): 867-876. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202005024.htm
      [63] 田军, 杨海军, 朱永峰, 等, 2021. 塔里木盆地富满油田成藏地质条件及勘探开发关键技术. 石油学报, 42(8): 971-985. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202108001.htm
      [64] 汪洋, 张哨楠, 刘永立, 2022. 塔里木盆地塔河油田走滑断裂作用——以托甫39断裂带为例. 石油实验地质, 44(3): 394-402. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202203003.htm
      [65] 王清华, 杨海军, 汪如军, 等, 2021. 塔里木盆地超深层走滑断裂断控大油气田的勘探发现与技术创新. 中国石油勘探, 26(4): 58-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202104005.htm
      [66] 王珍, 唐大卿, 康志江, 等, 2022. 塔里木盆地顺北5号走滑断裂带中北段发育特征及控藏作用. 地球科学, 1-29.
      [67] 吴鲜, 李丹, 韩俊, 等, 2022. 塔里木盆地顺托果勒北部地区超深层现今地温场特征. 石油学报, 43(1): 29-40. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202201003.htm
      [68] 杨率, 邬光辉, 朱永峰, 等, 2022. 塔里木盆地北部地区超深断控油藏关键成藏期. 石油勘探与开发, 49(2): 249-261. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202202002.htm
      [69] 杨海军, 陈永权, 田军, 等, 2020. 塔里木盆地轮探1井超深层油气勘探重大发现与意义. 中国石油勘探, 25(2): 62-72. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202002007.htm
      [70] 张水昌, 苏劲, 张斌, 等, 2021. 塔里木盆地深层海相轻质油/凝析油的成因机制与控制因素. 石油学报, 42(12): 1566-1580. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202112003.htm
      [71] 张水昌, 梁狄刚, 黎茂稳, 等, 2002. 分子化石与塔里木盆地油源对比. 科学通报, 2002(S1): 16-23. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2002S1002.htm
      [72] 张燕, 田作基, 吴义平, 2018. 烃包裹体赋存矿物ESR测年-塔北地区寒武系-奥陶系为例. 中国石油勘探, 23(3): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201803007.htm
      [73] 朱光有, 李婧菲, 张志遥, 2022. 深层油气相态多样性成因与次生地球化学作用强度评价——以塔里木盆地海相油气为例. 地球科学, 1-17.
    • 加载中
    图(15)
    计量
    • 文章访问数:  13
    • HTML全文浏览量:  2
    • PDF下载量:  1
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-11-30
    • 刊出日期:  2023-02-25

    目录

      /

      返回文章
      返回