• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    强震区黄土结构演变与力学响应机制

    刘伟 孙欣然 何乃武

    刘伟, 孙欣然, 何乃武, 2022. 强震区黄土结构演变与力学响应机制. 地球科学, 47(12): 4442-4455. doi: 10.3799/dqkx.2022.402
    引用本文: 刘伟, 孙欣然, 何乃武, 2022. 强震区黄土结构演变与力学响应机制. 地球科学, 47(12): 4442-4455. doi: 10.3799/dqkx.2022.402
    Liu Wei, Sun Xinran, He Naiwu, 2022. Structural Evolution and Mechanical Response Mechanism of Loess in Strong Earthquake Area. Earth Science, 47(12): 4442-4455. doi: 10.3799/dqkx.2022.402
    Citation: Liu Wei, Sun Xinran, He Naiwu, 2022. Structural Evolution and Mechanical Response Mechanism of Loess in Strong Earthquake Area. Earth Science, 47(12): 4442-4455. doi: 10.3799/dqkx.2022.402

    强震区黄土结构演变与力学响应机制

    doi: 10.3799/dqkx.2022.402
    基金项目: 

    内蒙古自治区自然基金项目 2020BS04003

    国家重点研发计划项目 2019YFC1509700

    国家自然科学基金 42067066

    详细信息
      作者简介:

      刘伟(1989-),男,讲师,主要从事复杂环境下岩土体力学特性方面的研究工作.ORCID:0000-0001-6347-7816.E-mail:liuwei@imu.edu.cn

    • 中图分类号: P642

    Structural Evolution and Mechanical Response Mechanism of Loess in Strong Earthquake Area

    • 摘要:

      黄土因其遇水产生湿陷变形而对工程构筑物的安全性造成严重威胁.强震区黄土遭遇先期地震后其内部结构将发生变化,结构演变与黄土初始含水量密切相关.先期地震对黄土的结构性破坏引起宏观力学特征变化,为揭示强震区黄土结构演变与力学响应的内在机制,基于动三轴对黄土试样预先施加不同PGA(peak ground acceleration)条件下动荷载进行预震处理,模拟强震区先期地震对黄土的扰动,后进行固结不排水试验,分析抗剪强度指标与地震荷载及初始含水量的关联性.试验结果表明,初始含水率为2%时,预先施加地震动荷载的黄土试样与未预先施加动荷载的试样相比,其峰值强度出现了明显降低,且随着预先施加动荷载PGA的增加,峰值强度降幅增加.孔隙水压力随应变的不断增加趋于平缓,有效轴向应力和有效围压随应变的不断增加而持续减小,最终趋于平缓;初始含水量增加至12%,预震处理后的黄土试样强度增大.通过绘制应力路径关系曲线,确定了强震区黄土失稳的临界失稳线,对于同一黄土试样,PGA增加后引起黄土失稳线不断下移,表明黄土中的应力状态随地震动荷载的增加而发生变化.初始含水量为12%时,预震后的黄土试样剪切强度增大,表明含水量增加后,前期地震荷载开始破坏黄土初始结构性,导致试样密度增大,产生强度增加效应.

       

    • 图  1  试样取备

      Fig.  1.  Sample preparation

      图  2  初始含水量2%土样的动应力应变曲线

      Fig.  2.  Dynamic stress strain curve of soil sample with initial moisture content of 2%

      图  3  初始含水量12%土样的动应力应变曲线

      Fig.  3.  Dynamic stress strain curve of soil sample with initial moisture content of 12%

      图  4  初始含水量2%黄土试样应力应变关系

      Fig.  4.  Stress⁃strain relationship of loess sample with initial water content of 2%

      a.PGA=0.00 g; b.PGA=0.15 g; c.PGA=0.30 g; d.PGA=0.40 g

      图  5  初始含水量2%黄土试样有效应力路径

      Fig.  5.  Effective stress path of loess sample with initial water content of 2%

      a.PGA=0.00 g; b.PGA=0.15 g; c.PGA=0.30 g; d.PGA=0.40 g

      图  6  初始含水量2%黄土试样孔压应变关系曲线

      Fig.  6.  Pore water pressure strain relation curve of loess sample with initial water content of 2%

      a.PGA=0.00 g; b.PGA=0.15 g; c.PGA=0.30 g; d.PGA=0.40 g

      图  7  初始含水量12%黄土试样应力应变关系

      Fig.  7.  Stress⁃strain relationship of loess sample with initial moisture content of 12%

      a.PGA=0.15 g; b.PGA=0.30 g; c.PGA=0.40 g

      图  8  初始含水量12%黄土试样有效应力路径

      Fig.  8.  Effective stress path of loess sample with initial moisture content of 12%

      a.PGA=0.15 g; b.PGA=0.30 g; c.PGA=0.40 g

      图  9  初始含水量12%黄土试样孔压应变关系

      Fig.  9.  Pore water pressure strain relation diagrams of loess sample with initial water content of 12%

      a.PGA=0.15 g; b.PGA=0.30 g; c.PGA=0.40 g

      图  10  含水量为2%黄土试样预震后微结构图

      Fig.  10.  Schematic diagrams of microstructure of loess sample with water content of 2% after pre⁃dynamic treatment

      a.PGA=0.00 g, W=2%;b.PGA=0.15 g, W=2%;c.PGA=0.30 g, W=2%;d.PGA=0.40, W=2%

      图  11  含水量为12%黄土试样预震后微结构图

      Fig.  11.  Schematic diagrams of microstructure of loess sample with water content of 12% after pre⁃dynamic treatment

      a.PGA=0.00 g, W=12%;b.PGA=0.15 g, W=12%;c.PGA=0.30 g, W=12%;d.PGA=0.40, W=12%

      表  1  试样物理力学参数汇总表

      Table  1.   Summary of physical and mechanical parameters of the samples

      参数 初始含水量2%试样 初始含水量12%试样
      初始密度ρ(g/cm3) 1.49~1.52 1.63~1.65
      实测含水量w(%) 1.82~2.66 11.67~12.48
      液限wL(%) 27.05 27.05
      塑限wP(%) 16.35 16.35
      塑性指数IP 10.70 10.70
      地震峰值
      加速度(g)
      0.20 0.20
      比重 2.72 2.72
      孔隙比 0.79~0.83 0.65~0.67
      饱和度(%) 6.27~8.72 48.83~50.67
      下载: 导出CSV

      表  2  抗震设防烈度与设计基本地震加速度值和预震次数的对应关系

      Table  2.   Correspondence between seismic fortification intensity and design basic seismic acceleration value and pre-dynamic times

      抗震设防烈度 6度 7度 8度 9度
      设计基本地震加速度值(g) 0.05 0.10(0.15) 0.20(0.30) 0.40
      预震次数 - 12 20 30
      下载: 导出CSV

      表  3  各预震荷载对应下的动应力及动剪应力

      Table  3.   Dynamic stress and dynamic shear stress corresponding to each pre-dynamic loadin

      PGA(g) 0.15 0.30 0.40
      Τd(kPa) 4.56 9.13 12.17
      σd(kPa) 9.12 18.26 24.34
      注:据王谦等(2015).
      下载: 导出CSV

      表  4  预震处理前后干密度、孔隙比、饱和度对比

      Table  4.   Comparison of dry density, pore ratio and satu- ra tion before and after pre-dynamic treatment

      初始含水量 2% 12%
      预震前干密度(g/cm3) 1.49~1.52 1.63~1.65
      预震后干密度(g/cm3) 1.492~1.522 1.65~1.67
      预震前孔隙比 0.79~0.83 0.65~0.67
      预震后孔隙比 0.78~0.82 0.64~0.66
      预震前饱和度(%) 6.27~8.72 48.83~50.67
      预震后饱和度(%) 6.28~8.73 49.45~51.31
      下载: 导出CSV

      表  5  初始含水量2%黄土试样偏应力峰值汇总

      Table  5.   Summary of peak deviatoric stress of loess sam- les with initial moisture content of 2%

      PGA(g) 100(kPa) 150(kPa) 200(kPa)
      0.00 70.00 81.31 89.36
      0.15 68.04 76.59 85.82
      0.30 62.95 72.09 82.96
      0.40 53.86 63.00 75.96
      下载: 导出CSV

      表  6  初始含水量2%的CSL临界失稳线斜率

      Table  6.   Slope of CSL critical instability line with initial water content of 2%

      试样 临界失稳线
      的斜率K
      PGA=0.00 g 1.79
      PGA=0.15 g 1.67
      PGA=0.30 g 1.50
      PGA=0.40 g 1.39
      下载: 导出CSV

      表  7  初始含水量2%黄土试样孔隙水压力稳定值汇总

      Table  7.   Summary of stable values of pore water pressure of loess sample with initial water content of 2%

      PGA(g) 100 (kPa) 150 (kPa) 200 (kPa)
      0.00 83.89 125.24 176.82
      0.15 88.01 128.52 180.30
      0.30 90.23 133.41 185.64
      0.40 93.20 138.65 190.43
      下载: 导出CSV

      表  8  初始含水量12%黄土试样偏应力峰值汇总

      Table  8.   Summary of peak deviatoric stress of loess samples with 12% initial water content

      PGA(g) 100(kPa) 150(kPa) 200(kPa)
      0.15 87.91 114.74 134.48
      0.30 92.79 119.38 140.02
      0.40 105.05 125.99 150.74
      下载: 导出CSV

      表  9  初始含水量12%的CSL临界失稳线斜率

      Table  9.   Slope of CSL critical instability line with initial water content of 12%

      试样 临界失稳线的斜率K
      PGA=0.15 g 1.28
      PGA=0.30 g 1.56
      PGA=0.40 g 1.73
      下载: 导出CSV

      表  10  初始含水量12%黄土试样孔隙水压力稳定值汇总

      Table  10.   Summary of stable values of pore water pressure of loess sample with initial water content of 12%

      PGA(g) 100(kPa) 150(kPa) 200(kPa)
      0.15 88.50 146.29 192.88
      0.30 80.84 139.91 187.63
      0.40 77.78 128.58 178.73
      下载: 导出CSV

      表  11  初始含水量2%和12%土样抗剪强度

      Table  11.   Shear strength of soil samples with initial water content of 2% and 12%

      PGA(g) 内摩擦角
      c(°)
      黏聚力
      φ(kPa)
      初始含水量
      2%试样
      0.00 18.64 18.22
      0.15 17.16 16.74
      0.30 14.86 13.85
      0.40 12.32 10.53
      初始含水量
      12%试样
      0.15 18.98 20.35
      0.30 19.86 23.72
      0.40 24.27 25.11
      下载: 导出CSV
    • [1] An, L., Deng, J., Guo, P., et al., 2019. Correlation between Microscopic Parameters and Dynamic Elastic Modulus of Loess. Chinese Journal of Geotechnical Engineering, 41(Suppl. 2): 105-108(in Chinese with English abstract).
      [2] Chen, J. B., Chen, X. W., Jing, X. J., et al., 2021. Ergodicity of Turbulence Measurements upon Complex Terrain in Loess Plateau. Scientia Sinica (Terrae), 51(2): 299-313(in Chinese). doi: 10.1360/SSTe-2020-0128
      [3] Chen, W. W., Liu, W., Wang, J., et al., 2019. Relationship between Saturation Degree and B Value for Loess. Rock and Soil Mechanics, 40(3): 834-842(in Chinese with English abstract).
      [4] Cheng, G. Y., 2003. Study on the Correlation between Saturated Sand Shear Wave Velocity and Liquefaction Resistance(Dissertation). Tianjin University, Tianjin(in Chinese with English abstract).
      [5] Cui, S. H., Pei, X. J., Huang, R. Q., et al., 2020. Excess Interstitial Water Pressure within Sliding Zone Induced by Strong Seismic Shaking: An Initiation Model of the Daguangbao Landslide. Chinese Journal of Rock Mechanics and Engineering, 39(3): 522-539(in Chinese with English abstract).
      [6] Gao, G. R., 1981. Classification of Microstructures of Loess in China and Their Collapsibility. Science in China (Ser. A), 24(7): 962-974.
      [7] Gao, G. R., 1996. The Distribution and Geotechnical Properties of Loess Soils, Lateritic Soils and Clayey Soils in China. Engineering Geology, 42(1): 95-104. https://doi.org/10.1016/0013⁃7952(95)00056⁃9
      [8] Jiang, M. J., Zhang, F. G., Hu, H. J., et al., 2014. Structural Characterization of Natural Loess and Remolded Loess under Triaxial Tests. Engineering Geology, 181: 249-260. https://doi.org/10.1016/j.enggeo.2014.07.021
      [9] Liu, W., Chen, W. W., Wang, Q., et al., 2020a. Effect of Pre⁃Dynamic Loading on Static Liquefaction of Undisturbed Loess. Soil Dynamics and Earthquake Engineering, 130: 105915. https://doi.org/10.1016/j.soildyn.2019.105915
      [10] Liu, W., Chen, W. W., Yang, F., 2021. Influence of Long⁃Term Seismic Effect on Mechanical Properties of Loess. China Earthquake Engineering Journal, 43(4): 965-976(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0844.2021.04.965
      [11] Liu, W., Wang, Q., Lin, G. C., et al., 2020b. Effect of Pre⁃Dynamic Loading on Dynamic Liquefaction of Undisturbed Loess. Bulletin of Earthquake Engineering, 18(13): 5779-5806. https://doi.org/10.1007/s10518⁃020⁃00917⁃w
      [12] Ma, L. N., Qi, S. W., Guo, S. F., et al., 2022a. Investigation on the Deformation and Failure Patterns of Loess Cut Slope Based on the Unsaturated Triaxial Test in Yan'an, China. Journal of Earth Science (in press). https://doi.org/10.1007/s12583-021-1554-4
      [13] Ma, P. H., Peng, J. B., Zhuang, J. Q., et al., 2022b. Initiation Mechanism of Loess Mudflows by Flume Experiments. Journal of Earth Science (in press). https://doi.org/10.1007/s12583-022-1660-y
      [14] Mao, Y. D., Wang, Z. X., Pang, Z. B., 2021. Two Significant Stages in the Aridification of the Eastern Chinese Loess Plateau since 1.2 Ma. Earth Science, 46(1): 272-280(in Chinese with English abstract).
      [15] Min, L. R., Fan, H., 1988. The Formation of the Loess Plateau in China and the Discussion on the Causes of Loess. Chinese Science Bulletin, 33(9): 690-692(in Chinese). doi: 10.1360/csb1988-33-9-690
      [16] Ministry of Housing and Urban Rural Development of the People's Republic of China, 2016. Code for Seismic Design of Buildings GB 50011-2010. China Construction Industry Press, Beijing(in Chinese).
      [17] Ministry of Transport of the People's Republic of China, 2011. Code for Geological Investigation of Highway Engineering JTGC20-2011. People's Communications Press, Beijing(in Chinese).
      [18] Pei, X. J., Zhang, X. C., Guo, B., et al., 2017. Experimental Case Study of Seismically Induced Loess Liquefaction and Landslide. Engineering Geology, 223: 23-30. https://doi.org/10.1016/j.enggeo.2017.03.016
      [19] Sun, J. Z., 2005. Loess Science (Part 1). Hong Kong Archaeological Society, Hong Kong(in Chinese).
      [20] Sun, P., Li, R. J., Jiang, H., et al., 2017. Earthquake⁃Triggered Landslides by the 1718 Tongwei Earthquake in Gansu Province, Northwest China. Bulletin of Engineering Geology and the Environment, 76(4): 1281-1295. https://doi.org/10.1007/s10064⁃016⁃0949⁃4
      [21] Toyota, H., Takada S., 2017. Variation of Liquefaction Strength Induced by Monotonic and Cyclic Loading Histories. Journal of Geotechnical and Geoenvironmental Engineering, 143(4): 04016120. https://doi.org/10.1061/(asce)gt.1943⁃5606.0001634
      [22] Wang, J. D., Xu, Y. J., Zhang, D. F., et al. 2021. Study on the Effect of Loess Vibration on Permeability. Scientia Sinica (Terrae), 51(5): 763-782(in Chinese). doi: 10.1360/SSTe-2020-0293
      [23] Wang, Q., Wang, P., Wang, J., et al., 2015. Effect of Microstructure Properties on of Dynamic Residual Deformation Behavior of Saturated Loess. Chinese Journal of Geotechnical Engineering, 37(Suppl. 2): 143-147(in Chinese with English abstract).
      [24] Wang, S. Y., Luna, R., Onyejekwe, S., 2016. Effect of Initial Consolidation Condition on Postcyclic Undrained Monotonic Shear Behavior of Mississippi River Valley Silt. Journal of Geotechnical and Geoenvironmental Engineering, 142(2): 04015075. https://doi.org/10.1061/(asce)gt.1943⁃5606.0001401
      [25] Wang, S. Y., Luna, R., Onyejekwe, S., 2015a. Postliquefaction Behavior of Low⁃Plasticity Silt at Various Degrees of Reconsolidation. Soil Dynamics and Earthquake Engineering, 75: 259-264. https://doi.org/10.1016/j.soildyn.2015.04.014
      [26] Wang, S. Y., Luna, R., Zhao, H. H., 2015b. Cyclic and Post⁃Cyclic Shear Behavior of Low⁃Plasticity Silt with Varying Clay Content. Soil Dynamics and Earthquake Engineering, 75: 112-120. https://doi.org/10.1016/j.soildyn.2015.03.015
      [27] Wang, S. Y., Luna, R., Yang, J. S., 2013. Postcyclic Behavior of Low⁃Plasticity Silt with Limited Excess Pore Pressures. Soil Dynamics and Earthquake Engineering, 54: 39-46. https://doi.org/10.1016/j.soildyn.2013.07.016
      [28] Wu, Z. J., Zhang, D., Wang, S. N., et al., 2020. Dynamic⁃Response Characteristics and Deformation Evolution of Loess Slopes under Seismic Loads. Engineering Geology, 267: 105507. https://doi.org/10.1016/j.enggeo.2020.105507
      [29] Xie, D. Y., Qi, J. L., Zhu, Y. L., 1999. Soil Structure Parameter and Its Relations to Deformation and Strength. Journal of Hydraulic Engineering, 30(10): 1-6(in Chinese with English abstract). doi: 10.3321/j.issn:0559-9350.1999.10.001
      [30] Yasuda, S., Harada, K., Ishikawa, K., et al., 2012. Characteristics of Liquefaction in Tokyo Bay Area by the 2011 Great East Japan Earthquake. Soils and Foundations, 52(5): 793-810. https://doi.org/10.1016/j.sandf.2012.11.004
      [31] Yasuda, S., Tohno, I., 1988. Sites of Reliquefaction Caused by the 1983 Nihonkai⁃Chubu Earthquake. Soils and Foundations, 28(2): 61-72. https://doi.org/10.3208/sandf1972.28.2_61
      [32] Zhang, Y., 2019. Study on the Evolution of Loess Structure and Its Constitutive Model in Acidic Environment (Dissertation). Xi'an University of Technology, Xi'an(in Chinese with English abstract).
      [33] Zhu, Z. Y., 1992. Neotectonics and Neotectonic Movement of the Loess Plateau and Its Adjacent Regions. Quaternary Sciences, 12(3): 252-264(in Chinese with English abstract).
      [34] Zhuang, J. Q., Peng, J. B., Xu, C., et al., 2018. Distribution and Characteristics of Loess Landslides Triggered by the 1920 Haiyuan Earthquake, Northwest of China. Geomorphology, 314: 1-12. https://doi.org/10.1016/j.geomorph.2018.04.012
      [35] Zhuang, Y., Xing, A. G., Cheng, Q. G., et al., 2020. Characteristics and Numerical Modeling of a Catastrophic Loess Flow Slide Triggered by the 2013 Minxian-Zhangxian Earthquake in Yongguang Village, Minxian, Gansu, China. Bulletin of Engineering Geology and the Environment, 79(1): 439-449. https://doi.org/10.1007/s10064⁃019⁃01542⁃x
      [36] 安亮, 邓津, 郭鹏, 等, 2019. 黄土微观参数指标与动弹性模量关联度研究. 岩土工程学报, 41(增刊2): 105-108. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S2028.htm
      [37] 陈晋北, 陈霄文, 荆肖军, 等, 2021. 黄土高原复杂地形条件下湍流观测的各态历经性检验. 中国科学: 地球科学, 51(2): 299-313. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202102009.htm
      [38] 谌文武, 刘伟, 王娟, 等, 2019. 黄土饱和度与B值关系试验研究. 岩土力学, 40(3): 834-842. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903002.htm
      [39] 程国勇, 2003. 饱和砂土剪切波速与抗液化强度相关性的研究(博士学位论文). 天津: 天津大学.
      [40] 崔圣华, 裴向军, 黄润秋, 等, 2020. 强震过程滑带超间隙水压力效应研究: 大光包滑坡启动机制. 岩石力学与工程学报, 39(3): 522-539. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202003008.htm
      [41] 刘伟, 谌文武, 杨芳, 2021. 地震长期效应对黄土力学性质的影响. 地震工程学报, 43(4): 965-976. doi: 10.3969/j.issn.1000-0844.2021.04.965
      [42] 毛永栋, 王治祥, 庞志斌, 2021. 黄土高原东部(山西阳曲)1.2 Ma以来黄土记录的两次显著干旱化事件. 地球科学, 46(1): 272-280. doi: 10.3799/dqkx.2019.278
      [43] 闵隆瑞, 范蕙, 1988. 中国黄土高原的形成及其黄土成因的探讨. 科学通报, 33(9): 690-692. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB198809014.htm
      [44] 孙建中, 2005. 黄土学(上篇). 香港: 香港考古学会.
      [45] 王家鼎, 许元珺, 张登飞, 等, 2021. 黄土振动促渗效应研究. 中国科学: 地球科学, 51(5): 763-782. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202105010.htm
      [46] 王谦, 王平, 王峻, 等, 2015. 微结构特性对饱和黄土动残余变形的影响研究. 岩土工程学报, 37(增刊2): 143-147. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2015S2029.htm
      [47] 谢定义, 齐吉琳, 朱元林, 1999. 土的结构性参数及其与变形强度的关系. 水利学报, 30(10): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB199910000.htm
      [48] 张耀, 2019. 酸性环境下黄土结构的演变及其本构模型研究(博士学位论文). 西安: 西安理工大学.
      [49] 中华人民共和国住房和城乡建设部, 2016. 《建筑抗震设计规范》, GB 50011-2010. 北京: 中国建筑工业出版社.
      [50] 中华人民共和国交通运输部, 2011. 《公路工程地质勘察规范》, JTGC20-2011. 北京: 人民交通出版社.
      [51] 朱照宇, 1992. 黄土高原及邻区新构造与新构造运动. 第四纪研究, 12(3): 252-264. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ199203006.htm
    • 加载中
    图(11) / 表(11)
    计量
    • 文章访问数:  110
    • HTML全文浏览量:  60
    • PDF下载量:  25
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-30
    • 网络出版日期:  2023-01-10
    • 刊出日期:  2022-12-25

    目录

      /

      返回文章
      返回