Morphology of Lunar Soil Returned by Chang'E-5 Mission and Implications for Space Weathering
-
摘要: 研究识别嫦娥五号返回月壤样品颗粒的类型、含量、形貌、结构和成分特征,可为嫦娥五号着陆区月壤的成因与月球表面演化过程提供关键科学依据.利用扫描电镜-能谱仪、矿物自动定量分析系统和显微激光拉曼光谱仪对嫦娥五号表取月壤样品CE5C0400(YJFM00403)进行了系统研究,发现月壤颗粒组成多样,包括斜长石、单斜辉石和橄榄石等矿物、玄武岩碎屑、黏结物和玻璃球.颗粒表面和内部微观结构复杂,呈现各种破碎、表面附着堆积、微撞击坑、溅射物等形式的微米-纳米级的形貌特征.嫦娥五号月壤的微形貌特征记录了以微陨石撞击为主导的复杂太空风化过程:一方面反复的撞击作用使月壤颗粒破碎、粒度变细,另一方面撞击引发的局部熔融又使颗粒发生胶结,同时伴随含铁矿物分解形成微-纳米级单质铁颗粒.上述过程反复进行,导致月壤颗粒大小和物相组成复杂多变.Abstract: Morphologic, structural and compositional characteristics of the lunar soil returned by Chang'E-5 provide invaluable insights into the origin of the lunar soil and the evolution history of the Moon' s surface. Using scanning electron microscopy-energy dispersive spectrometer and micro-Raman spectrometer, the scooped lunar soil sample CE5C0400 (YJFM00403) was systematically investigated. The lunar soil consists of a variety of particles, including single minerals such as plagioclase, clinopyroxene and olivine, basaltic clasts, agglutinates and glass beads. The surface features and microstructures of the particles are characterized by diverse, micrometer to nanometer scale morphological features in the form of fragmentation, surface attachment and microcratered and sputtered structures. The morphological features of Chang'E-5 lunar soil have recorded a wealth of information about the complex processes of space weathering dominated by micrometeorite impacts. Repeated impacts led to the fragmentation and fining of lunar soil particles, whereas impact-induced local melting welded the particles, accompanied by the formation of micrometer to submicrometer metal spheres through decomposition of iron-bearing minerals. Repeated cycles of these complex processes thus have resulted in significant changes in the particle sizes and mineral components of the lunar soil.
-
Key words:
- Chang'E Five /
- mare basalt /
- glass beads /
- agglutinates /
- microcraters /
- micrometeorite
-
图 2 嫦娥五号角砾岩及典型玄武岩岩屑
a.角砾岩,呈明显的碎屑结构,箭头示黏结物颗粒中的气泡;b~h.玄武岩岩屑及其矿物组成:b.微晶结构;c.次辉绿结构;d.斑状结构;e.橄榄石硅酸盐液态不混溶结构;f.玄武岩颗粒的TIMA面扫图像;g~h.长条状‒针状磷酸盐区域拉曼面扫图像(g)和拉曼光谱线(h).Ilm.钛铁矿;Ol.橄榄石;Fa.富铁橄榄石;Cpx.单斜辉石;Pl.斜长石;Ph.磷酸盐;Tro.陨硫铁;K-Si Glass.富硅钾质玻璃.图c和e引自He et al.(2022),有修改
Fig. 2. Breccia and typical basaltic clasts from the CE-5 sample
图 4 嫦娥五号月壤中黏结物的结构和成分特征
a~c. 单个黏结物颗粒,显示极不规则的外形和大量的气孔结构;d~f.黏结物颗粒表面局部放大,显示密集分布且大小不一的气孔;d~e.棒状颗粒局部被玻璃覆盖(e,箭头所示)以及玻璃表面的皱纹状微结构(f,箭头所示);g.早期黏结物(G1)破碎后被晚期玻璃质(G2)局部覆盖胶结(箭头示二者界线);h.含大量不规则纳米级颗粒的黏结物,其中心为疑似微陨石坑(箭头所示);i.内部含骸晶(箭头及方框所示)的黏结物,右下角插图为骸晶局部放大;j~k.黏结物内部的气孔和球状亚微米‒纳米金属颗粒(箭头所示);l.代表性黏结物(k)的TIMA矿物分布图. a~h.未抛光颗粒的二次电子图像;i~k.抛光树脂靶的背散射电子图像
Fig. 4. Microstructure and compositional features of agglutinates of the CE-5 lunar soil
图 7 月壤颗粒特殊附着结构
a~b.表面发育爬虫状(箭头所示)和链条状附着物(三角形所示)的颗粒;c. 穹隆状、颗粒状和链条状(三角形所示)附着物;d~e. 黏结物表面附着的纳米级颗粒;f. 黏结物表面的链条状纳米级铁质丘和较大的单质铁颗粒(阿波罗10084月壤样品,据Heiken et al., 1991修改). 图片均为二次电子图像
Fig. 7. Attachment structures from lunar soil
图 9 嫦娥五号月壤经历后期复杂改造过程的模式图
插图(1~5)示意各种太空风化产物,其中(1)和(3)分别据Li et al.(2022)和Gu et al.(2022)修改,(2)、(4)和(5)为本文资料
Fig. 9. Cartoon showing the complex reworking history of the Chang'E-5 lunar soil
-
[1] Adams, J. B., McCord, T. B., 1971. Optical Properties of Mineral Separates, Glass, and Anorthositic Fragments from Apollo Mare Samples. Geochimica et Cosmochimica Acta, 2: 2183-2195. [2] Arndt, J., Von Engelhardt, W., 1987. Formation of Apollo 17 Orange and Black Glass Beads. Journal of Geophysical Research: Solid Earth, 92(B4): E372-E376. doi: 10.1029/JB092iB04p0E372 [3] Bloch, M. R., Fechtig, H., Gentner, W., et al., 1971. Meteorite Impact Craters, Crater Simulations, and the Meteoroid Flux in the Early Solar System. Geochimica et Cosmochimica Acta, 2: 2639-2652. [4] Cai, J. M., Li, N., Cui, L., 2022. The Discovery of "Changesite"-Nuclear Technology Helps China Discover New Minerals on the Moon for the First Time. Science, Technology and Industry for National Defense, (9): 23-25 (in Chinese). [5] Cao, K. N., Dong, M. T., She, Z. B., et al., 2022. A Novel Method for Simultaneous Analysis of Particle Size and Mineralogy for Chang'E-5 Lunar Soil with Minimum Sample Consumption. Science China Earth Sciences, 65(9): 1704-1714. https://doi.org/10.1007/s11430-022-9966-5 [6] Carter, J. L., 1973. Chemistry and Surface Morphology of Soil Particles from Luna 20 LRL Sample 22003. Geochimica et Cosmochimica Acta, 37(4): 795-803. doi: 10.1016/0016-7037(73)90175-0 [7] Chao, E. C. T., Boreman, J. A., Minkin, J. A., et al., 1970. Lunar Glasses of Impact Origin: Physical and Chemical Characteristics and Geologic Implications. Journal of Geophysical Research, 75(35): 7445-7479. https://doi.org/10.1029/JB075i035p07445 [8] Che, X., Nemchin, A., Liu, D., et al., 2021. Age and Composition of Young Basalts on the Moon, Measured from Samples Returned by Chang'E-5. Science, 374(6569): 887-890. https://doi.org/10.1126/science.abl7957 [9] Gu, L., Chen, Y., Xu, Y., et al., 2022. Space Weathering of the Chang'E-5 Lunar Sample from a Mid‐High Latitude Region on the Moon. Geophysical Research Letters, 49(7): e2022GL097875. [10] Hapke, B., 2001. Space Weathering from Mercury to the Asteroid Belt. Journal of Geophysical Research: Planets, 106(E5): 10039-10073. doi: 10.1029/2000JE001338 [11] He, Q., Li, Y., Baziotis, I., et al., 2022. Detailed Petrogenesis of the Unsampled Oceanus Procellarum: The Case of the Chang'E-5 Mare Basalts. Icarus, 383: 115082. https://doi.org/10.1016/j.icarus.2022.115082 [12] Heiken, G., 1975. Petrology of Lunar Soils. Reviews of Geophysics, 13(4): 567-587. doi: 10.1029/RG013i004p00567 [13] Heiken, G. H., Vaniman, D. T., French, B. M., 1991. Lunar Sourcebook, a User's Guide to the Moon. Cambridge University Press, 72(1-2): 132-133. [14] Hörz, F., Brownlee, D. E., Fechtig, H., et al., 1975. Lunar Microcraters: Implications for the Micrometeoroid Complex. Planetary and Space Science, 23(1): 151-172. https://doi.org/https://doi.org/10.1016/0032-0633(75)90076-8 [15] Hörz, F., Hartung, J. B., Gault, D. E., 1971. Micrometeorite Craters on Lunar Rock Surfaces. Journal of Geophysical Research, 76(23): 5770-5798. doi: 10.1029/JB076i023p05770 [16] Jolliff, B. L., Hughes, J. M., Freeman, J. J., et al., 2006. Crystal Chemistry of Lunar Merrillite and Comparison to Other Meteoritic and Planetary Suites of Whitlockite and Merrillite. American Mineralogist, 91(10): 1583-1595. doi: 10.2138/am.2006.2185 [17] Kuebler, K. E., Jolliff, B. L., Wang, A., et al., 2006. Extracting Olivine (Fo-Fa) Compositions from Raman Spectral Peak Positions. Geochimica et Cosmochimica Acta, 70(24): 6201-6222. https://doi.org/https://doi.org/10.1016/j.gca.2006.07.035 [18] Li, C., Guo, Z., Li, Y., et al., 2022. Impact-Driven Disproportionation Origin of Nanophase Iron Particles in Chang'E-5 Lunar Soil Sample. Nature Astronomy, 6(10): 1156-1162. https://doi.org/10.1038/s41550-022-01763-3 [19] Li, C. L., Hu, H., Yang, M. F., et al., 2021a. Characteristics of the Lunar Samples Returned by the Chang'E-5 Mission. National Science Review, 9(2): nwab188. https://doi.org/10.1093/nsr/nwab188 [20] Li, Q. L., Zhou, Q., Liu, Y., et al., 2021b. Two-Billion-Year-Old Volcanism on the Moon from Chang'E-5 Basalts. Nature, 600(7887): 54-58. https://doi.org/10.1038/s41586-021-04100-2 [21] Li, S., Milliken, R. E., 2017. Water on the Surface of the Moon as Seen by the Moon Mineralogy Mapper: Distribution, Abundance, and Origins. Science Advances, 3(9): e1701471. https://doi.org/10.1126/sciadv.1701471 [22] Lindsay, J. F., Srnka, L. J., 1975. Galactic Dust Lanes and Lunar Soil. Nature, 257: 776-778. https://doi.org/10.1038/257776a0 [23] Long, T., Qian, Y., Norman, M.D., et al., 2022. Constraining the Formation and Transport of Lunar Impact Glasses Using the Ages and Chemical Compositions of Chang'E-5 Glass Beads. Science Advances, 8(39): eabq2542. doi: 10.1126/sciadv.abq2542 [24] Lucey, P., Korotev, R. L., Gillis, J. J., et al., 2006. Understanding the Lunar Surface and Space-Moon Interactions. Reviews in Mineralogy and Geochemistry, 60(1): 83–219. https://doi.org/10.2138/rmg.2006.60.2 [25] McKay, D. S., Fruland, R., Heiken, G., 1974. Grain Size and the Evolution of Lunar Soils. In: Dorman, J., Duennebier, F., McKay, D. S., et al., eds. Pergamon Press, New York, 887-906. [26] Mueller, G., 1971. Morphology and Petrostatistics of Regular Particles in Apollo 11 and Apollo 12 Fines. Lunar and Planetary Science Conference Proceedings, 2: 2041. [27] Pieters, C. M., Ammannito, E., Blewett, D. T., et al., 2012. Distinctive Space Weathering on Vesta from Regolith Mixing Processes. Nature, 491(7422): 79-82. https://doi.org/10.1038/nature11534 [28] Pieters, C. M., Noble, S. K., 2016. Space Weathering on Airless Bodies. Journal of Geophysical Research Planets, 121(10): 1865-1884. https://doi.org/10.1002/2016je005128 [29] Pieters, C. M., Taylor, L. A., Noble, S. K., et al., 2000. Space Weathering on Airless Bodies: Resolving a Mystery with Lunar Samples. Meteoritics & Planetary Science, 35(5): 1101-1107. https://doi.org/10.1111/j.1945-5100.2000.tb01496.x [30] Qian, Y., Xiao, L., Wang, Q., et al., 2021. China's Chang'E-5 Landing Site: Geology, Stratigraphy, and Provenance of Materials. Earth and Planetary Science Letters, 561: 116855. https://doi.org/10.1016/j.epsl.2021.116855 [31] Rode, O. D., Ivanov, A. V., Nazarov, M. A., et al., 1979. Atlas of Photomicrographs of the Surface Structures of Lunar Regolith Particles. Springer Science & Business Media, Amsterdam. [32] Sharma, S. K., Simons, B., Yoder, H. S., 1983. Raman Study of Anorthite, Calcium Tschermak's Pyroxene, and Gehlenite in Crystalline and Glassy States. American Mineralogist, 68(11-12): 1113-1125. [33] Taylor, L. A., Pieters, C. M., Keller, L. P., et al., 2001. Lunar Mare Soils: Space Weathering and the Major Effects of Surface‐Correlated Nanophase Fe. Journal of Geophysical Research: Planets, 106(E11): 27985-27999. [34] Tian, H. C., Wang, H., Chen, Y., et al., 2021. Non-KREEP Origin for Chang'E-5 Basalts in the Procellarum KREEP Terrane. Nature, 600(7887): 59-63. https://doi.org/10.1038/s41586-021-04119-5 [35] Wang, A., Jolliff, B. L., Haskin, L. A., et al., 2001. Characterization and Comparison of Structural and Compositional Features of Planetary Quadrilateral Pyroxenes by Raman Spectroscopy. American Mineralogist, 86(7-8): 790-806. https://doi.org/10.2138/am-2001-0703 [36] Xiao, Z., Yan, P., Wu, B., et al., 2022. Translucent Glass Globules on the Moon. Science Bulletin, 67(4): 355-358. https://doi.org/https://doi.org/10.1016/j.scib.2021.11.004 [37] Yang, W., Chen, Y., Wang, H., et al., 2022. Geochemistry of Impact Glasses in the Chang'E-5 Regolith: Constraints on Impact Melting and the Petrogenesis of Local Basalt. Geochimica et Cosmochimica Acta, 335: 183-196. [38] Zhang, H., Zhang, X., Zhang, G., et al., 2021. Size, Morphology, and Composition of Lunar Samples Returned by Chang'E-5 Mission. Science China Physics, Mechanics & Astronomy, 65(2): 1-8. https://doi.org/10.1007/s11433-021-1818-1 [39] Zhang, P., Tai, K., Li, Y., et al., 2022. Diverse Space Weathering Effects on Asteroid Surfaces as Inferred via Laser Irradiation of Meteorites. Astronomy & Astrophysics, 659: A78. https://doi.org/10.1051/0004-6361/202142590 [40] Zhou, C., Tang, H., Li, X., et al., 2022. Chang'E-5 Samples Reveal High Water Content in Lunar Minerals. Nature Communications, 13(1): 5336. https://doi.org/10.1038/s41467-022-33095-1 [41] 蔡金曼, 李楠, 崔力, 2022. "嫦娥石"发现记——核技术助力我国首次发现月球新矿物. 国防科技工业, (9): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGBG202209005.htm