Fault⁃Landform Double Controlled Archean Buried⁃Hill Reservoir Integrated Prediction for BZ26⁃6 Oil Field, Bohai Bay
-
摘要: 渤中26⁃6油田太古界潜山储层品质受风化程度与裂缝发育共同控制,为实现储层评价与储量动用,形成基于断-貌双控的太古界潜山储层综合预测技术. 潜山上覆地层时代关系与沉积厚度决定了潜山风化剥蚀程度,基于此通过古地貌恢复实现储层风化程度平面分区. 印支期形成的近东-西向高角度断裂与印支至喜山期长期活动的边界正断层对油田裂缝发育起重要控制作用,基于Radon变换与蚂蚁体技术实现裂缝发育平面预测. 以风化程度平面分区为低频,裂缝发育平面预测为高频,利用高阶小波变换技术实现高、低频信息有效融合,综合表征储层品质. 基于融合属性将储层划分为Ⅰ类、Ⅱ⁃1类与Ⅱ⁃2类,Ⅰ类储层品质最佳,为东营组地层沉积之前太古界潜山持续出露同时裂缝带发育区域. Ⅱ⁃1类储层品质次之,为沙河街组地层沉积之前太古界潜山持续出露同时裂缝带发育区域. Ⅱ⁃2类与Ⅱ⁃1类储层品质接近,为东营组地层沉积之前太古界潜山持续出露但裂缝带一般发育区域. 分类结果与测井及测试资料认识吻合,指导建立了油田储量动用策略,证实基于风化及裂缝发育主控因素开展地震储层预测,并基于属性融合方法实现结果综合的太古界潜山储层技术思路具有实用意义.Abstract: Archean buried⁃hill reservoir in BZ26⁃6, Bohai Bay is controlled by ancient landform and faults simultaneously. In order for reservoir evaluation and reserve production, we propose a fault⁃landform double controlledArchean buried⁃hill reservoir integrated prediction method. The composition of the overlying strata above the Archean buriedhill controls the weathering degree.Via restoration of ancient landform, we achieve reservoir plane division considering the weathering degree. Near east⁃west high⁃angle faults activated in Indosinian period and the normal fault continuously activated among Indosinian, Yanshanian and Himalayan periods control the fracture development, and we exploit the Radon transform and ant tracking methods to predict the favorable area of the fracture.In final, using the prediction of the weathering degree as low⁃frequency information, and the prediction of the fracture as high⁃frequency information, we exploiting the wavelet transform method to achieve the attribute fusion. Based on the fused attribute, the reservoir is classified as type Ⅰ, type Ⅱ⁃1 and type Ⅱ⁃2. The reservoir of type Ⅰ has the best quality, both the weathering degree and fracture development are relatively well, the reservoir of type Ⅱ⁃1 and Ⅱ⁃2 have relatively good quality, either weathering degree or fracture development is relatively well. The reservoir classification is coincided with the well logs and production test data, and helps to establish the reserve production strategy. It illustrates that exploiting the main controlling factors of weathering and fracture to guide seismic reservoir prediction, and using the attribute fusion to merge the results has a certain degree of practical significance.
-
图 2 太古界潜山上覆地层时代关系地震剖面
测线位置见图 1
Fig. 2. Times relationship of the overlying strata of Archaeozoic buried hill
图 12 太古界潜山储层分类与地震及Radon变换高陡反射刻画数据剖面标定
剖面位置见图 11
Fig. 12. Reservoir classification of Archaeozoic buried hill and seismic⁃Radon⁃transformed data ties
-
[1] Fan, T. E., Du, X., Ma, S. F., et al., 2022. Application of the High-Angle-Fault Constrained Azimuthal Fourier Coefficients Fracture Prediction in the M Gas Field. Oil Geophysical Prospecting, 57(6): 1436-1444 (in Chinese with English abstract). [2] Fan, T. E., Niu, T., Fan, H. J., et al., 2021. Geological Model and Development Strategy of Archean Buried Hill Reservoir in BZ19-6 Condensate Field. China offshore Oil and Gas, 33(3): 85-92 (in Chinese with English abstract). [3] Gholami, A., Zand, T., 2018. Three-Parameter Radon Transform Based on Shifted Hyperbolas. Geophysics, 83(1): V39-V48. doi: 10.1190/geo2017-0309.1 [4] Jiang, X. Y., Zhang, Y., Gan, L. D., et al., 2020. Seismic Techniques for Predicting Fractures in Granite Buried Hills. Oil Geophysical Prospecting, 55(3): 694-704(in Chinese with English abstract). [5] Li, J. P., Zhou, X. H., Wang, G. Z., 2014. Lithologic Constitution and Its Control on Reservoir Development on Penglai 9-1 Buried Hill, Bohai Sea Basin. Earth Science, 39(10): 1421-1430 (in Chinese with English abstract). [6] Li, F., Wang, S. D., Chen, X. H., et al., 2014. Oil-Gas Prediction with Multi-Attributes Fusion Based on Fuzzy Logic. Oil Geophysical Prospecting, 49(1): 197-204(in Chinese with English abstract). [7] Li, M., Shang, X. F., Zhao, H. W., et al., 2021. Prediction of Fractures in Tight Gas Reservoirs Based on Likelihood Attribute: A Case Study of the 2nd Member of Xujiahe Formation in Xinchang Area, Western Sichuan Depression, Sichuan Basin. Oil & Gas Geology, 42(4): 992-1001(in Chinese with English abstract). [8] Liu, J. Z., Han, L., Shi, L., et al., 2021. Seismic Prediction of Tight Sandstone Reservoir Fractures in XC Area, Western Sichuan Basin. Oil & Gas Geology, 42(3): 747-754(in Chinese with English abstract). [9] Liu, Z. F., Liu, Z. Q., Guo, Y, L., et al., 2021. Concept and Geological Model of Fault-Fracture Reservoir and Their Application in Seismic Fracture Prediction: A Case Study on the Xu2 Member Tight Sandstone Gas Pool in Xinchang Area, Western Sichuan Depression in Sichuan Basin. Oil & Gas Geology, 42(1): 973-980(in Chinese with English abstract). [10] Lv, D. Y., Yang, M. H., Zhou, X. H., et al., 2009. Structural Characteristics and Hydrocarbon Accumulation in the Buried Hills of the Laoxi Low Salient, the Liaodong Bay Depression. Oil & Gas Geology, 30(4): 490-496(in Chinese with English abstract). doi: 10.3321/j.issn:0253-9985.2009.04.016 [11] Sabbione, J, I., Sacchi, M, D., 2016. Restricted Model Domain Time Radon Transforms. Geophysics, 81(6): A17-A21. doi: 10.1190/geo2016-0270.1 [12] Shi, H. S., Wang, Q. B., Wang, J., et al., 2019. Discovery and Exploration Significance of Large Condensate Gas Fields in BZ19-6 Structure in Deep Bozhong Sag. China Petroleum Exploration, 24(1): 36-45(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2019.01.005 [13] Tang, W., Li, J. Y., Wang, J. H., et al., 2022. Attribute Fusion Method Based on NSST-PAPCNN for Fracture Prediction. Oil Geophysical Prospecting, 57(1): 52-61(in Chinese with English abstract). [14] Wang, J. H., Zhang, J. M., Wu, G. C., 2021. Wide-Azimuth Young's Modulus Inversion and Fracture Prediction: An Example of H Structure in Bozhong Sag. Oil Geophysical Prospecting, 56(3): 593-602(in Chinese with English abstract). [15] Wang, W., Fan, R., Li, C. Y., et al., 2021. Exploration and Prediction of Promising Fault-Fracture Reservoirs in the Xujiahe Formation, Northeastern Sichuan Basin. Oil & Gas Geology, 42(4): 992-1001(in Chinese with English abstract). [16] Wu, H. B., Wang, J., Li, J. H., 2014. Application of Seismic Multi-Attribute Fusion Technique to the Reservoir Prediction in Beier Depression. Lithologic Reservoirs, 26(2): 96-101(in Chinese with English abstract). doi: 10.3969/j.issn.1673-8926.2014.02.015 [17] Xie, C. F., Peng, Z. M., Zhou, J. J., et al., 2014. Seismic Multi-Attribute Fusion Based on Contourlet Transform. Oil Geophysical Prospecting, 49(4): 739-744 (in Chinese with English abstract). [18] Xie, Y. H., Zhang, G. C., Shen, P., et al., 2018. Formation Conditions and Exploration Direction of Large Gas Field in Bozhong Sag of Bohai Bay Basin. Acta Petroleum Sinica, 39(11): 1199-1210(in Chinese with English abstract). [19] Xu, C. G., Yu, H. B., Wang, J., et al., 2019. Formation Conditions and Accumulation Characteristics of Bozhong 19-6 Large Condensate Gas Field Oil Offshore Bohai Bay Basin. Petroleum Exploration and Development, 46(1): 25-38 (in Chinese with English abstract). [20] Xu, K., Zhang, H., Ju, W., 2022. Effective Fracture Distribution and Its Influence on Natural Gas Productivity of Ultra-Deep Reservoir in Bozi-X Block of Kuqa Depression. Earth Science, 47(7): (in Chinese with English abstract). [21] Xue, Y. A., Wang, D. Y., 2020. Formation Conditions and Exploration Direction of Large Natural Gas Reservoirs in the Oil-Prone Bohai Bay Basin, East China. Petroleum Exploration and Development, 47(2): 260-271(in Chinese with English abstract). [22] Yang, M., Xu, Z. Y., Yang, B. S., et al., 2014. Fracture Prediction of Bedrock Buried Hill Tight Reservoirs in Beier Depression. Oil & Gas Geology, 35(2): 253-257(in Chinese with English abstract). [23] Yin, X. Y., Ma, Z. Q., Xiang, W., et al., 2022. Review of Fracture Prediction Driven by the Seismic Rock Physics Theory(Ⅰ): Effective Anisotropic Seismic Rock Physics Theory. Geophysical Prospecting for Petroleum, 61(2): 183-204(in Chinese with English abstract). [24] Zhang, Z. J., Xiao, G. R., Li, Y., 2021. Seismic Response Characteristics and Prediction of Fractured inside Metamorphic Buried Hill of Bozhong 19-6 Oilfield. Oil Geophysical Prospecting, 56(4): 845-852(in Chinese with English abstract). [25] Zhou, X. H., Wang, Q, B., Feng, C., et al., 2022. Formation Conditions and Geological Significanceof Large Archean Buried Hill Reservoirs in Bohai Sea. Earth Science, 47(5): 1534-1548 (in Chinese with English abstract). [26] 范廷恩, 杜昕, 马淑芳, 等, 2022. 基于高角度断裂约束的方位傅里叶系数裂缝预测方法在M气田中的应用. 石油地球物理勘探, 57(6): 1436-1444. [27] 范廷恩, 牛涛, 范洪军, 等, 2021. 渤中19-6凝析气田太古界潜山储层地质模式及开发策略. 中国海上油气, 33(2): 85-92. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202103009.htm [28] 姜晓宇, 张研, 甘利灯, 等, 2020. 花岗岩潜山裂缝地震预测技术. 石油地球物理探, 55(3): 694-704. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202003027.htm [29] 李芳, 王守东, 陈小宏, 等, 2014. 基于模糊逻辑的多属性融合油气预测方法. 石油地球物理勘探, 49(1): 197-204. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201401030.htm [30] 李建平, 周心怀, 王国芝. 2014. 蓬莱9-1潜山岩性组成及其对储层发育的控制. 地球科学, 39(10): 1421-1430. doi: 10.3799/dqkx.2014.134 [31] 李蒙, 商晓飞, 赵华伟, 等, 2020. 基于likelihood地震属性的致密气藏断裂预测——以四川盆地川西坳陷新场地区须二段为例. 石油与天然气地质, 41(6): 1299-1309. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202006020.htm [32] 刘俊州, 韩磊, 时磊, 等, 2021. 致密砂岩储层多尺度裂缝地震预测技术——以川西XC地区为例. 石油与天然气地质, 42(3): 747-754. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202103020.htm [33] 刘振峰, 刘忠群, 郭元玲, 等, 2021. "断缝体"概念、地质模式及其在裂缝预测中的应用——以四川盆地川西坳陷新场地区须家河组二段致密砂岩气藏为例. 石油与天然气地质, 42(1): 973-980. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202104018.htm [34] 吕丁友, 杨明慧, 周心怀, 等, 2009. 辽东湾坳陷辽西低凸起潜山构造特征与油气聚集. 石油与天然气地质, 30(4): 490-496. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT200904020.htm [35] 施和生, 王清斌, 王军, 等, 2019. 渤中凹陷深层渤中19-6构造大型凝析气田的发现及勘探意义. 中国石油勘探, 24(1): 36-45. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201901006.htm [36] 汤韦, 李景叶, 王建花, 等, 2022. 基于非下采样剪切波变换—参数自适应脉冲耦合神经网络的属性融合裂缝预测方法. 石油地球物理探, 57(1): 52-61. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202201006.htm [37] 王建花, 张金淼, 吴国忱, 2021. 宽方位杨氏模量反演和裂缝预测方法及应用. 石油地球物理勘探, 56(3): 593-602. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202103018.htm [38] 王威, 凡睿, 黎承银, 等, 2021. 川东北地区须家河组"断缝体"气藏有利勘探目标和预测技术. 石油与天然气地质, 42(4): 992-1001. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202104020.htm [39] 吴海波, 王江, 李军辉, 2014. 地震多属性融合技术在贝尔凹陷储层预测中的应用. 岩性油气藏, 26(2): 96-101. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201402017.htm [40] 谢成芳, 彭真明, 周晶晶, 等, 2014. 基于Contourlet变换的地震多属性融合方法. 石油地球物理勘探, 49(4): 739-744. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201404017.htm [41] 谢玉洪, 张功成, 沈朴, 等, 2018. 渤海湾盆地渤中凹陷大气田形成条件与勘探方向. 石油学报, 39(11): 1199-1210. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201811001.htm [42] 徐珂, 张辉, 鞠玮, 等, 2022. 库车坳陷博孜X区块超深储层有效裂缝分布规律及对天然气产能的影响. 地球科学, 47(7). [43] 徐长贵, 于海波, 王军, 等, 2019. 渤海海域渤中19-6大型凝析气田形成条件与成藏特征. 石油勘探与开发, 46(1): 25-38. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901003.htm [44] 薛永安, 王德英, 2020. 渤海湾油型湖盆大型天然气藏形成条件与勘探方向. 石油勘探与开发, 47(2): 260-271. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202002007.htm [45] 杨勉, 徐梓洋, 杨柏松, 等, 2014. 贝尔凹陷基岩潜山致密储层裂缝分布预测. 石油与天然气地质, 35(2): 253-257. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201402014.htm [46] 印兴耀, 马正乾, 向伟, 等, 2022. 地震岩石物理驱动的裂缝预测技术研究现状与进展(Ⅰ)——裂缝储层岩石物理理论. 石油物探, 61(2): 183-204. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT202202001.htm [47] 张志军, 肖广锐, 李尧. 2021. 渤中19-6油田变质岩潜山内幕裂缝地震响应特征及预测技术. 石油地球物理勘探, 56(4): 845-852. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202104019.htm [48] 周心怀, 王清斌, 冯冲, 等, 2022. 渤海海域大型太古界潜山储层形成条件及地质意义. 地球科学, 47(5): 1534-1548. doi: 10.3799/dqkx.2021.249