• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    嫦娥五号返回月壤微观形貌特征及其对太空风化的指示意义

    顾铱 孙继尧 肖倩 李毅恒 王心怡 曹克楠 刘亦婷 何琦 杨浩 陈倩 杨金昆 宋文磊 宗克清 张文 巫翔 胡兆初 肖龙 佘振兵 汪在聪

    顾铱, 孙继尧, 肖倩, 李毅恒, 王心怡, 曹克楠, 刘亦婷, 何琦, 杨浩, 陈倩, 杨金昆, 宋文磊, 宗克清, 张文, 巫翔, 胡兆初, 肖龙, 佘振兵, 汪在聪, 2022. 嫦娥五号返回月壤微观形貌特征及其对太空风化的指示意义. 地球科学, 47(11): 4145-4160. doi: 10.3799/dqkx.2022.432
    引用本文: 顾铱, 孙继尧, 肖倩, 李毅恒, 王心怡, 曹克楠, 刘亦婷, 何琦, 杨浩, 陈倩, 杨金昆, 宋文磊, 宗克清, 张文, 巫翔, 胡兆初, 肖龙, 佘振兵, 汪在聪, 2022. 嫦娥五号返回月壤微观形貌特征及其对太空风化的指示意义. 地球科学, 47(11): 4145-4160. doi: 10.3799/dqkx.2022.432
    Gu Yi, Sun Jiyao, Xiao Qian, Li Yiheng, Wang Xinyi, Cao Kenan, Liu Yiting, He Qi, Yang Hao, Chen Qian, Yang Jinkun, Song Wenlei, Zong Keqing, Zhang Wen, Wu Xiang, Hu Zhaochu, Xiao Long, She Zhenbing, Wang Zaicong, 2022. Morphology of Lunar Soil Returned by Chang'E-5 Mission and Implications for Space Weathering. Earth Science, 47(11): 4145-4160. doi: 10.3799/dqkx.2022.432
    Citation: Gu Yi, Sun Jiyao, Xiao Qian, Li Yiheng, Wang Xinyi, Cao Kenan, Liu Yiting, He Qi, Yang Hao, Chen Qian, Yang Jinkun, Song Wenlei, Zong Keqing, Zhang Wen, Wu Xiang, Hu Zhaochu, Xiao Long, She Zhenbing, Wang Zaicong, 2022. Morphology of Lunar Soil Returned by Chang'E-5 Mission and Implications for Space Weathering. Earth Science, 47(11): 4145-4160. doi: 10.3799/dqkx.2022.432

    嫦娥五号返回月壤微观形貌特征及其对太空风化的指示意义

    doi: 10.3799/dqkx.2022.432
    基金项目: 

    国家航天局民用航天技术预研究项目 D020205

    中国地质大学生物地质与环境地质国家重点实验室 GBL12101

    详细信息
      作者简介:

      顾铱(2002—),女,本科生,地质学专业.ORCID:0000-0001-7644-3949. E-mail:631348354@qq.com

      通讯作者:

      佘振兵,E-mail:zbsher@cug.edu.cn

      汪在聪,E-mail:zaicongwang@cug.edu.cn

    • 中图分类号: P1

    Morphology of Lunar Soil Returned by Chang'E-5 Mission and Implications for Space Weathering

    • 摘要: 研究识别嫦娥五号返回月壤样品颗粒的类型、含量、形貌、结构和成分特征,可为嫦娥五号着陆区月壤的成因与月球表面演化过程提供关键科学依据.利用扫描电镜-能谱仪、矿物自动定量分析系统和显微激光拉曼光谱仪对嫦娥五号表取月壤样品CE5C0400(YJFM00403)进行了系统研究,发现月壤颗粒组成多样,包括斜长石、单斜辉石和橄榄石等矿物、玄武岩碎屑、黏结物和玻璃球.颗粒表面和内部微观结构复杂,呈现各种破碎、表面附着堆积、微撞击坑、溅射物等形式的微米-纳米级的形貌特征.嫦娥五号月壤的微形貌特征记录了以微陨石撞击为主导的复杂太空风化过程:一方面反复的撞击作用使月壤颗粒破碎、粒度变细,另一方面撞击引发的局部熔融又使颗粒发生胶结,同时伴随含铁矿物分解形成微-纳米级单质铁颗粒.上述过程反复进行,导致月壤颗粒大小和物相组成复杂多变.

       

    • 图  1  嫦娥五号月壤主要单矿物颗粒形貌及成分

      a.月壤颗粒的暗场反射光图片,黄色为辉石,白色为斜长石;b~d.不同单矿物颗粒的光学照片(b,d.暗场反射光,c.明场反射光);e~g.辉石(e.箭头示解理,插图中三角形示裂纹)、斜长石(f.箭头示解理,插图中三角形示双晶纹)和橄榄石(g)的二次电子图像;h.主要矿物的EDS谱线;i.主要矿物的拉曼光谱线. 图b~c中+号表示拉曼分析点位,e~g中的+号表示EDS分析点位

      Fig.  1.  Morphology and composition of single-mineral particles from the CE-5 lunar soil

      图  2  嫦娥五号角砾岩及典型玄武岩岩屑

      a.角砾岩,呈明显的碎屑结构,箭头示黏结物颗粒中的气泡;b~h.玄武岩岩屑及其矿物组成:b.微晶结构;c.次辉绿结构;d.斑状结构;e.橄榄石硅酸盐液态不混溶结构;f.玄武岩颗粒的TIMA面扫图像;g~h.长条状‒针状磷酸盐区域拉曼面扫图像(g)和拉曼光谱线(h).Ilm.钛铁矿;Ol.橄榄石;Fa.富铁橄榄石;Cpx.单斜辉石;Pl.斜长石;Ph.磷酸盐;Tro.陨硫铁;K-Si Glass.富硅钾质玻璃.图c和e引自He et al.(2022),有修改

      Fig.  2.  Breccia and typical basaltic clasts from the CE-5 sample

      图  3  嫦娥五号玄武岩岩屑的物相组成及其比例

      Fig.  3.  Mineral constituents and proportions of basaltic clasts from the CE-5 soil

      图  4  嫦娥五号月壤中黏结物的结构和成分特征

      a~c. 单个黏结物颗粒,显示极不规则的外形和大量的气孔结构;d~f.黏结物颗粒表面局部放大,显示密集分布且大小不一的气孔;d~e.棒状颗粒局部被玻璃覆盖(e,箭头所示)以及玻璃表面的皱纹状微结构(f,箭头所示);g.早期黏结物(G1)破碎后被晚期玻璃质(G2)局部覆盖胶结(箭头示二者界线);h.含大量不规则纳米级颗粒的黏结物,其中心为疑似微陨石坑(箭头所示);i.内部含骸晶(箭头及方框所示)的黏结物,右下角插图为骸晶局部放大;j~k.黏结物内部的气孔和球状亚微米‒纳米金属颗粒(箭头所示);l.代表性黏结物(k)的TIMA矿物分布图. a~h.未抛光颗粒的二次电子图像;i~k.抛光树脂靶的背散射电子图像

      Fig.  4.  Microstructure and compositional features of agglutinates of the CE-5 lunar soil

      图  5  嫦娥五号样品不同粒径和形态的玻璃

      a~j. 玻璃球:a~b.球形玻璃球;c.椭球形玻璃球;d~g.复合形态玻璃球,包括似纺锤状(d)、花瓶状(e)、双球状(f)和平顶状(g);h.抛光靶中的玻璃球显示均一内部结构;i~k.半破碎的玻璃球(i)及其凹坑边缘液滴状附着物(j.箭头所示)和内部次级凹坑中的纳米颗粒集合体(k);l.玻璃碎片;除h为背散射电子图像外,其余均为二次电子图像

      Fig.  5.  Various glasses in the CE-5 lunar soil

      图  6  嫦娥五号月壤颗粒表面的破碎结构

      a.沿解理面发育的层状破裂(箭头示锐角状破碎结构);b~c.颗粒表面的阶梯状破裂(b)及其局部放大(c);d~e.颗粒表面的“裙状”纹理(d)及其局部放大(e);f.弧形纹理结构;g. 齿状破碎结构;h~i. 发育气孔破碎结构的颗粒(h)及其局部放大(i). 图片均为二次电子图像

      Fig.  6.  Broken surfaces of the CE-5 lunar soil particles

      图  7  月壤颗粒特殊附着结构

      a~b.表面发育爬虫状(箭头所示)和链条状附着物(三角形所示)的颗粒;c. 穹隆状、颗粒状和链条状(三角形所示)附着物;d~e. 黏结物表面附着的纳米级颗粒;f. 黏结物表面的链条状纳米级铁质丘和较大的单质铁颗粒(阿波罗10084月壤样品,据Heiken et al., 1991修改). 图片均为二次电子图像

      Fig.  7.  Attachment structures from lunar soil

      图  8  微撞击坑及相关结构

      a~b.微米级近垂直撞击坑(箭头所示)及其溅射物;c.纳米级近垂直撞击坑;d.大小不等的倾斜角度撞击坑群;e.图d中方框内现象放大;f.近平行撞击划痕.图片均为二次电子图像

      Fig.  8.  Microcraters and related structures

      图  9  嫦娥五号月壤经历后期复杂改造过程的模式图

      插图(1~5)示意各种太空风化产物,其中(1)和(3)分别据Li et al.(2022)Gu et al.(2022)修改,(2)、(4)和(5)为本文资料

      Fig.  9.  Cartoon showing the complex reworking history of the Chang'E-5 lunar soil

    • [1] Adams, J. B., McCord, T. B., 1971. Optical Properties of Mineral Separates, Glass, and Anorthositic Fragments from Apollo Mare Samples. Geochimica et Cosmochimica Acta, 2: 2183-2195.
      [2] Arndt, J., Von Engelhardt, W., 1987. Formation of Apollo 17 Orange and Black Glass Beads. Journal of Geophysical Research: Solid Earth, 92(B4): E372-E376. doi: 10.1029/JB092iB04p0E372
      [3] Bloch, M. R., Fechtig, H., Gentner, W., et al., 1971. Meteorite Impact Craters, Crater Simulations, and the Meteoroid Flux in the Early Solar System. Geochimica et Cosmochimica Acta, 2: 2639-2652.
      [4] Cai, J. M., Li, N., Cui, L., 2022. The Discovery of "Changesite"-Nuclear Technology Helps China Discover New Minerals on the Moon for the First Time. Science, Technology and Industry for National Defense, (9): 23-25 (in Chinese).
      [5] Cao, K. N., Dong, M. T., She, Z. B., et al., 2022. A Novel Method for Simultaneous Analysis of Particle Size and Mineralogy for Chang'E-5 Lunar Soil with Minimum Sample Consumption. Science China Earth Sciences, 65(9): 1704-1714. https://doi.org/10.1007/s11430-022-9966-5
      [6] Carter, J. L., 1973. Chemistry and Surface Morphology of Soil Particles from Luna 20 LRL Sample 22003. Geochimica et Cosmochimica Acta, 37(4): 795-803. doi: 10.1016/0016-7037(73)90175-0
      [7] Chao, E. C. T., Boreman, J. A., Minkin, J. A., et al., 1970. Lunar Glasses of Impact Origin: Physical and Chemical Characteristics and Geologic Implications. Journal of Geophysical Research, 75(35): 7445-7479. https://doi.org/10.1029/JB075i035p07445
      [8] Che, X., Nemchin, A., Liu, D., et al., 2021. Age and Composition of Young Basalts on the Moon, Measured from Samples Returned by Chang'E-5. Science, 374(6569): 887-890. https://doi.org/10.1126/science.abl7957
      [9] Gu, L., Chen, Y., Xu, Y., et al., 2022. Space Weathering of the Chang'E-5 Lunar Sample from a Mid‐High Latitude Region on the Moon. Geophysical Research Letters, 49(7): e2022GL097875.
      [10] Hapke, B., 2001. Space Weathering from Mercury to the Asteroid Belt. Journal of Geophysical Research: Planets, 106(E5): 10039-10073. doi: 10.1029/2000JE001338
      [11] He, Q., Li, Y., Baziotis, I., et al., 2022. Detailed Petrogenesis of the Unsampled Oceanus Procellarum: The Case of the Chang'E-5 Mare Basalts. Icarus, 383: 115082. https://doi.org/10.1016/j.icarus.2022.115082
      [12] Heiken, G., 1975. Petrology of Lunar Soils. Reviews of Geophysics, 13(4): 567-587. doi: 10.1029/RG013i004p00567
      [13] Heiken, G. H., Vaniman, D. T., French, B. M., 1991. Lunar Sourcebook, a User's Guide to the Moon. Cambridge University Press, 72(1-2): 132-133.
      [14] Hörz, F., Brownlee, D. E., Fechtig, H., et al., 1975. Lunar Microcraters: Implications for the Micrometeoroid Complex. Planetary and Space Science, 23(1): 151-172. https://doi.org/https://doi.org/10.1016/0032-0633(75)90076-8
      [15] Hörz, F., Hartung, J. B., Gault, D. E., 1971. Micrometeorite Craters on Lunar Rock Surfaces. Journal of Geophysical Research, 76(23): 5770-5798. doi: 10.1029/JB076i023p05770
      [16] Jolliff, B. L., Hughes, J. M., Freeman, J. J., et al., 2006. Crystal Chemistry of Lunar Merrillite and Comparison to Other Meteoritic and Planetary Suites of Whitlockite and Merrillite. American Mineralogist, 91(10): 1583-1595. doi: 10.2138/am.2006.2185
      [17] Kuebler, K. E., Jolliff, B. L., Wang, A., et al., 2006. Extracting Olivine (Fo-Fa) Compositions from Raman Spectral Peak Positions. Geochimica et Cosmochimica Acta, 70(24): 6201-6222. https://doi.org/https://doi.org/10.1016/j.gca.2006.07.035
      [18] Li, C., Guo, Z., Li, Y., et al., 2022. Impact-Driven Disproportionation Origin of Nanophase Iron Particles in Chang'E-5 Lunar Soil Sample. Nature Astronomy, 6(10): 1156-1162. https://doi.org/10.1038/s41550-022-01763-3
      [19] Li, C. L., Hu, H., Yang, M. F., et al., 2021a. Characteristics of the Lunar Samples Returned by the Chang'E-5 Mission. National Science Review, 9(2): nwab188. https://doi.org/10.1093/nsr/nwab188
      [20] Li, Q. L., Zhou, Q., Liu, Y., et al., 2021b. Two-Billion-Year-Old Volcanism on the Moon from Chang'E-5 Basalts. Nature, 600(7887): 54-58. https://doi.org/10.1038/s41586-021-04100-2
      [21] Li, S., Milliken, R. E., 2017. Water on the Surface of the Moon as Seen by the Moon Mineralogy Mapper: Distribution, Abundance, and Origins. Science Advances, 3(9): e1701471. https://doi.org/10.1126/sciadv.1701471
      [22] Lindsay, J. F., Srnka, L. J., 1975. Galactic Dust Lanes and Lunar Soil. Nature, 257: 776-778. https://doi.org/10.1038/257776a0
      [23] Long, T., Qian, Y., Norman, M.D., et al., 2022. Constraining the Formation and Transport of Lunar Impact Glasses Using the Ages and Chemical Compositions of Chang'E-5 Glass Beads. Science Advances, 8(39): eabq2542. doi: 10.1126/sciadv.abq2542
      [24] Lucey, P., Korotev, R. L., Gillis, J. J., et al., 2006. Understanding the Lunar Surface and Space-Moon Interactions. Reviews in Mineralogy and Geochemistry, 60(1): 83–219. https://doi.org/10.2138/rmg.2006.60.2
      [25] McKay, D. S., Fruland, R., Heiken, G., 1974. Grain Size and the Evolution of Lunar Soils. In: Dorman, J., Duennebier, F., McKay, D. S., et al., eds. Pergamon Press, New York, 887-906.
      [26] Mueller, G., 1971. Morphology and Petrostatistics of Regular Particles in Apollo 11 and Apollo 12 Fines. Lunar and Planetary Science Conference Proceedings, 2: 2041.
      [27] Pieters, C. M., Ammannito, E., Blewett, D. T., et al., 2012. Distinctive Space Weathering on Vesta from Regolith Mixing Processes. Nature, 491(7422): 79-82. https://doi.org/10.1038/nature11534
      [28] Pieters, C. M., Noble, S. K., 2016. Space Weathering on Airless Bodies. Journal of Geophysical Research Planets, 121(10): 1865-1884. https://doi.org/10.1002/2016je005128
      [29] Pieters, C. M., Taylor, L. A., Noble, S. K., et al., 2000. Space Weathering on Airless Bodies: Resolving a Mystery with Lunar Samples. Meteoritics & Planetary Science, 35(5): 1101-1107. https://doi.org/10.1111/j.1945-5100.2000.tb01496.x
      [30] Qian, Y., Xiao, L., Wang, Q., et al., 2021. China's Chang'E-5 Landing Site: Geology, Stratigraphy, and Provenance of Materials. Earth and Planetary Science Letters, 561: 116855. https://doi.org/10.1016/j.epsl.2021.116855
      [31] Rode, O. D., Ivanov, A. V., Nazarov, M. A., et al., 1979. Atlas of Photomicrographs of the Surface Structures of Lunar Regolith Particles. Springer Science & Business Media, Amsterdam.
      [32] Sharma, S. K., Simons, B., Yoder, H. S., 1983. Raman Study of Anorthite, Calcium Tschermak's Pyroxene, and Gehlenite in Crystalline and Glassy States. American Mineralogist, 68(11-12): 1113-1125.
      [33] Taylor, L. A., Pieters, C. M., Keller, L. P., et al., 2001. Lunar Mare Soils: Space Weathering and the Major Effects of Surface‐Correlated Nanophase Fe. Journal of Geophysical Research: Planets, 106(E11): 27985-27999.
      [34] Tian, H. C., Wang, H., Chen, Y., et al., 2021. Non-KREEP Origin for Chang'E-5 Basalts in the Procellarum KREEP Terrane. Nature, 600(7887): 59-63. https://doi.org/10.1038/s41586-021-04119-5
      [35] Wang, A., Jolliff, B. L., Haskin, L. A., et al., 2001. Characterization and Comparison of Structural and Compositional Features of Planetary Quadrilateral Pyroxenes by Raman Spectroscopy. American Mineralogist, 86(7-8): 790-806. https://doi.org/10.2138/am-2001-0703
      [36] Xiao, Z., Yan, P., Wu, B., et al., 2022. Translucent Glass Globules on the Moon. Science Bulletin, 67(4): 355-358. https://doi.org/https://doi.org/10.1016/j.scib.2021.11.004
      [37] Yang, W., Chen, Y., Wang, H., et al., 2022. Geochemistry of Impact Glasses in the Chang'E-5 Regolith: Constraints on Impact Melting and the Petrogenesis of Local Basalt. Geochimica et Cosmochimica Acta, 335: 183-196.
      [38] Zhang, H., Zhang, X., Zhang, G., et al., 2021. Size, Morphology, and Composition of Lunar Samples Returned by Chang'E-5 Mission. Science China Physics, Mechanics & Astronomy, 65(2): 1-8. https://doi.org/10.1007/s11433-021-1818-1
      [39] Zhang, P., Tai, K., Li, Y., et al., 2022. Diverse Space Weathering Effects on Asteroid Surfaces as Inferred via Laser Irradiation of Meteorites. Astronomy & Astrophysics, 659: A78. https://doi.org/10.1051/0004-6361/202142590
      [40] Zhou, C., Tang, H., Li, X., et al., 2022. Chang'E-5 Samples Reveal High Water Content in Lunar Minerals. Nature Communications, 13(1): 5336. https://doi.org/10.1038/s41467-022-33095-1
      [41] 蔡金曼, 李楠, 崔力, 2022. "嫦娥石"发现记——核技术助力我国首次发现月球新矿物. 国防科技工业, (9): 23-25. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGBG202209005.htm
    • 加载中
    图(9)
    计量
    • 文章访问数:  362
    • HTML全文浏览量:  119
    • PDF下载量:  73
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-09-30
    • 网络出版日期:  2022-12-07
    • 刊出日期:  2022-11-25

    目录

      /

      返回文章
      返回