Stages of Hydrocarbon Accumulationand Fluid Evolution of Qixia Reservoir in Shuangyushi Area, Northwest Sichuan Basin, China
-
摘要: 以岩心观察描述为基础,结合偏光显微镜薄片、阴极发光及流体包裹体等分析手段,探讨了川西北双鱼石构造栖霞组储层成岩和成藏期次及流体演化. 结果表明,川西北双鱼石构造栖霞组上部储层整体为亮晶云质灰岩,可将其成岩矿物充填划分为四期,依次为早期微细晶方解石、重结晶的方解石、围岩孔洞中共生的石英钠长石和沥青、裂缝中充填的白云石和方解石. 结合不同成岩阶段流体包裹体特征与埋藏史分析表明,二叠到中三叠纪研究区整体沉降接受沉积,埋深加大并受峨眉地裂伴随的热液作用影响,形成重结晶方解石,早中三叠-中侏罗纪下寒武统烃源岩达到生油高峰,使得第一期原油充注到栖霞组储层,随后二叠系中下部烃源岩在早侏罗-早白垩世达到生油高峰,即第二期原油充注. 富硅热流体的充注形成石英和钠长石,同时由于埋深和热流体的改造,部分原油裂解生成沥青,古气藏开始逐步成藏. 燕山晚期到喜山期龙门山地区在中生代中晚期经历了持续的逆冲构造变形,在构造裂缝充填白云石和方解石. 裂缝充填方解石脉中捕获含甲烷包裹体和沥青包裹体,即古气藏随之调整,整体呈现早成藏晚调整的特点.Abstract: Based on drilling core observation, combined polarizing microscopic observation forthin section, cathodoluminescence and fluid inclusion analysis, this paper discusses hydrocarbon accumulation and fluid evolution of Qixia Formation in Shuangyushi structure in northwestern Sichuan. There sults show that the upper reservoir of Qixia Formation of Shuangyushi structure in northwest Sichuan is sparry cloud limestone, and its fillings of diagenetic mineral can be divided into four stages, including early fine crystalline calcite, recrystallized calcite, quartz and albite filled in early limestone holes, and dolomite and calcite filled in pore cracks. Combined with the characteristics of fluid inclusions in different diagenetic stages and burial history analysis, it is found that study area was settled and accepted deposition from Permian to Middle Triassic, recrystallized calcite was formed due to the increase of burial depth and hydrothermal action associated with Emei taphrogeny.The early⁃middle Triassic to middle Jurassic lower Cambrian source rocks reached the peak of oil generation, which made the first stage of oil charged into Qixia Formation reservoir. Then the middle and lower Permian source rocks reached the peak of oil generation in the Early Jurassic and Early Cretaceous, that is, the second stage of oil charging. Quartz and albite were formed due to the charging of silica⁃rich hydrothermal fluid. At the same time, due to the burial depth and the transformation of hydrothermal fluid, part of the crude oil cracked into bitumen, and the ancient gas reservoir began to form gradually. The Longmenshan area experienced continuous thrust deformation in the middle and late Mesozoic from late Yanshanian to Himalayan, structural fractures were filled with dolomite and calcite. Methane and asphalt inclusions were captured in the veincalcite, and the ancient gas reservoirs were adjusted accordingly, which indicated the characteristics of early accumulation and late adjustment.
-
图 1 双鱼石区块构造位置及沉积地层特征
据曾鑫耀等(2020)、易士威等(2021),有修改
Fig. 1. Structural location and sedimentary stratigraphic characteristics of Shuangyushi area
图 2 川西北地区栖霞组亮晶云质灰岩镜下特征
样品取自ST2井,5 744.02~5 744.17 m;a.栖霞组发育亮晶云质灰岩,围岩中发育孔洞和裂缝,围岩孔隙多不规则,且保留生物碎屑,孔洞中充填方解石,脉体中充填方解石和白云石;b.正交光下方解石和白云石呈高级白干涉色,方解石发育聚片双晶;c.裂缝较发育,并为方解石脉充填,孔洞中发育自生石英;d.石英正交光下呈灰白干涉色;e.围岩中发育自生石英和长石,长石呈板条状,孔隙多见沥青充填;f.长石正交光下呈灰白干涉色
Fig. 2. Microscopic characteristics of sparry dolomitic limestone of Qixia Formation in northwest Sichuan
图 3 川西北地区栖霞组岩相学特征
样品取自ST2井,5 744.02~5 744.17 m;a.裂缝中充填的方解石和白云石;b.阴极发光下围岩微细晶方解石、重结晶方解石和裂缝中充填的方解石不发光,裂缝充填的白云石呈橘红色;c.裂缝不同位置充填的方解石和白云石;d.白云石充填在裂缝边部,方解石充填在裂缝中部;e.围岩孔洞中充填的石英、长石和沥青;f.阴极发光下石英、长石呈蓝紫色;g.石英在围岩中零星分布,沥青分布在石英颗粒周围;h.阴极发光下石英呈蓝紫色,脉体中白云石呈橘红色
Fig. 3. Petrographic characteristics of Qixia Formation in northwest Sichuan
图 4 各成岩期次矿物中流体包裹体镜下特征及拉曼谱图
样品取自ST2井,5 744.02~5 744.17 m;a1.重结晶方解石(Ⅱ)中沥青包裹体,呈长条状;a2.沥青的拉曼峰在1 347 cm-1和1 592 cm-1;b1.石英中(Ⅲ)发育含甲烷沥青包裹体;b2.石英(Ⅲ)拉曼峰在464 cm-1,沥青拉曼峰在1 339 cm-1和1 605 cm-1,甲烷的拉曼峰在2 909 cm-1,拉曼谱图中可见围岩方解石信号,1 087 cm-1;c1.石英(Ⅲ)中发育沥青包裹体;c2.沥青拉曼峰在1 341 cm-1和1 607 cm-1;d1.石英颗粒周围的沥青(Ⅲ);d2.沥青的拉曼峰在1 339 cm-1和1 599 cm-1;e1.钠长石(Ⅲ)呈板条状,其中发育盐水包裹体;e2.钠长石拉曼峰在478 cm-1和507 cm-1;f1.钠长石(Ⅲ)中发育沥青包裹体;f2.可见围岩方解石信号,拉曼峰在1 087 cm-1,沥青的拉曼峰在1 337 cm-1和1 605 cm-1;g1.钠长石(Ⅲ)中发育含甲烷包裹体;g2.甲烷拉曼峰在2 911 cm-1;h1.裂缝方解石(Ⅳ)中盐水包裹体;h2.方解石(Ⅳ)拉曼峰在1 085 cm-1;i1.裂缝方解石(Ⅳ)中含甲烷包裹体;i2.甲烷的拉曼峰在2 914 cm-1;j1.发育在裂缝边部的白云石(Ⅳ);j2.白云石的拉曼峰在1 097 cm-1
Fig. 4. Microscopic characteristics and Raman spectra of fluid inclusions in minerals of different diagenetic stages
表 1 ST2井栖霞组流体包裹体PVT模拟结果
Table 1. PVT simulation results of fluid inclusions in Qixia Formation of well ST2
井号 期次 包裹体类型 寄主矿物 Th(℃) Tm(℃) 盐度(%) Tt(℃) Pt(MPa) 压力系数 5 741.08~5 741.21 Ⅱ 原生 方解石 91.9 -6.0 9.21 99.9 18.9 0.97 Ⅱ 原生 方解石 117.0 -1.2 2.07 131.3 27.0 1.05 Ⅱ 原生 方解石 103.6 -0.6 1.06 114.5 20.6 0.92 5 744.02~5 744.17 Ⅲ 原生 钠长石 190.1 -10.2 14.15 220.3 57.1 1.31 Ⅲ 原生 钠长石 201.7 -4.2 6.74 233.3 51.7 1.11 Ⅳ 原生 方解石 152.5 -3.0 4.96 175.3 41.9 1.33 Ⅳ 原生 方解石 152.4 -3.4 5.56 175.2 42.4 1.35 Ⅳ 原生 方解石 138.6 -3.0 4.96 158.3 37.4 1.33 Ⅳ 原生 方解石 192.2 -5.5 8.55 221.7 51.0 1.26 Ⅳ 原生 方解石 167.0 -1.2 2.07 191.9 42.9 1.13 Ⅳ 原生 方解石 159.3 -0.7 1.23 183.1 41.5 1.15 注:表中数据均由倪蕊在中国石油大学(华东)流体包裹体实验室完成,流体包裹体均一温度和冰点测试过标准样品校正后,误差为±0.1 ℃ -
[1] Bodnar, R. J., 1993. Revised Equation and Table for Determining the Freezing Point Depression of H2O⁃NaCl Solutions. Geochimica et Cosmochimica Acta, 57(3): 683-684. https://doi.org/10.1016/0016⁃7037(93)90378⁃A. [2] Chen, Z. X., Li, W., Wang, L. N. et al., 2019. Structural Geology and Favorable Exploration Prospect Belts in Northwestern Sichuan Basin, SW China. Petroleum Exploration and Development, 46(2): 397-408(in Chinese with English abstract). [3] Davies, G. R., Smith L. B., 2006. Structurally Controlled Hydrothermal Dolomite Reservoir Facies: an Overview. AAPG Bulletin, 90 (11): 1641-1690. https://doi.org/10.1306/05220605164 [4] Gao, G. H., Cao, J., Luo, B., 2020. Evidence of the Middle Permian Marine Mixed Type Source Rocks in the Northwestern Sichuan Basin and Its Contribution to Large Gas Reservoirs in Shuangyushi Area. Acta Petrolei Sinica, 41(4): 433-445(in Chinese with English abstract). [5] Guo, D. X., Feng, X., 1990. Is Vitrinite Reflectance the General Criterion of Maturation? Petroleum Geology & Experiment, (4): 421-425(in Chinese with English abstract). [6] Huang, S. J., Li, X. N., Huang, K. K., et al., 2012. Authigenic Noncarbonate Minerals in Hydrothermal Dolomite of Middle Permian Qixia Formation in the West of Sichuan Basin, China. Journal of Chengdu University of Technology (Natural Science Edition), 39(4): 343-352(in Chinese with English abstract). [7] Jiao, Y. Q., Wu, F. D., Li, S. T., 2000. Diagenism and Thermal Fluid Episode Migration Events in Luanping Basin, China. Acta Petrologica Sinica, 16(4): 615-622(in Chinese with English abstract). [8] Jin, Z. J., Zhu, D. Y., Hu, W. X., et al., 2006. Geological and Geochemical Signatures of Hydrothermal Activity and Their Influence on Carbonate Reservoir Beds in the Tarim Basin. Acta Geologica Sinca. (2): 245-253+314(in Chinese with English abstract). [9] Jiu, B., Huang, W. H., Mu, N. N., et al., 2020. Effect of Hydrothermal Fluids on the Ultra⁃Deep Ordovician Carbonate Rocks in Tarim Basin, China, Journal of Petroleum Science and Engineering, 194: 107445. https://doi.org/10.1016/j.petrol.2020.107445. [10] Knight, C. L., Bodnar, R. J. 1989. Synthetic Fluid Inclusions: IX. Critical PVTX Properties of NaCl⁃H2O Solutions. Geochimica et Cosmochimica Acta, 53: 3-8. [11] Lai, X. Y., Yu, B. Y., Chen, J. Y., et al., 2004. Thermodynamic Conditions for Dissolution of Clastic Skeleton Particles and Its Application in Kela 2 Gas Field. Science in China, (1): 45-53(in Chinese). [12] Li, H., Zhang, W., Zhu, Y. Y., 2014. Hydrothermalism of Dolomites in the Middle Permian, Western⁃to⁃Northern Sichuan Basin. Natural Gas Technology and Economy, 8(6): 12-15+77(in Chinese with English abstract). doi: 10.3969/j.issn.2095-1132.2014.06.004 [13] Li, J., She, Y. Q., Gao, Y., et al., 2019. Onshore Deep and Ultra⁃Deep Natural Gas Exploration Fields and Potentials in China. China Petroleum Exploration, 24(4): 403-417(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2019.04.001 [14] Li, R., Hu, M. Y., Yang, W., et al., 2019. Sedimentary Facies Model and Favorable Reservoir Distribution of theMiddle Permian in Sichuan Basin. Oil & Gas Geology, 40(2): 369-379(in Chinese with English abstract). [15] Li, Y., 2018. Structural Characteristics of the Middle Permian in the Shuangyushi-Zhongba Area, Longmenshan Piedmont(Dissertation). Southwest Petroleum University, Chengdu, 53-54(in Chinese with English abstract). [16] Liang, H., Xiao, F. S., Ran, Q., et al., 2018. Accurate Structural Modeling on the Northern Section of Complex Structural Belt at Longmenshan Piedmont in the Sichuan Basin and Its Implications for Oil and Gas Exploration. Natural Gas Industry, 38(11): 26-32 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2018.11.003 [17] Liu, J. Z., Liu, W., Wang, C. W., 2004. Hydrothermal Fluids Flow Types in Sedimentary Basinsand Its Significance of Petroleum Geology. Offshore Oil, (3): 8-13(in Chinese with English abstract). doi: 10.3969/j.issn.1008-2336.2004.03.002 [18] Liu, L., Yu, J. M., Sun, X. M., et al., 2000. Basin Characteristics of Thermal Convection Diagenesis and Its Research Significance. Advance in Earth Sciences, (5): 583-585(in Chinese with English abstract). [19] Liu, S. G., Huang, W. M., Chen, C. H., etal., 2008. Primary Study on Hydrothermal Fluids Activities and Their Effectiveness on Petroleum and Mineral Accμmulation of Simian System⁃Palaeozoic in Sichuan Basin. Mineralogy And Petrology, (3): 41-50(in Chinese with English abstract). doi: 10.3969/j.issn.1001-6872.2008.03.008 [20] Lv, W. Z., Chen, X., Guan, X., et al., 2018. Characteristic Structural Interpretation and Reservoir Prediction in Shuangyushi Area, Northwest Sichuan. Oil Geophysical Prospecting, 53(Suppl. 1): 228-233(in Chinese with English abstract). [21] Peng, X., Peng, J., Zhang, L. J., et al., 2020. Characteristics and Main Controlling Factors of the Middle Permian Qixia Formation Reservoir in Shuangyushi Structure. Journal of Southwest Petroleum University(Science & Technology Edition), 42(5)(in Chinese with English abstract). [22] Shen, H., Wang, H., Wen, L., etal., 2016. Natural Gas Exploration Prospect in the Upper Paleozoic Strata, NE Sichuan Basin. Natural Gas Industry, 36(8): 11-21 (in Chinese with English abstract). [23] Shen, T., Meng, L. F., Chen, W., et al., 2021. Tectonic Activities in Middle and North Sections of Longmenshan Thrust Belt During Late Indosinian: Evidence from Structural Analysis and Detrital Zircon Geochronology. Earth Scienc, 46(5): 1728-1736(in Chinese with English abstract). [24] Su, N., Yang, W., Yuan, B. G., et al., 2021. Structural Features and Deformation Mechanism of Transtensional Faults in Himalayan Period, Sichuan Basin. Earth Science, 46(7): 2362-2378(in Chinese with English abstract). [25] Sun, Y. T., Tian, X. W., Ma, K., et al., 2019. Carbon and Hydrogen Isotope Characteristics and Source of Natural Gas in Shuangyushi Gas Reservoir, Northwestern Sichuan Basin. Natural Gas Geoscience, 30(10): 1477-1486(in Chinese with English abstract). doi: 10.11764/j.issn.1672-1926.2019.10.011 [26] Wang, K., Hu, S. Y., Hu, Z. Y., et al., 2016. Cambrian Hydrothermal Action in Gucheng Area, Tarim Basin and Its Influences on Reservoir Development. Acta Petrolei Sinica, 37(4): 439-453(in Chinese with English abstract). [27] Wang, N., Wei, G. Q., Yang, W., etal., 2016. Characteristics and Geological Significance of Structural Patternsin Northwest Sichuan Basin. China Petroleum Exploration, 21(6): 26-33(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2016.06.004 [28] Wang, W. Q., Chen, J., Zou, L. P., 2005. Study on the Relationship Between Diagenesis and Pore Fluid Activity in Dongying Sag. Journal of Shengli Oilfield Staff University, (3): 40-42(in Chinese). [29] Wang, Z. C., Zhao, W. Z., Peng, H. Y., 2002. Characteristics of Multi⁃Source Petroleum Systems in Sichuan Basin. Petroleum Exploration And Development, (2): 26-28(in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.2002.02.006 [30] Wang, Z. L., 2002. Developments in the Fluid Dynamics and Hydrocarbon Migration of Sedimentary Basins. Petroleum Geology & Experiment, (2): 99-103+109(in Chinese with English abstract). doi: 10.3969/j.issn.1001-6112.2002.02.001 [31] Wilkins, R. W. T., Boudou, R., Sherwood, N., et al., 2014. Thermal Maturity Evaluation from Inertinites by Raman Spectroscopy: the 'RaMM' Technique, International Journal of Coal Geology, 128-129: 143-152. https://doi.org/10.1016/j.coal.2014.03.006. [32] Wilkins, R. W. T., Wang, M., Gan, H. J., et al., 2015. A RaMM Study of Thermal Maturity of Dispersed Organic Matter in Marine Source Rocks, International Journal of Coal Geology, 150-151: 252-264. https://doi.org/10.1016/j.coal.2015.09.007. [33] Wu, S. L., 2018. Geological Architecture and Its Controls Upon Distribution of Hydrocarbon in the Northern Segment of Western Sichuan Basin(Dissertation). China University of Geosciences, Beijing(in Chinese with English abstract). [34] Xiao, D., Cao, J., Luo, B., et al., 2020. Mechanism of Ultra⁃Deep Gas Accμmulation at Thrust Fronts in the Longmenshan Mountains, Lower Permian Sichuan Basin, China, Journal of Natural Gas Science and Engineering, 83: 103533. https://doi.org/10.1016/j.jngse.2020.103533. [35] Yang, G., Wang, H., Shen, H., et al., 2015. Characteristics and Exploration Prospects of Middle Permian Reservoirsin the Sichuan Basin. Natural Gas Industry, 35(7): 10-16 (in Chinese with English abstract). doi: 10.3787/j.issn.1000-0976.2015.07.002 [36] Yang, Y. R., Zhang, Y., Xie, C., et al., 2019. Hydrothermal Action of Middle Permian Qixia Formation in Northwestern Sichuan Basin and Its Effect on Reservoirs. Lithologic Reservoirs, 31(6): 44-53(in Chinese with English abstract). [37] Yi, S. W., Gao, Y., Li, M. P., et al., 2021. Structural Style of Foreland Thrust Belt and Hydrocarbon Accμmulation Mode of QixiaFormationin Northwest Sichuan Basin. Journal of Xi 'an Shiyou University (Natural Science Edition), 36(4); 1-12, 118(in Chinese with English abstract). [38] Zeng, X. Y., Zhong, D. K., Li, R. R., et al., 2020. Genesis of Dolomites of the Lower Permian Qixia Formation in Shuangyushi Area, Northwestern Sichuan Basin. Journal of China University of Mining & Technology, 49(5);974-990(in Chinese with English abstract). [39] Zhang, Z. H., Hu, W. X., Zeng, J. H., et al., 2000. Study of Fluid-Rock Interactions in Eogene Formation inDongying Depression, Bohai Gulf Basin. Acta Sedimentologica Sinica, (4): 560-566 (in Chinese with English abstract). [40] Zhu, R. K., Zou, C. N., Zhang, N., et al., 2009. Diagenetic Fluid Evolution and Genesis Mechanism of Tight Sandstone Gas Reservoir: A Case Study of the Upper Triassic Xujiahe Formation in Sichuan Basin. Science in China, 39(3): 327-339(in Chinese). [41] 陈竹新, 李伟, 王丽宁, 等, 2019. 川西北地区构造地质结构与深层勘探层系分区. 石油勘探与开发, 46(2): 397-408. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201902026.htm [42] 高国辉, 曹剑, 罗冰, 等, 2020. 四川盆地西北部中二叠统海相混合型烃源岩的证据及对双鱼石大气藏的成藏贡献. 石油学报, 41(4): 433-445. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202004008.htm [43] 郭迪孝, 酆轩增, 1990. 镜质体反射率是成熟度的通用"标尺"吗?. 石油实验地质, (4): 421-425. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD199004009.htm [44] 黄思静, 李小宁, 黄可可, 等, 2012. 四川盆地西部栖霞组热液白云岩中的自生非碳酸盐矿物. 成都理工大学学报(自然科学版), 39(4): 343-352. doi: 10.3969/j.issn.1671-9727.2012.04.001 [45] 焦养泉, 武法东, 李思田, 等, 2000. 滦平盆地成岩作用过程及古热流体幕式运移事件分析. 岩石学报, (4): 615-622. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200004024.htm [46] 金之钧, 朱东亚, 胡文瑄, 等, 2006. 塔里木盆地热液活动地质地球化学特征及其对储层影响. 地质学报, (2): 245-253+314. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200602014.htm [47] 赖兴运, 于炳松, 陈军元, 等, 2004. 碎屑岩骨架颗粒溶解的热力学条件及其在克拉2气田的应用. 中国科学(D辑: 地球科学), (1): 45-53. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200401004.htm [48] 黎荣, 胡明毅, 杨威, 等, 2019. 四川盆地中二叠统沉积相模式及有利储集体分布. 石油与天然气地质, 40(2): 369-379. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201902016.htm [49] 李辉, 张文, 朱永源, 2014. 川西—北地区中二叠统白云岩热液作用研究. 天然气技术与经济, 8(6): 12-15+77. https://www.cnki.com.cn/Article/CJFDTOTAL-TRJJ201406006.htm [50] 李剑, 佘源琦, 高阳, 等, 2019. 中国陆上深层—超深层天然气勘探领域及潜力. 中国石油勘探, 24(4): 403-417. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201904001.htm [51] 李艳, 2018. 龙门山山前带双鱼石-中坝地区中二叠统构造特征分析(硕士学位论文). 成都: 西南石油大学. 53-54. [52] 梁瀚, 肖富森, 冉崎, 等, 2018. 四川盆地龙门山前复杂构造带北段精细构造建模及对油气勘探的启示. 天然气工业, 38(11): 26-32. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201811003.htm [53] 刘建章, 刘伟, 王存武, 2004. 沉积盆地活动热流体类型及其石油地质意义. 海洋石油, (3): 8-13. https://www.cnki.com.cn/Article/CJFDTOTAL-HYSY200403001.htm [54] 刘立, 于均民, 孙晓明, 等, 2000. 热对流成岩作用的基本特征与研究意义. 地球科学进展, (5): 583-585. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ200005016.htm [55] 刘树根, 黄文明, 陈翠华, 等, 2008. 四川盆地震旦系-古生界热液作用及其成藏成矿效应初探. 矿物岩石, (3): 41-50. https://www.cnki.com.cn/Article/CJFDTOTAL-KWYS200803008.htm [56] 吕文正, 陈骁, 关旭, 等, 2018. 特色构造解释及储层预测技术在川西北双鱼石地区的应用. 石油地球物理勘探, 53(S1): 228-233+16. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ2018S1037.htm [57] 彭先, 彭军, 张连进, 等, 2020. 双鱼石构造栖霞组白云岩储层特征及主控因素. 西南石油大学学报(自然科学版), 42(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202005001.htm [58] 沈浩, 汪华, 文龙, 等, 2016. 四川盆地西北部上古生界天然气勘探前景. 天然气工业, 36(8): 11-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201608003.htm [59] 沈桐, 孟立丰, 陈伟, 等, 2021. 龙门山中北段印支晚期构造活动: 来自构造解析及碎屑锆石年代学的证据. 地球科学, 46(5): 1728-1736. doi: 10.3799/dqkx.2020.017 [60] 苏楠, 杨威, 苑保国, 等, 2021. 四川盆地喜马拉雅期张扭性断裂构造特征及形成机制. 地球科学, 46(7): 2362-2378. doi: 10.3799/dqkx.2020.202 [61] 孙奕婷, 田兴旺, 马奎, 等, 2019. 川西北地区双鱼石气藏中二叠统天然气碳氢同位素特征及气源探讨. 天然气地球科学, 30(10): 1477-1486. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201910010.htm [62] 汪泽成, 赵文智, 彭红雨, 2002. 四川盆地复合含油气系统特征. 石油勘探与开发, (2): 26-28. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200202007.htm [63] 王坤, 胡素云, 胡再元, 等, 2016. 塔里木盆地古城地区寒武系热液作用及其对储层发育的影响. 石油学报, 37(4): 439-453. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201604003.htm [64] 王鼐, 魏国齐, 杨威, 等, 2016. 川西北构造样式特征及其油气地质意义. 中国石油勘探, 21(6): 26-33. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201606005.htm [65] 王伟庆, 陈菁, 邹丽萍, 2005. 东营凹陷成岩作用与孔隙流体活动的关系探讨. 胜利油田职工大学学报, (3): 40-42. https://www.cnki.com.cn/Article/CJFDTOTAL-YTZD200503023.htm [66] 王震亮, 2002. 盆地流体动力学及油气运移研究进展. 石油实验地质, (2): 99-103+109. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD200202001.htm [67] 伍顺利, 2018. 川西北段地质结构及其控油气作用(硕士学位论文). 北京: 中国地质大学, 107-117. [68] 杨光, 汪华, 沈浩, 等, 2015. 四川盆地中二叠统储层特征与勘探方向. 天然气工业, 35(7): 10-16. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201507005.htm [69] 杨雨然, 张亚, 谢忱, 等, 2019. 川西北地区中二叠统栖霞组热液作用及其对储层的影响. 岩性油气藏, 31(6): 44-53. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201906005.htm [70] 易士威, 高阳, 李明鹏, 等, 2021. 四川盆地川西北前陆冲断带构造样式及栖霞组成藏模式. 西安石油大学学报(自然科学版), 36(4): 1-12+118. https://www.cnki.com.cn/Article/CJFDTOTAL-XASY202104002.htm [71] 曾鑫耀, 钟大康, 李荣容, 等, 2020. 川西北双鱼石地区下二叠统栖霞组白云岩成因研究. 中国矿业大学学报, 49(5): 974-990. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD202005016.htm [72] 张枝焕, 胡文瑄, 曾溅辉, 等, 2000. 东营凹陷下第三系流体-岩石相互作用研究. 沉积学报, (4): 560-566. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200004013.htm [73] 朱如凯, 邹才能, 张鼐, 等, 2009. 致密砂岩气藏储层成岩流体演化与致密成因机理——以四川盆地上三叠统须家河组为例. 中国科学(D辑: 地球科学), 39(3): 327-339. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200903009.htm