Experimental and Simulation Study on Reaction Migration of Chlorinated Hydrocarbons Based on Electrochemical-Hydrodynamic Circulation System in Sand Tank
-
摘要: 在室内砂槽实验尺度,建立了潜水-微承压含水层中电化学-水动力循环系统下混合氯代烃生物降解的反应迁移模型,求取了混合氯代烃体系中各组分的反应动力学参数,并基于模型探究了含水层性质及工艺参数对该修复过程的影响机制.研究结果表明:(1)增大抽水流量可加快反应速率常数大的污染物降解,同时也会抑制反应速率常数较小的污染物去除.(2)增大电流强度和井内电极对氯代烃的好氧降解和厌氧脱氯过程分别具有促进和抑制作用.(3)含水层非均质性越强,氯代烃降解速率越小,这尤其体现在低渗区,且含水层非均质性对易降解污染物修复效果的影响较小.Abstract: Using a subsurface electrochemical-hydrodynamic circulation system as a remediation technology, this study developes a reactive transport model of mixed chlorinated hydrocarbons in laboratory sand box experiments. The reaction kinetic parameters of each typical chlorinated hydrocarbon are estimated, revealing the influence mechanisms of aquifer properties and technological parameters on this remediation performance through the electrochemical-hydrodynamic circulation system installed in the sand tank experiment. The results indicate that: (1) An increasing pumping rate can accelerate the degradation of chlorinated hydrocarbons with large reaction rate, on the contrary, a greater pumping rate inhibits the degradation with small reaction rate. (2) An increasing electric current intensity and the in-well electrode facilitate and inhibit the aerobic degradation and anaerobic dechlorination of chlorinated hydrocarbons, respectively. (3) A stronger heterogeneity of aquifer leads to a worse performance of chlorinated hydrocarbon degradation, especially in the low-permeability region; and the influence of aquifer heterogeneity on the remediation performance of easily degradable pollutants is very slight.
-
表 1 模型参数及默认取值
Table 1. Parameters used in this study and default values
参数名称 符号 取值 来源 粉砂孔隙度 $ {\varphi }_{1} $ 0.5 Cai et al.(2022) 中砂孔隙度 $ {\varphi }_{2} $ 0.4 注水井水头 H1 0.53 m 抽水井水头 H2 0.44 m 粉砂水平渗透系数 Kx1 1×10‒6 m/s 中砂水平渗透系数 Kx2 1.1×10‒4 m/s 渗透性各向异性比值 δ=Kx/Kz 10 粉砂纵向弥散度 αL1 1×10‒3 m Gelhar et al.(1992) 中砂纵向弥散度 αL2 1×10‒2 m 弥散度各向异性比值 η=αL/αT 10 微生物浓度 cx 1.1 mg/L Cai et al.(2022) VC好氧降解的反应速率常数 λVC 0.4 d‒1 Jesus et al.(2016) DCM好氧降解的反应速率常数 λDCM 9.34 d‒1 於建明等(2008) 表 2 污染物特征参数反演表
Table 2. Inversion results of pollutant characteristic parameters
参数 表达式 描述 λTCE1 0.11 L/(mg·d) TCE好氧共代谢反应速率常数 λTCE2 0.36 L/(mg·d) TCE厌氧脱氯反应速率常数 λDCA 27.3 L/(mg·d) 1, 2-DCA好氧共代谢反应速率常数 λCF 0.22 L/(mg·d) CF厌氧脱氯反应速率常数 m 800 其他耗氧量 KdTCE1 50 L/kg TCE在粉砂中的分配系数 KdTCE2 0.1 L/kg TCE在中砂的分配系数 KdDCA1 0.1 L/kg 1, 2-DCA在粉砂中的分配系数 KdDCA2 0.05 L/kg 1, 2-DCA在中砂的分配系数 KdCF1 1.5 L/kg CF在粉砂中的分配系数 KdCF2 0.08 L/kg CF在中砂的分配系数 表 3 NSE计算表
Table 3. Results of NSE calculation
指标 TCE-C3 TCE-C4 1, 2-DCA-C3 1, 2-DCA-C4 CF-C3 CF-C4 NSE 0.06 0.68 0.62 0.70 0.75 0.87 -
[1] Baskaran, D., Rajamanickam, R., 2019. Aerobic Biodegradation of Trichloroethylene by Consortium Microorganism from Turkey Litter Compost. Journal of Environmental Chemical Engineering, 7(4): 103260. https://doi.org/10.1016/j.jece.2019.103260 [2] Cai, Q. Z., Shi, C. W., Yuan, S. H., et al., 2022. Integrated Anaerobic-Aerobic Biodegradation of Mixed Chlorinated Solvents by Electrolysis Coupled with Groundwater Circulation in a Simulated Aquifer. Environmental Science and Pollution Research. [3] Cappelletti, M., Frascari, D., Zannoni, D., et al., 2012. Microbial Degradation of Chloroform. Applied Microbiology and Biotechnology, 96(6): 1395-1409. https://doi.org/10.1007/s00253-012-4494-1 [4] Chen, H.L., Hu, C., Chen, G., et al., 2021. PRB Thickness and Influence Based on 1D PCE Chain Degradation. Earth Science, 46(8): 3012-3018 (in Chinese with English abstract). [5] Chen, Z.J., Li, Y.L., Su, H.X., et al., 2018. Spatial Distribution Characteristic and Vertical Migration Analysis of Trichloromethane in a Contaminated Site. Safety and Environmental Engineering, 116(2): 76-80 (in Chinese with English abstract). [6] Gao, S.B., Li, R., Xi, B.D., et al., 2019. Simulation Study about Ammonia Nitrogen Pollution of Groundwater in an Informal Landfill Site in the Sea Plain Area. Acta Scientiae Circumstantiae, 39(10): 3535-3541 (in Chinese with English abstract). [7] Gelhar, L.W., Welty, C., Rehfeldt, K.R., 1992. A Critical Review of Data on Field‐Scale Dispersion in Aquifers. Water Resources Research, 28(7): 1955-1974. https://doi.org/10.1029/92WR00607 [8] Guo, Z.L., Ma, R., Zhang, Y., et al., 2021. Contaminant Transport in Heterogeneous Aquifers: A Critical Review of Mechanisms and Numerical Methods of Non-Fickian Dispersion. Science China Earth Sciences, 51(11): 1817-1836 (in Chinese). [9] Herbst, B., Wiesmann, U., 1996. Kinetics and Reaction Engineering Aspects of the Biodegradation of Dichloromethane and Dichloroethane. Water Research, 30(5): 1069-1076. https://doi.org/10.1016/0043-1354(95)00268-5 [10] Hojabri, S., Rajic, L., Alshawabkeh, A. N., 2018. Transient Reactive Transport Model for Physico-Chemical Transformation by Electrochemical Reactive Barriers, Journal of Hazardous Materials, 358: 171-177. https://doi.org/10.1016/j.jhazmat.2018.06.051 [11] Jesus, J., Frascari, D., Pozdniakova, T., et al., 2016. Kinetics of Aerobic Cometabolic Biodegradation of Chlorinated and Brominated Aliphatic Hydrocarbons: A Review. Journal of Hazardous Materials, 309(May 15): 37-52. https://doi.org/10.1016/j.jhazmat.2016.01.065 [12] Jiang, L.Q., Sun, R.L., Liang, X., 2021. Predicting Groundwater Flow and Transport in Heterogeneous Aquifer Sandbox Using Different Parameter Estimation Methods. Earth Science, 46(11): 4150-4160 (in Chinese with English abstract). [13] Liu, S., Xing, Z.L., Li, C., et al., 2018. The Biotransformation Mechanism of Chloroform in Landfill Cover. China Environment Science, 38(12): 4581-4590 (in Chinese with English abstract). [14] Liu, S.S., Ma, Z.M., Zhang, S.J., 2020. Analysis of Chlorinated Hydrocarbon Source of Groundwater in the Eastern Part of a City. IOP Conference Series: Earth and Environmental Science, 546(4): 042022. https://doi.org/10.1088/1755-1315/546/4/042022 [15] Liu, Z.Y., 2016. Research on Biodegradation of Trichloroethylene and Tetrachloroethylene and Its Progress. Shanxi Architecture, 42(26): 185-187 (in Chinese with English abstract). doi: 10.3969/j.issn.1009-6825.2016.26.101 [16] Ren, J.G., Gao, P.C., Xu, X.J., et al., 2021. Advances in Remediation Technology for Chlorinated Hydrocarbons Contamination in Groundwater. Research of Environmental Sciences, 34(7): 1641-1653 (in Chinese with English abstract). [17] Song, Y.N., Hou, D.Y., Zhao, Y.S., et al., 2020. Remediation Strategies for Contaminated Groundwater at Chemical Industrial Site in Beijing-Tianjin-Hebei Region. Research of Environmental Sciences, 33(6): 1345-1356 (in Chinese with English abstract). [18] Stroo, H. F., Ward, C.H., 2010. In Situ Remediation of Chlorinated Solvent Plumes. Springer, New York, 367. [19] Tiehm, A., Lohner, S.T., Augenstein, T., 2009. Effects of Direct Electric Current and Electrode Reactions on Vinyl Chloride Degrading Microorganisms, Electrochimica Acta, 54(12): 3453-3459. https://doi.org/10.1016/j.electacta.2009.01.002 [20] Wang, Y., 2012. Hydraulic Control and Numerical Simulation in Remediation of Chlorinated Organic Pollution Groundwater (Dissertation). Institute of Environmental Protection of Light Industry, Beijing (in Chinese with English abstract). [21] Wang, Y.G., Yang, Y.Q., Li, Q., et al., 2022. Early Warning of Heavy Metal Pollution after Tailing Pond Failure Accident. Journal of Earth Science, 33(4): 1047-1055. doi: 10.1007/s12583-020-1103-6 [22] Xing, Z.L., 2018. Study on Biodegradation Mechanism of Chloroalkene and Associated Microbial Communities in Landfill Cover (Dissertation). Chongqing University, Chongqing (in Chinese with English abstract). [23] Yu, M., Luo, Z.J., Wang, Y.X., et al., 2018. Chlorobenzenes Contamination in Soils/Sediments at a Site of Decommissioned Plant in Central China. Journal of Earth Science, 29(3): 639-645. https://doi.org/10.1007/s12583-018-0833-1 [24] Yu, J.M., Sha, H.L., Wang, J.D., et al., 2008. Influence of Metabolite Accumulation on Biodegradation of Dichloromethane. Environmental Science & Technology, (3): 84-87 (in Chinese with English abstract). [25] Yuan, S.H., Liu, Y., Zhang, P., et al., 2021. Electrolytic Groundwater Circulation Well for Trichloroethylene Degradation in a Simulated Aquifer. Science China Technological Sciences, 64(2): 251-260. https://doi.org/10.1007/s11431-019-1521-7 [26] Zhang, F.J., Jia, H., Liu, J.L., et al., 2015. Sorption and Desorption of Chlorinated Hydrocarbons onto Loam Soil. Journal of Jilin University (Earth Science Edition), 45(5): 1515-1522 (in Chinese with English abstract). [27] Zhao, Y.S., Jiao, W.Q., Sun, C., et al., 2015. Solubilization of Tween80 on Enhanced Remediation of Naphthalene Contaminated Groundwater by Ground Water Circulation Well. Journal of Central South University (Science and Technology), 46(10): 3969-3974 (in Chinese with English abstract). [28] Zhou, L., 2018. Study on Anaerobic Biodegradation of PCE and Other Chlorinated Ethenes under Different Conditions (Dissertation). Tianjin University, Tianjin (in Chinese with English abstract). [29] 陈华丽, 胡成, 陈刚, 等, 2021. 一维流动条件下PCE链式降解中PRB厚度解析及影响. 地球科学, 46(8): 3012-3018. doi: 10.3799/dqkx.2020.296 [30] 陈姿君, 李义连, 苏红喜, 等, 2018. 某场地三氯甲烷污染分布特征及垂向迁移分析. 安全与环境工程, 116(2): 76-80. https://www.cnki.com.cn/Article/CJFDTOTAL-KTAQ201802013.htm [31] 高绍博, 李瑞, 席北斗, 等, 2019. 海积平原区某非正规垃圾填埋场地下水氨氮污染模拟研究. 环境科学学报, 39(10): 3535-3541. [32] 郭芷琳, 马瑞, 张勇, 等, 2021. 地下水污染物在高度非均质介质中的迁移过程: 机理与数值模拟综述. 中国科学(D辑: 地球科学), 51(11): 1817-1836. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202111001.htm [33] 蒋立群, 孙蓉琳, 梁杏, 2021. 含水层非均质性不同刻画方法对地下水流和溶质运移预测的影响. 地球科学, 46(11): 4150-4160. doi: 10.3799/dqkx.2020.268 [34] 刘帅, 邢志林, 李宸, 等, 2018. 典型污染物包覆层中氯仿的沿程生物转化机制. 中国环境科学, 38(12): 4581-4590. [35] 刘仲阳, 2016. 生物降解三氯乙烯和四氯乙烯的研究及进展. 山西建筑, 42(26): 185-187. https://www.cnki.com.cn/Article/CJFDTOTAL-JZSX201626101.htm [36] 任加国, 郜普闯, 徐祥健, 等, 2021. 地下水氯代烃污染修复技术研究进展. 环境科学研究, 34(7): 1641-1653. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKX202107015.htm [37] 宋易南, 侯德义, 赵勇胜, 等, 2020. 京津冀化工场地地下水污染修复治理对策研究. 环境科学研究, 33(6): 1345-1356. [38] 王颖, 2012. 氯代有机物污染地下水修复的水力控制与数值模拟研究(博士学位论文). 北京: 轻工业环境保护研究所. [39] 邢志林, 2018. 填埋场覆盖层氯代烯烃沿程生物降解机制及微生物群落结构研究(博士学位论文). 重庆: 重庆大学. [40] 於建明, 沙昊雷, 王家德, 等, 2008. 代谢产物积累对二氯甲烷生物降解的影响. 环境科学与技术, (3): 84-87. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS200803025.htm [41] 张凤君, 贾晗, 刘佳露, 等, 2015. 有机氯代烃在壤土中的吸附和解吸特性. 吉林大学学报(地球科学版), 45(5): 1515-1522. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201505023.htm [42] 赵勇胜, 焦维琦, 孙超, 等, 2015. 基于增溶机理的Tween80强化地下水循井技术修复萘污染地下水. 中南大学学报(自然科学版), 46(10): 3969-3974. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201510054.htm [43] 周玲, 2018. PCE及低氯代烯烃在不同环境下生物降解性能研究(硕士学位论文). 天津: 天津大学.