• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    俯冲带结构演变解剖与研究展望

    肖文交 宋东方 张继恩 毛启贵 敖松坚 韩春明 万博 张志勇

    黄强太, 李建峰, 夏斌, 殷征欣, 郑浩, 石晓龙, 胡西冲, 2015. 西藏班公湖-怒江缝合带中段江错蛇绿岩岩石学、地球化学、年代学及地质意义. 地球科学, 40(1): 34-48. doi: 10.3799/dqkx.2015.003
    引用本文: 肖文交, 宋东方, 张继恩, 毛启贵, 敖松坚, 韩春明, 万博, 张志勇, 2022. 俯冲带结构演变解剖与研究展望. 地球科学, 47(9): 3073-3106. doi: 10.3799/dqkx.2022.380
    Huang Qiangtai, Li Jianfeng, Xia Bin, Yin Zhengxin, Zheng Hao, Shi Xiaolong, Hu Xichong, 2015. Petrology, Geochemistry, Chronology and Geological Significance of Jiang Tso Ophiolite in Middle Segment of Bangonghu-Nujiang Suture Zone, Tibet. Earth Science, 40(1): 34-48. doi: 10.3799/dqkx.2015.003
    Citation: Xiao Wenjiao, Song Dongfang, Zhang Ji’en, Mao Qigui, Ao Songjian, Han Chunming, Wan Bo, Zhang Zhiyong, 2022. Anatomy of the Structure and Evolution of Subduction Zones and Research Prospects. Earth Science, 47(9): 3073-3106. doi: 10.3799/dqkx.2022.380

    俯冲带结构演变解剖与研究展望

    doi: 10.3799/dqkx.2022.380
    基金项目: 

    国家自然科学基金项目 41888101

    中国科学院前沿科学重点研究计划项目 QYZDJ⁃SSW⁃SYS012

    新疆自治区重大专项 2021A03001 & 4

    详细信息
      作者简介:

      肖文交(1967-),男,研究员,中国科学院院士,沉积大地构造学专业. E-mail:wj-xiao@mail.iggcas.ac.cn

    • 中图分类号: P54

    Anatomy of the Structure and Evolution of Subduction Zones and Research Prospects

    • 摘要: 俯冲带作为板块构造最为重要的标志之一,是地球最大的物质循环系统,被称为“俯冲工厂”.俯冲作用是驱动和维持板块运动的重要动力引擎.一个完整的俯冲带发育海沟、增生楔、弧前盆地、岩浆弧、弧后盆地(或弧背前陆盆地)等基本构造单元.在一些特殊情况下(如洋脊俯冲、年轻洋壳俯冲、海山俯冲),则可形成一些特殊的俯冲带结构(如平板俯冲、俯冲侵蚀),导致岩浆弧、增生楔、弧前盆地等不发育甚至缺失.俯冲大洋板片可滞留于或穿越地幔过渡带进入下地幔甚至到达核幔边界,把地壳物质带入到地球深部,并通过地幔柱活动上升到浅部.俯冲带是构造活动强烈的区域,存在走滑、挤压、伸展等变形及其构造叠加.俯冲带海沟可向大洋或大陆方向迁移,岛弧及增生楔等也随之发生迁移,使俯冲带上盘发生周期性挤压和伸展,形成复杂的古地理格局.微陆块、岛弧、海山/洋底高原等地质体在俯冲带发生增生时,可阻塞先存的俯冲带,造成俯冲带跃迁或俯冲极性反转,在其外侧形成新的俯冲带.俯冲带深部精细结构、俯冲起始如何发生、板块俯冲与地幔柱的深部关联机制等是当前俯冲带研究中值得关注的前沿问题.开展俯冲带地球物理深部探测、古缝合带与现今俯冲带对比研究、俯冲带动力学数值模拟是解决上述科学问题的重要途径.

       

    • 蛇绿岩作为古大洋岩石圈残片,是古板块构造最重要的分界标志之一,其形成时代对于恢复古大洋的形成演化历史、重建古板块构造格局、分析岩石圈构造动力学及矿产资源分布规律等具有重要意义,近年来一直受到国内外地质学者的关注和重视.班公湖-怒江缝合带是贯穿青藏高原内部,它代表了劳亚-冈瓦纳大陆之间消失的特提斯洋,是一条重要的岩相构造带,主要发育侏罗纪复理石建造、蛇绿混杂岩等(西藏地质矿产局,1993罗亮等,2014张硕等,2014),并且存在明显的地球物理异常特征(Haines et al., 2003潘桂棠等,2004赵文津等,2004).带内不同区段蛇绿岩岩石组合不尽相同,形成的构造环境差异较大,其形成时代也有差异(表 1).由于班公湖-怒江缝合带中段湖区人烟稀少,自然环境极其恶劣, 野外工作条件极其艰苦,因此缺少精确的年龄报道,限制了特提斯构造演化的研究.本文着重选择中段江错蛇绿岩中的辉长岩进行锆石SHRIMP U-Pb锆石法测定该蛇绿岩的形成时代,其结果对于班公湖-怒江缝合带的构造演化具有重要的研究意义.

      表  1  班公湖-怒江缝合带内蛇绿岩典型剖面岩石组合、地球化学特征及构造环境统计
      Table  Supplementary Table   The rock assemblage, geochemical characteristics and tectonic environment of typical ophiolite section in Bangonghu-Nujiang suture zone
      剖面名称 岩石组合 化学特征 构造背景 文献
      东段 丁青 丁青西:地幔橄榄岩、辉长岩、玄武岩;丁青东:地幔橄榄岩、堆晶岩、铁镁质杂岩 熔岩MORB;玻安岩;LAT 弧前环境 张旗和杨瑞英, 1985, 1987; Ishii et al., 1992; 张旗,1992王建平等,2002
      嘉黎-凯蒙 地幔橄榄岩、辉橄岩、橄长岩和辉长岩 SSZ型蛇绿岩 不成熟弧后盆地 和钟铧等,2006
      中段 东巧 地幔橄榄岩、橄长岩、玄武岩及铬铁矿 MORB; E-MORB; SSZ; IAT 大洋盆地扩张环境 Girardeau et al., 1984王希斌等,1984杨瑞英等,1984Pearce and Deng, 1988叶培盛等,2004夏斌等2008
      安多 玄武岩、辉长岩 SSZ型蛇绿岩 弧后盆地环境 王希斌等,1984赖绍聪和刘池阳,2003孙立新等,2011
      觉翁 变质橄榄岩、辉橄岩、堆晶岩、辉绿岩墙、枕状熔岩、放射虫硅质岩 MORB; SSZ 大洋盆地;弧后盆地 王希斌等,1984陈玉禄等,2006
      蓬湖西 纯橄岩、辉长岩、橄长岩 SSZ型蛇绿岩 弧后盆地环境 王希斌等,1984韦振权,2009
      纳木错 变质橄榄岩、辉长辉绿岩、玄武岩 IAT 弧后盆地环境 叶培盛等,2004
      白拉 地幔橄榄岩、辉长岩、辉绿岩 玻安岩 弧前盆地 Pearce and Deng, 1988
      拉弄 地幔橄榄岩、辉长岩、辉绿岩、枕状熔岩 SSZ型蛇绿岩 弧后盆地环境 徐力峰,2009
      西段 洞错 地幔橄榄岩、堆晶杂岩、基性岩墙杂岩、基性熔岩 OIB; MORB; IAT 洋岛;小洋盆,初始洋盆,弧后盆地 林文弟等,1990夏斌等,1991; 鲍佩声等, 1996, 2007; 鲍佩声和王军, 2000张玉修等,2007樊帅权等,2010
      拉果错 地幔橄榄岩、堆晶岩、枕状熔岩、斜长花岗岩、放射虫硅质岩 IAT; MORB和IAT 弧间盆地 王保弟等,2007张玉修等,2007
      查尔康错 变质橄榄岩、堆晶岩、辉绿岩、玄武岩 MORB和IAT 岛弧环境 张玉修等,2007
      班公错 地幔橄榄岩、辉长岩、辉绿岩墙、枕状熔岩 SSZ型蛇绿岩 俯冲带环境 史仁灯,2007黄启帅等,2012a
      狮泉河 地幔橄榄岩、堆晶岩、基性岩墙 IAT; MORB; SSZ 弧后盆地;洋内岛弧 郭铁鹰等,1991史仁灯,2005
      古昌 变质橄榄岩、基性岩墙群、蚀变玄武岩、斜长花岗岩、放射虫硅质岩 MORB; E-MORB 初始洋盆;多岛弧环境;异常洋脊环境 王希斌等,1987张宽忠等,2007
      下载: 导出CSV 
      | 显示表格

      江错蛇绿岩出露于班公湖-怒江缝合带中段的切里湖蛇绿岩亚带,位于蓬错西北.该蛇绿岩亚带南北走向长13 km,宽3~7 km,北宽南窄.该蛇绿岩北侧与安山岩、安山质凝灰岩呈断层接触,西侧和南侧大部分花岗岩呈断裂接触,小部分与石灰岩、砂泥质板岩和硅质岩接触.由于本地区的构造运动较为强烈,因此江错蛇绿岩被构造肢解,并没有呈连续出露的状态,但是蛇绿岩的岩石单元较齐全,从底部到顶部,主要由变质橄榄岩、辉长岩和辉绿岩组成,目前尚未发现相关的熔岩类岩石.本文分析的样品为辉长岩,采样位置坐标为:北纬31°32′6″,东经90°27′58″.

      图  1  江错蛇绿岩地质构造简图
      1.喜马拉雅被动陆缘(印度板块);2.雅鲁藏布缝合带;3.冈底斯陆缘火山-岩浆弧;4.拉萨地块;5.班公湖-怒江缝合带;6.羌塘地块;7.松潘地块;8.蛇绿岩;9.断层;10.湖泊;据夏斌等,1993Yin and Harrison, 2000修改
      Fig.  1.  Geological sketch map of Jiang Tso ophiolite

      辉长岩规模较小,一般呈灰白-暗绿色,具全晶质粒状结构,块状构造(图 2a).矿物成分主要由斜长石、辉石组成,矿物形态不规则(图 3a3b).斜长石形态保留较好者为柱粒状,粒径1~2 mm,为基性斜长石,含量62%~53%,均受不同程度蚀变,主要蚀变为葡萄石化、绿帘石化.辉石碎粒闪石化为蓝绿色角闪石,再绿泥石化,含量35%~40%,粒径1~2 mm,形态不规则,杂乱分布于斜长石粒间,辉石与辉石之间有绿泥石脉.榍石为大小不等粒状,粒径0.1~0.5 mm,含量约为2%~3%.

      图  2  江错蛇绿岩辉长岩和辉绿岩野外照片
      a.辉长岩;b.辉绿岩
      Fig.  2.  Filed photos of gabbro and diabase from Jiang Tso
      图  3  江错蛇绿岩辉长岩显微镜下照片(正交偏光)
      Pl.斜长石;CPX.斜方辉石
      Fig.  3.  Microscope photos of Jiang Tso ophiolite gabbro(orthogonal polarization)

      辉绿岩为暗绿色,岩石具似斑状结构,块状构造,岩石遭受不同程度的蚀变(图 2b).辉石被角闪石化,或呈“环带状”——辉石在核心,外围角闪石(图 4a);角闪石沿辉石解理交代辉石而又未彻底交代,辉石与角闪石或呈文象状、蠕虫状,或呈格状、薄片状.斜长石一般葡萄石化、角闪石化,斜长石有环带和钠长石亮边,其余为角闪石,镶嵌含长结构(图 4b).出溶钛铁矿页片间有榍石、帘石和绿泥石集合体.钛铁矿蚀变的绿泥石呈粉红色,绿帘石呈黄绿色.

      图  4  江错蛇绿岩辉绿岩显微镜下照片(偏光)
      Pl.斜长石;CPX.斜方辉石;Ilm.钛铁矿
      Fig.  4.  Microscope photos of Jiang Tso ophiolite diabase

      岩石样品的薄片观察,是在中山大学显微镜实验室观察完成的.江错蛇绿岩样品的主量、微量元素分析均在中国科学院广州地球化学研究所同位素年代学和地球化学重点实验室完成.

      样品的主元素分析采用碱熔法制成玻璃饼,用X射线荧光光谱法(XRF)测定样品的主量元素,分析精度优于1%(徐力峰,2009).

      样品的微量元素分析则在Perkin-Elmer Sciex Elan 6000型电感耦合等离子体质谱仪(ICP-MS)完成.ICP-MS分析的相关仪器工作条件和方法见相关文献(刘颖等,1996李献华等,2002).微量元素中含量>10×10-6的样品分析精度优于5%(2σ),<10×10-6的样品的分析精度优于10%(2σ),所有稀土元素的分析精度优于5%(2σ).

      蛇绿岩的岩石组合多为基性-超基性岩,锆石量少、颗粒小和分选困难.因此为了挑选到足量、大小合适、晶型良好的锆石颗粒,将4 kg左右的辉长岩样品放在碎样机中粉碎到1 cm3,然后放入直径20 cm的不锈钢研磨钵中,置于震动磨样机中5 min,最后放在铝质淘沙盘中淘洗富集锆石,在双目镜下人工挑选锆石.整个分选流程使用装置彻底清洗,避免样品混染.

      将待测锆石以环氧树脂固定,抛光至暴露出锆石中心面,用反光、透光及阴极发光(CL)照相,在中国地质科学院北京离子探针中心SHRIMPⅡ型离子探针仪上完成U-Pb测年.应用标准锆石TEM(417 Ma)进行元素间的分馏校正, 并用标准锆石SL13(572 Ma,U=238 μg/g)标定样品的U(μg/g)、Th(μg/g)及Pb(μg/g)含量(Composton et al., 1984; 宋彪等,2002).详细实验流程和原理参考文献(简平等2003),SHRIMP锆石U-Pb分析结果数据处理使用Ludwig提供的Isoplot软件,数据处理过程见文献(简平等,2003).因蛇绿岩辉长岩中锆石的U(μg/g)、Th(μg/g)和Pb(μg/g)含量较低,Th和U的含量相当,故以实测207Pb校正普通铅,单个数据点的分析误差均为1σ,采用206Pb/238U年龄,其加权平均值为95%的置信度.

      江错蛇绿岩辉长岩-辉绿岩主量元素分析结果如表 2所示.江错蛇绿岩辉长岩-辉绿岩的SiO2含量变化不大,在46.10%~50.25%之间,平均为48.38%,略低于MORB中SiO2的含量(48.77%),也低于Upper Troodos枕状熔岩(53.27%)(Pearce,1975Cameron,1985Thy and Moores, 1988)和Semail玄武岩中SiO2的含量(53.21%)(Alabaster et al., 1982).

      表  2  江错蛇绿岩辉长岩、辉绿岩主量元素质量百分含量分析结果(%)
      Table  Supplementary Table   Contents of major elements of gabbro and diabase from Jiang Tso
      样品 7XJC1 7XJC2 7XJC3 7XJC7 7XJC4 7XJC5 7XJC6
      岩性 辉长岩 辉长岩 辉长岩 辉长岩 辉绿岩 辉绿岩 辉绿岩
      SiO2 49.47 50.25 50.07 46.50 47.81 48.45 46.10
      TiO2 0.60 0.53 0.18 0.20 0.17 0.45 0.11
      Al2O3 15.05 13.54 15.85 14.96 16.89 16.54 17.80
      Fe2O3 8.09 10.10 4.73 7.84 5.94 5.64 3.74
      MnO 0.08 0.11 0.08 0.12 0.08 0.09 0.07
      MgO 11.09 9.89 11.25 13.88 12.05 9.86 10.74
      CaO 10.53 11.39 10.86 12.35 10.58 15.55 19.37
      Na2O 2.30 2.31 1.63 2.08 1.89 1.34 0.32
      K2O 0.96 0.53 2.21 0.40 0.85 0.38 0.20
      P2O5 0.04 0.06 0.02 0.06 0.01 0.04 0.01
      LOI 1.49 0.99 2.86 1.24 3.54 1.34 1.28
      Total 99.72 99.70 99.73 99.61 99.81 99.68 99.75
      FeOt 7.28 9.09 4.26 7.05 5.34 5.07 3.37
      Mg# 73.27 66.20 82.63 77.98 80.23 77.76 85.17
      注:Mg#=100×Mg2+/(Mg2++Fe2+)(摩尔比);FeOt=FeO+0.9×Fe2O3.
      下载: 导出CSV 
      | 显示表格

      江错蛇绿岩辉长岩-辉绿岩的MgO含量为9.89%~13.88%,平均为11.25%,高于大西洋中脊(MAR)玄武岩平均成分的相应质量百分含量(9.04%),也高于Troodos枕状熔岩(7.79%)和Semail玄武岩中MgO(3.18%)的含量,显示明显富MgO的特点.江错辉绿岩的Mg#为77.76~85.17,平均为80.21,高于原生岩浆范围(Mg# =68~75)(Wilson,1989);辉长岩的Mg#为66.2~82.63,平均为75.02,与原生岩浆范围(Mg# =68~75)(Wilson,1989)相接近,具有初始岩浆的特点,也可能与地幔岩发生过混合作用.

      江错蛇绿岩辉长岩-辉绿岩中的TiO2平均质量百分含量分别为0.37%和0.11%,也都比大洋中脊玄武岩(1.0%~1.5%)的低,表明该蛇绿岩不太可能产于典型的大洋中脊(MOR)环境.江错蛇绿岩中辉长岩-辉绿岩的Na2O平均质量百分含量分别为2.08%和1.18%,低于洋脊玄武岩的平均值(2.75%),也低于碱性玄武岩的平均值(3.20%);而K2O的平均质量百分含量分别为1.02%和0.47%,辉绿岩的K2O质量百分含量与MORB的平均含量(0.14%)相当,而辉长岩则比MORB的平均质量百分含量(0.14%)高很多.辉长岩和辉绿岩的CaO/Al2O3比值分别为0.76和0.88,是MORB和OIB相应值(均为0.7)的1.26和1.09倍,表明两类岩石均是相对高钙贫铝.江错辉长岩样品的P2O5质量百分含量分别为0.02%~0.06%,平均值为0.04%;辉绿岩样品的P2O5质量百分含量为0.01%~0.04%,平均值为0.02%,均低于N-MORB的P2O5含量(0.09%)(Hofmann, 1988).总的来说,江错蛇绿岩基性岩与N-MORB接近,但比N-MORB具有较高的Mg#、低Ti、K、Na、P的特征.表明其形成环境为不典型的N-MORB型.

      在TAS图(图 5)上江错蛇绿岩基性岩均落入到辉长岩中.高场强元素Nb、Ce、Zr、Y、Se、Cr、Ni和REE在交代过程中相对具有不活动的特性,因此被认为能保存未经变质之前的丰度(Rollinson,1993Janney and Castillo, 1996),在辉长岩-辉绿岩-玄武岩中也能基本保持一致.因此选用Nb/Y-Zr/TiO2图进行岩石类型划分(图 5),江错蛇绿岩基性岩样品均落在玄武岩区域内,与TAS投图结果相一致.

      图  5  江错蛇绿岩SiO2-Na2O+K2O和Nb/Y-Zr/TiO2岩石分类
      Fig.  5.  SiO2 vs. Na2O+K2O and Nb/Y vs. Zr/TiO2 diagrams of Jiang Tso ophiolite

      主量元素对MgO的Harker图解(图 6)呈现较好的变异趋势,随着MgO质量百分含量的增高,SiO2质量百分含量逐渐降低,具有较好的一致性;Al2O3质量百分含量几乎保持恒定,由于有较小程度的结晶分异作用,主要是因为单斜辉石晶出现的结果,江错蛇绿岩TiO2出现降低的趋势;而Na2O和K2O的质量百分含量波动性较大,这可能与薄片观察到的斜长石钠化(钠长石净边)有关,表明江错蛇绿岩在后期成岩过程中有海水交代作用,造成Na的增高和K的相对降低.

      图  6  主量元素(SiO2、Al2O3、TiO2、CaO、P2O5、K2O、Na2O)对MgO的Harker图解
      Fig.  6.  Harker diagrams of major elements(SiO2, Al2O3, TiO2, CaO, P2O5, K2O, Na2O) vs. MgO

      江错蛇绿岩辉长岩及辉绿岩微量元素分析结果见表 3.江错蛇绿岩辉长岩的Zr/Nb=22.288~107.893、Th/Yb=0.015~0.135、Zr/Y=0.523~1.832和Ti/Y=164.958~245.541,与N-MORB的对应值(分别为Zr/Nb=31.800、Th/Yb =0.040、Zr/Y=1.435、Ti/Y=254.00)比较接近,而明显有别于OIB和E-MORB的对应值(分别为Zr/Nb=5.800、Th/Yb=1.900、Zr/Y=9.700、Ti/Y=594.000和Zr/Nb=38.800、Th/Yb=0.250、Zr/Y=3.320、Ti/Y=273.000);辉绿岩的Th/Yb和Zr/Y比值分别为0.051~0.116和1.124~1.507,平均值分别为0.061和0.976,都与N-MORB的对应值比较接近,而明显有别于OIB和E-MORB的对应值.但辉长岩的La/Nb和Y/Nb比值的变化范围分别是1.088~2.327和14.110~28.584,平均分别为1.940和18.796;辉绿岩的La/Nb比值变化范围是1.439~2.527,平均为1.373,都比N-MORB的相应值大(分别为1.07和11.20);而辉绿岩的Y/Nb比值的变化范围是9.309~16.763,平均9.341,则比N-MORB的相应值小(为11.2);但与OIB和E-MORB对应值(分别为0.800、0.800和0.760、3.500)相比,相差更大,这表明本区蛇绿岩辉长岩和辉绿岩显示出N-MORB的性质,但又不同于典型的N-MORB,与OIB和E-MORB则完全不同.

      表  3  江错蛇绿岩岩石微量(稀土)元素含量(10-6)及不相容元素比值
      Table  Supplementary Table   Contents of trace (REE) elements of Jiang Tso ophiolite
      样品号 7XJC1 7XJC2 7XJC3 7XJC7 7XJC4 7XJC5 7XJC6
      Sc 43.11 39.91 45.84 43.38 33.93 32.67 25.56
      Ti 3 270.60 2 922.50 1 110.00 1 208.90 975.90 2 487.40 663.90
      V 227.00 276.00 134.50 140.90 114.30 153.80 75.63
      Cr 513.90 438.30 498.40 1 406.70 296.00 1 004.00 1 570.10
      Mn 625.60 909.20 659.60 989.20 590.80 671.00 576.80
      Co 39.68 46.95 30.80 48.07 26.21 28.75 31.72
      Ni 125.40 131.40 147.50 217.90 143.30 177.20 272.10
      Cu 12.62 6.80 13.56 85.91 14.45 43.46 65.22
      Zn 18.62 19.86 18.46 40.66 26.19 41.98 66.69
      Ga 11.52 11.09 8.43 8.94 8.91 9.14 7.73
      Ge 1.22 1.27 1.40 1.15 1.26 1.25 1.07
      Rb 47.78 19.52 130.00 14.68 38.23 17.98 11.29
      Sr 145.20 142.90 151.40 203.40 220.60 143.00 83.23
      Y 13.32 13.09 6.73 5.77 6.94 8.59 2.83
      Zr 21.04 18.89 12.33 3.02 7.79 12.95 3.61
      Nb 0.94 0.75 0.45 0.20 0.75 0.76 0.17
      Ba 23.50 20.03 101.50 61.25 38.67 36.39 34.87
      La 1.24 1.54 0.93 0.47 1.14 1.10 0.43
      Ce 3.19 3.72 2.37 1.16 3.27 2.80 0.97
      Pr 0.54 0.62 0.40 0.21 0.56 0.48 0.15
      Nd 2.99 3.21 2.06 1.30 2.82 2.56 0.84
      Sm 1.10 1.13 0.67 0.48 0.82 0.83 0.28
      Eu 0.43 0.49 0.28 0.31 0.40 0.40 0.16
      Gd 1.57 1.58 0.94 0.76 1.09 1.17 0.39
      Tb 0.32 0.33 0.18 0.16 0.19 0.22 0.07
      Dy 2.19 2.21 1.15 1.09 1.32 1.50 0.53
      Ho 0.49 0.50 0.26 0.25 0.28 0.33 0.11
      Er 1.43 1.41 0.75 0.66 0.76 0.94 0.31
      Tm 0.21 0.22 0.11 0.09 0.11 0.13 0.04
      Yb 1.44 1.48 0.68 0.62 0.73 0.90 0.29
      Lu 0.23 0.25 0.11 0.10 0.11 0.14 0.05
      Hf 0.66 0.63 0.38 0.16 0.26 0.43 0.12
      Ta 0.07 0.06 0.03 0.01 0.04 0.05 0.01
      Pb 1.07 0.53 3.66 1.87 9.59 3.54 4.29
      Th 0.03 0.04 0.09 0.01 0.08 0.05 0.02
      U 0.02 0.05 0.02 0.03 0.02 0.07 0.08
      LREE/HREE 1.20 1.34 1.61 1.05 1.96 1.53 1.58
      Ce/Zr 0.15 0.20 0.19 0.38 0.42 0.22 0.27
      Zr/Nb 22.38 25.19 27.40 15.10 10.39 17.04 21.24
      Th/Yb 0.02 0.03 0.13 0.02 0.11 0.06 0.07
      Zr/Y 1.58 1.44 1.83 0.52 1.12 1.51 1.28
      Ti/Y 245.54 223.26 164.93 209.51 140.62 289.57 234.59
      La/Nb 1.32 2.05 2.07 2.35 1.52 1.45 2.53
      Y/Nb 14.17 17.45 14.96 28.85 9.25 11.30 16.65
      Th/Ta 0.43 0.67 3.00 1.00 2.00 1.00 2.00
      La/Ta 17.71 25.67 31.00 47.00 28.50 22.00 43.00
      δEu 1.00 1.12 1.08 1.57 1.29 1.24 1.48
      下载: 导出CSV 
      | 显示表格

      从微量元素蛛网图(图 7a)上看,江错辉长岩和辉绿岩的配分曲线非常相似,总体都显示为平坦型分布模式,反映了亏损地幔源区玄武岩的地球化学特性.但大离子亲石元素Sr、Rb、Ba富集和高场强元素Th、Hf、Ta、Nb亏损.微量元素特征江错蛇绿岩形成过程中可能遭受了陆源物质的混染,反映了消减作用的影响,根据稀土元素元素的球粒陨石标准化配分型式(图 7b),基性岩产生LREE略富集特征,这也正好印证了这一点.

      图  7  江错蛇绿岩微量元素对原始地幔蜘蛛图(a)和稀土元素配分(b)
      Fig.  7.  Pattern of trace elements of Jiang Tso ophiolite (a) and REE pattern of Jiang Tso ophiolite (b)

      江错辉长岩和辉绿岩稀土元素总量较低,在7.65~18.69 μg/g之间,平均为13.65 μg/g,分别是球粒陨石和OIB稀土总量(分别为3.29 μg/g和79.65 μg/g)的4.15和0.17倍,但与N-MORB的稀土总量(39.10 μg/g)较接近.轻重稀土分异不明显,∑LREE/∑HREE为1.06~1.61,平均为1.30.岩石的(La/Sm)N=0.63~0.89,平均为0.78,比N-MORB的相应值(0.61)略大;而(Gd/Yb)N=0.88~1.15,平均为0.98,说明岩石重稀土元素之间分异不明显;辉长岩的(La/Yb)N=0.62~0.99,平均为0.72;(Ce/Yb)N=0.53~0.97,平均为0.70,与N-MORB的(La/Yb)N和(Ce/Yb)N值(分别为0.59和0.76)较接近,表现出N-MORB的特征.而本区辉绿岩的稀土元素总量在4.63~13.59 μg/g之间,平均为10.57 μg/g,比辉长岩的低一些,分别是球粒陨石和OIB稀土总量的3.21和0.13倍.轻重稀土分异不明显,∑LREE/∑HREE为1.04,平均为1.10.样品的(La/Sm)N同样为0.85~0.98,平均为0.91,与N-MORB的相应值相当;而样品的(Gd/Yb)N=1.07~1.24,平均为1.14;岩石的(La/Yb)N=0.87~1.12,平均为1.02;(Ce/Yb)N=0.86~1.25,平均为1.01,与N-MORB的(La/Yb)N和(Ce/Yb)N值相差不大.

      稀土元素特别是重稀土元素受海水蚀变、热液交代或后期变质作用的影响甚微,因此稀土分配型式能较好地反映岩浆形成时的特点.在球粒陨石标准化配分图上(图 7b),江错蛇绿岩基性岩表现为平坦的模式,各样品REE配分型式相互平行,只有位置的高低,显示其稀土分异程度相当,具有同源岩浆的特征表明辉长岩和辉绿岩可能来自同一源区.江错蛇绿岩同典型N-MORB的元素含量差别,指示江错蛇绿岩并非形成于典型N-MORB的大洋中脊环境(Pearce et al., 1984),而是形成于成熟的扩张脊环境,为俯冲带之上的弧后盆地扩张脊环境.

      江错蛇绿岩辉长岩锆石SHRIMP U-Pb定年样品位(JC3)位于江错西侧1 km,岩性为辉长岩.样品中锆石的阴极发光图像如图 8所示.这些锆石颗粒均发育有规则的韵律环带结构,反映其为岩浆成因锆石特点.对江错蛇绿岩中辉长岩的11个定年锆石进行了11个分析点的U-Pb同位素年龄分析,结果列于表 4.

      图  8  江错蛇绿岩中辉长岩锆石CL图像
      Fig.  8.  Cathode luminescence images of zircons in gabbro from Jiang Tso ophiolite
      表  4  江错蛇绿岩中辉长岩SHRIMP锆石U-Pb分析结果
      Table  Supplementary Table   SHRIMP zircon U-Pb age data of gabbro from Jiang Tso ophiolite
      测点 U(μg/g) Th(μg/g) Th/U 206Pbc(%) 206Pb*(μg/g) 207Pb*/235U ±% 206Pb*/238U ±% 206Pb/238UAge(Ma) ±1σ
      JC1.1 86 62 0.74 6.01 2.4 0.37 39.8 0.030 2 4.2 191.7 7.9
      JC2.1 184 205 1.15 1.11 4.7 0.35 13.3 0.029 6 2.2 188.1 4.1
      JC3.1 163 79 0.50 3.96 4.3 0.28 30.8 0.029 7 2.8 189.0 5.2
      JC5.1 200 159 0.82 3.02 5.2 0.25 23.0 0.029 4 2.9 187.1 5.3
      JC6.1 322 438 1.41 1.66 8.1 0.23 16.0 0.029 0 2.2 184.0 3.9
      JC7.1 114 82 0.74 6.80 3.3 0.43 31.9 0.031 5 3.5 199.7 6.9
      JC8.1 115 110 0.99 10.74 3.1 0.19 77.6 0.028 0 4.1 178.0 7.3
      JC10.1 516 3418 6.84 2.93 12.9 0.21 15.3 0.028 3 2.5 179.7 4.5
      JC12.1 485 1021 2.18 3.95 13.0 0.32 34.2 0.029 9 2.2 190.1 4.1
      JC13.1 181 156 0.89 7.29 5.3 0.20 38.3 0.031 5 3.1 200.1 6.1
      JC15.1 172 173 1.04 6.43 4.8 0.23 40.3 0.030 2 2.9 191.9 5.5
      注:206Pbc(%)为普通206Pb占总206Pb的百分比;Pb*为放射性成因铅;普通铅用204Pb校正.
      下载: 导出CSV 
      | 显示表格

      锆石颗粒粒度变化于20~100 μm之间,通过阴极发光照片显示大多数锆石具有较好的晶形,并显示出岩浆结晶环带或条带结构,反应岩浆成因的锆石的特点.不同结构类型的锆石结晶时代相当,说明辉长岩形成时的岩浆事件相对简单.测定结果表 3所示,可见U和Th的含量较高,分别介于86~485 μg/g和62~1 021 μg/g,Th/U介于0.50~2.18.在U-Pb谐和图上9个数据点集中分布(图 9),206Pb/238Pb年龄变化范围为178.0~200.1 Ma,加权平均值为189.8±3.3 Ma(95%置信度,MSWD=0.97),该年龄即为辉长岩的结晶年龄.

      图  9  江错蛇绿岩中辉长岩锆石U-Pb年龄的谐和图
      Fig.  9.  Zircons U-Pb Concordia diagram of gabbro from Jiang Tso ophiolite

      蛇绿岩作为构造侵位于大陆上的古大洋岩石圈残片,其形成时代对于恢复古洋形成演化史、重建古板块构造格局具有重要意义.本文所分析的辉长岩是研究区特提斯洋壳轴下岩浆房过程的产物,其形成年龄代表了江错地区特提斯洋海底扩张的时代,即江错洋盆形成于189.8±3.3 Ma(早侏罗世晚期).此外,班公湖-怒江缝合带西段班公湖地区方辉橄榄岩Re-Os年龄为254±28 Ma(黄启帅等,2012a),舍马拉沟蛇绿岩中层状辉长岩的Sm-Nd内部等时线年龄为191±22 Ma(邱瑞照等,2004),西段班公湖蛇绿岩辉长岩锆石年龄为167±1.4 Ma(史仁灯,2007),西段班公湖地区居鲁蛇绿岩辉长岩锆石年龄103.8±3.9 Ma(Liu et al., 2014);孙立新等(2011)在安多多普尔曲一带发现有斜长花岗岩锆石SHRIMP U-Pb年龄为188.0±2.0 Ma,属早侏罗世中晚期,他们认为此年龄代表了洋壳形成的年龄,那曲蛇绿岩辉长岩锆石年龄为183.7±1 Ma(黄启帅等,2012b).东段丁青东南辉长岩糜棱岩的40Ar/39Ar年龄为193.3±3.3 Ma(游再平,1997),以上这些同位素定年结果说明班公湖-怒江蛇绿岩带各段洋盆形成时代都有所差别,存在东早西晚的特点.

      江错蛇绿岩中辉长岩和辉绿岩主量元素TiO2平均含量分别为0.37%和0.11%,TiO2含量较低,明显低于洋脊玄武岩TiO2的平均值1.15%(Pearce, 1983),与岛弧区火山岩(0.58%~0.85%)含量较为接近(Pearce, 1983);P2O5平均含量分别为0.04%和0.02%,与洋脊玄武岩的P2O5的平均含量0.09%相差甚远,二者暗示了江错辉长岩和辉绿岩非典型大洋中脊的特点.在球粒陨石标准化配分图上(图 7b),辉长岩和辉绿岩的稀土配分模式均呈平坦型曲线;辉长岩和辉绿岩的Th/Yb和Zr/Y等微量元素比值均一致反映了N-MORB的地球化学特征;据Elthon(1991)Pearce(1991)可知,形成于MORB环境下的玄武岩中Th/Ta=0.75~2.00,江错蛇绿岩辉长岩和辉绿岩的Th/Ta平均值分别为1.31和1.15,这也说明江错蛇绿岩具有N-MORB性质.但是据Wilson(1989)可知,N-MORB的Zr/Nb值多大于30,江错蛇绿岩基性岩Zr/Nb值均小于30,说明江错蛇绿岩不完全具有MORB的特征.本区辉长岩和辉绿岩微量元素MORB标准化的配分图并非呈现直线型式,而是显示K、Rb、Ba等大离子亲石元素的富集以及Ti、Nb和Ta亏损,特别是Nb的亏损,这与典型的大洋中脊玄武岩明显不同.大洋中脊玄武岩一般不会出现K、Rb、Ba等元素富集,更不会出现Nb的亏损,但是在岛弧区,产生的岛弧火山岩往往具有这样的地球化学特征.江错蛇绿岩的这些特征指示其形成过程中可能遭受了陆源物质的混染,反映了消减作用的影响.

      蛇绿岩代表残余的古洋壳,按照洋壳的形成构造背景通常将蛇绿岩划分为MOR和SSZ两种类型(Pearce et al., 1984).通常成熟的大洋中脊玄武岩由于形成于亏损的地幔源区,而且熔融程度较高,因此玄武岩在地球化学特征上表现为轻稀土元素明显亏损,与N-MORB相比SSZ型蛇绿岩的玄武岩表现为高场强元素明显亏损.

      蛇绿岩的形成构造环境可以通过微量元素比值特征加以认识(图 10),在江错蛇绿岩辉长岩和辉绿岩的微量元素构造环境判别图的FeOt-MgO-Al2O3判别图中样品全部落入到MORB中;在Ti-Zr-Y×3判别图中,样品基本上都在岛弧拉斑玄武岩附近;在Ti/100-Zr-Sr/2判别图中,样品也都是在岛弧玄武岩附近;在Hf/3-Th-Nb/16判别图中,样品都落入到MORB和岛弧拉斑玄武岩中;在Nb×2-Zr/4-Y判别图中,样品都落入到N-MORB和火山弧玄武岩中;在Y/15-La/10-Nb/8判别图中,样品落入到N-MORB和火山弧玄武岩中(图 10).

      图  10  江错蛇绿岩微量元素构造环境判别图解
      Fig.  10.  Trace elements tectonic discrimination diagram of Jiang Tso ophiolite

      综上所述,通过各类判别图可以看出江错蛇绿岩辉长岩和辉绿岩既具有N-MORB的特征,又有大洋火山弧玄武岩的特征,并且又显示陆源物质混染的地球化学印迹.表明江错蛇绿岩不是洋脊型而可能是岛弧型(SSZ),或者说是与岛弧有关的蛇绿岩.在全球大地构造环境中,俯冲带之上的弧间盆地和不成熟的弧后盆地次级扩张产生的新洋壳往往兼有这两种地球化学特征.韦振权(2007)对蓬湖西蛇绿岩研究后认为,蓬湖西蛇绿岩形成SSZ之上的弧后盆地环境;而白拉蛇绿岩和觉翁蛇绿岩也形成于弧后盆地环境(汤耀庆和王方国,1984王希斌等,1987);湖区南侧的拉弄蛇绿岩也形成与弧后盆地环境(徐力峰,2009).在江错蛇绿岩西北面的东卡错微路块上,发育一套岩浆弧型火山岩(去申拉组火山岩)和早白垩世酸性侵入岩,是特提洋向南俯冲消减过程中形成的.江错蛇绿岩成因是北侧的特提斯洋在中晚侏罗世向南俯冲消减过程中,在其后缘诱发拉张作用引起次级弧后扩张,形成了新的大洋岩石圈,并在后来的拼贴过程中造成蛇绿岩就位.结合区域地质构造和地球化学特征分析,江错蛇绿岩形成构造环境应为俯冲带之上(SSZ)的弧后盆地扩张脊环境.

      (1) 江错蛇绿岩位于班公湖-怒江缝合带中段,主要由纯橄岩、变质橄榄岩、辉长岩和辉绿岩组成,具有比N-MORB较高的Mg#,低Ti、K、Na、P的特征,富集大离子亲石元素Sr、Rb、Ba和亏损高场强元素Th、Hf、Ta、Nb,REE配分图总体显示为平坦型分布模式.

      (2) 江错蛇绿岩辉长岩锆石SHRIMP U-Pb加权平均年龄为189.8±3.3 Ma(MSWD=0.97),该结果代表了班公湖怒江缝合带中段江错地区特提斯洋的扩张时代.

      (3) 通过地球化学元素分析认为江错蛇绿岩是形成于SSZ之上的弧后盆地扩张脊环境.

      致谢: 本文在研究过程中,南京大学周国庆老师曾提出许多宝贵意见,西藏地质调查院刘鸿飞院长、曾庆高总工程师在野外工作进行指导以及匿名审稿专家的建议,在此诚表谢意.
    • 图  1  全球俯冲带分布,可划分为增生型俯冲带和侵蚀型俯冲带

      Fig.  1.  Distribution of accretionary and erosional subduction zones

      图  2  俯冲带基本结构与组成

      Stern(2002)修改

      Fig.  2.  Basic structures and components of a subduction zone

      图  3  安第斯型造山带结构

      在弧后位置形成弧背褶皱冲断带和弧背前陆盆地,据Pfiffner and Gonzalez(2013)修改

      Fig.  3.  Orogenic structure of the Andes, showing the development of retroarc fold‒thrust belt and retroarc foreland basin

      图  4  地震层析成像揭示全球主要俯冲带深部结构特征

      东太平洋板块在中美洲和南美洲俯冲穿过地幔过渡带进入下地幔;西太平洋板块平躺于东亚大陆地幔过渡带,形成大地幔楔;印度洋板片沿安达曼‒苏门答腊俯冲带穿过地幔过渡带进入下地幔.据Zhao et al.(2007)Li et al.(2008)修改

      Fig.  4.  Deep structures of global subduction zones as revealed by seismic tomography

      图  5  增生型俯冲带和侵蚀型俯冲带结构示意

      Clift and Vannucchi(2004)修改

      Fig.  5.  Schematic diagrams showing structures of accretionary and erosional subduction zones

      图  6  平板型俯冲带结构示意

      Gutscher(2001)修改

      Fig.  6.  Schematic diagram showing the structure of flat-slab subduction

      图  7  美国西海岸Cascades地区50~40 Ma高角度俯冲作用

      Burkett and Gurnis(2013)Schmandt and Humphreys(2011)

      Fig.  7.  High-angle subduction of the Cascades subduction zone in western North America during 50‒40 Ma

      图  8  太平洋板块发生高角度洋内俯冲作用,俯冲大洋板片在下地幔发生垂向堆叠

      Sigloch and Mihalynuk(2013)

      Fig.  8.  High-angle intra-oceanic subduction of the Pacific Plate, showing the vertical stack of subducted slab

      图  9  伊泽纳崎板块‒太平洋板块洋中脊‒转换断层俯冲带结构示意

      Wu and Wu(2019)修改

      Fig.  9.  Schematic diagram of ridge-transform fault subduction of the Izanagi-Pacific Plate

      图  10  南美洋中脊‒转换断层俯冲带结构示意

      Bourgois et al.(2016)修改

      Fig.  10.  Schematic diagram of the ridge-transform fault subduction beneath South American Plate

      图  11  太平洋板块北部几个平行的大洋破碎带俯冲结构示意

      Singer et al.(1996)修改

      Fig.  11.  Structure of the subduction of several parallel oceanic fracture zones in the northern Pacific Plate

      图  12  特提斯造山带金沙江段洋中脊俯冲作用

      Liu et al.(2021)

      Fig.  12.  Schematic diagrams illustrating ridge subduction of the Jinshajiang Ocean in Tethys

      图  13  地幔柱热点或者大火成岩省分布

      Greene et al.(2010)

      Fig.  13.  Global distribution of Phanerozoic hotspots or large igneous provinces

      图  14  OIB再循环形成E-MORB示意

      俯冲的海山在地幔对流的影响下和其他洋壳在上地幔发生再循环并在洋脊处形成EMORB.修改自Ulrich et al.(2012)

      Fig.  14.  Schematic diagram showing OIB recirculated to form E-MORB

      图  15  秘鲁俯冲带板片形态,纳斯卡无震海岭和因卡无震海岭平板型俯冲

      Gutscher et al.(1999)修改

      Fig.  15.  Morphology of the Peru subduction zone, showing the flat slabs induced by subduction of the Nazca and Inca aseismic ridges

      图  16  安纳托利亚下方俯冲板片断离的侧向传播过程

      箭头显示了地幔上涌和环塞浦路斯板块边缘的环形流动.修改自Schildgen et al.(2014)

      Fig.  16.  Lateral propagation of slab break-off beneath Anatolia

      图  17  日本造山带结构,展示增生楔、高压变质岩系与岩浆弧向大洋方向迁移

      修改自Isozaki(1996)

      Fig.  17.  Architecture of the Japan orogen, showing oceanward migration of accretionary complexes, high-pressure metamorphic rocks and magmatic arcs

      图  18  地中海及周边地区俯冲板片结构及地幔对流形式(红色箭头所示)

      Faccenna and Becker(2010)修改

      Fig.  18.  Subducted slab structures and mantle convection patterns (red arrow) in the Mediterranean Sea and surrounding areas

      图  19  班达岛弧俯冲板片三维形态随时间演化模式

      a. 15 Ma;b. 7 Ma;c. 4 Ma;d. 0 Ma. 据Spakman and Hall(2010)修改

      Fig.  19.  Schematic diagrams of subducted slab morphology evolution over time in Banda Island arc

      图  20  华北克拉通东部造山带洋底高原外围诱发大洋俯冲构造演化过程

      Gao et al.(2019)

      Fig.  20.  Schematic tectonic model illustrating the early Neoarchean geodynamic regime conversion from a mantle plume to intraoceanic arc subduction in the eastern North China Craton

      图  21  板块驱动力机制示意

      Collins et al.(2011)修改

      Fig.  21.  Schematic diagram illustrating the role of oceanic subduction in driving plate tectonics

      图  22  大洋破裂带俯冲机制模拟

      a. 模拟均一板块俯冲;b. 模拟蛇纹石化破裂带俯冲. 修改自Manea et al.(2014)

      Fig.  22.  Simulation of subduction mechanism of oceanic fracture zone

    • [1] Almeida, J., Riel, N., Rosas, F. M., et al., 2022. Self-Replicating Subduction Zone Initiation by Polarity Reversal. Communications Earth & Environment, 3: 55. https://doi.org/10.1038/s43247-022-00380-2
      [2] Antonijevic, S. K., Wagner, L. S., Kumar, A., et al., 2015. The Role of Ridges in the Formation and Longevity of Flat Slabs. Nature, 524(7564): 212-215. https://doi.org/10.1038/nature14648
      [3] Bahadori, A., Holt, W. E., 2019. Geodynamic Evolution of Southwestern North America since the Late Eocene. Nature Communications, 10: 5213. https://doi.org/10.1038/s41467-019-12950-8
      [4] Barazangi, M., Isacks, B. L., 1976. Spatial Distribution of Earthquakes and Subduction of the Nazca Plate Beneath South America. Geology, 4(11): 686-692. https://doi.org/10.1130/0091-7613(1976)4686:sdoeas>2.0.co;2 doi: 10.1130/0091-7613(1976)4686:sdoeas>2.0.co;2
      [5] Beate, B., Monzier, M., Spikings, R., et al., 2001. Mio-Pliocene Adakite Generation Related to Flat Subduction in Southern Ecuador: The Quimsacocha Volcanic Center. Earth and Planetary Science Letters, 192(4): 561-570. https://doi.org/10.1016/S0012-821X(01)00466-6
      [6] Berrocal, J., Fernandez, C., 2005. Flat Subduction Beneath the Andean Region from Seismological Evidences. 6th International Symposium on Andean Geodynamics, Barcelona.
      [7] Bian, Q. T., Luo, X. Q., Chen, H. H., et al., 1999. Zircon U-Pb Age of Granodiorite-Tonalite in the A'nyemaqen Ophiolitic Belt and Its Tectonic Significance. Chinese Journal of Geology, 34(4): 420-426 (in Chinese with English abstract).
      [8] Biryol, C. B., Beck, S. L., Zandt, G., et al., 2011. Segmented African Lithosphere beneath the Anatolian Region Inferred from Teleseismic P-Wave Tomography. Geophysical Journal International, 184(3): 1037-1057. https://doi.org/10.1111/j.1365-246X.2010.04910.x
      [9] Bloomer, S. H., Fisher, R. L., 1987. Petrology and Geochemistry of Igneous Rocks from the Tonga Trench: A Non-Accreting Plate Boundary. The Journal of Geology, 95(4): 469-495. https://doi.org/10.1086/629144
      [10] Bonev, N., Stampfli, G., 2011. Alpine Tectonic Evolution of a Jurassic Subduction-Accretionary Complex: Deformation, Kinematics and 40Ar/39Ar Age Constraints on the Mesozoic Low-Grade Schists of the Circum-Rhodope Belt in the Eastern Rhodope-Thrace Region, Bulgaria-Greece. Journal of Geodynamics, 52(2): 143-167. https://doi.org/10.1016/j.jog.2010.12.006
      [11] Bonnardot, M. A., Régnier, M., Christova, C., et al., 2009. Seismological Evidence for a Slab Detachment in the Tonga Subduction Zone. Tectonophysics, 464(1-4): 84-99. https://doi.org/10.1016/j.tecto.2008.10.011
      [12] Bourdon, E., Eissen, J. P., Gutscher, M. A., et al., 2003. Magmatic Response to Early Aseismic Ridge Subduction: The Ecuadorian Margin Case (South America). Earth and Planetary Science Letters, 205(3-4): 123-138. https://doi.org/10.1016/S0012-821X(02)01024-5
      [13] Bourgois, J., Lagabrielle, Y., Martin, H., et al., 2016. A Review on Forearc Ophiolite Obduction, Adakite-Like Generation, and Slab Window Development at the Chile Triple Junction Area: Uniformitarian Framework for Spreading-Ridge Subduction. Pure and Applied Geophysics, 173(10-11): 3217-3246. https://doi.org/10.1007/s00024-016-1317-9
      [14] Breitsprecher, K., Thorkelson, D. J., 2009. Neogene Kinematic History of Nazca-Antarctic-Phoenix Slab Windows beneath Patagonia and the Antarctic Peninsula. Tectonophysics, 464(1-4): 10-20. https://doi.org/10.1016/j.tecto.2008.02.013
      [15] Brown, M., 2010. Paired Metamorphic Belts Revisited. Gondwana Research, 18(1): 46-59. https://doi.org/10.1016/j.gr.2009.11.004
      [16] Burke, K., Ashwal, L. D., Webb, S. J., 2003. New Way to Map Old Sutures Using Deformed Alkaline Rocks and Carbonatites. Geology, 31(5): 391-394. https://doi.org/10.1130/0091-7613(2003)0310391:nwtmos>2.0.co;2 doi: 10.1130/0091-7613(2003)0310391:nwtmos>2.0.co;2
      [17] Burkett, E., Gurnis, M., 2013. Stalled Slab Dynamics. Lithosphere, 5(1): 92-97. https://doi.org/10.1130/l249.1
      [18] Cawood, P. A., Buchan, C., 2007. Linking Accretionary Orogenesis with Supercontinent Assembly. Earth-Science Reviews, 82(3-4): 217-256. https://doi.org/10.1016/j.earscirev.2007.03.003
      [19] Cawood, P. A., Strachan, R. A., Pisarevsky, S. A., et al., 2016. Linking Collisional and Accretionary Orogens during Rodinia Assembly and Breakup: Implications for Models of Supercontinent Cycles. Earth and Planetary Science Letters, 449: 118-126. https://doi.org/10.1016/j.epsl.2016.05.049
      [20] Chen, L., Wang, X., Liang, X. F., et al., 2020. Subduction Tectonics Vs. Plume Tectonics-Discussion on Driving Forces for Plate Motion. Science China Earth Sciences, 63(3): 315-328. https://doi.org/10.1007/s11430-019-9538-2
      [21] Chen, Y. C., Xiao, W. J., Windley, B. F., et al., 2017. Late Devonian-Early Permian Subduction-Accretion of the Zharma-Saur Oceanic Arc, West Junggar (NW China): Insights from Field Geology, Geochemistry and Geochronology. Journal of Asian Earth Sciences, 145: 424-445. https://doi.org/10.1016/j.jseaes.2017.06.010
      [22] Chen, Y. C., Zhang, J. E., Hou, Q. L., et al., 2021a. The Basic Characteristics of Accretion Arcs and Its Geological Implications. Chinese Journal of Geology (Scientia Geologica Sinica), 56(2): 615-634 (in Chinese with English abstract).
      [23] Chen, Y. C., Zhang, J. E., Tian, Z. H., et al., 2021b. The Structure of Suture in Orogenic Belts and Its Tectonic Implications. Acta Petrologica Sinica, 37(8): 2324-2338 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.08.05
      [24] Chen, Y., Li, W., Yuan, X. H., et al., 2015. Tearing of the Indian Lithospheric Slab beneath Southern Tibet Revealed by SKS-Wave Splitting Measurements. Earth and Planetary Science Letters, 413: 13-24. https://doi.org/10.1016/j.epsl.2014.12.041
      [25] Clift, P., Vannucchi, P., 2004. Controls on Tectonic Accretion Versus Erosion in Subduction Zones: Implications for the Origin and Recycling of the Continental Crust. Reviews of Geophysics, 42(2): RG2001. https://doi.org/10.1029/2003RG000127
      [26] Cloos, M., Shreve, R. L., 1988. Subduction-Channel Model of Prism Accretion, Melange Formation, Sediment Subduction, and Subduction Erosion at Convergent Plate Margins: 2. Implications and Discussion. Pure and Applied Geophysics, 128(3-4): 501-545. https://doi.org/10.1007/BF00874549
      [27] Coleman, M., Hodges, K., 1995. Evidence for Tibetan Plateau Uplift before 14 Myr Ago from a New Minimum Age for East-West Extension. Nature, 374: 49-52. https://doi.org/10.1038/374049A0
      [28] Collins, W. J., Belousova, E. A., Kemp, A. I. S., et al., 2011. Two Contrasting Phanerozoic Orogenic Systems Revealed by Hafnium Isotope Data. Nature Geoscience, 4(5): 333-337. https://doi.org/10.1038/ngeo1127
      [29] Collins, W. J., Huang, H. Q., Bowden, P., et al., 2019. Repeated S- I- A-Type Granite Trilogy in the Lachlan Orogen, and Geochemical Contrasts with A-Type Granites in Nigeria: Implications for Petrogenesis and Tectonic Discrimination. Geological Society London Special Publications, 491(1): SP491-2018-159. https://doi.org/10.1144/SP491-2018-159
      [30] Conrad, C. P., Steinberger, B., Torsvik, T. H., 2013. Stability of Active Mantle Upwelling Revealed by Net Characteristics of Plate Tectonics. Nature, 498(7455): 479-482. https://doi.org/10.1038/nature12203
      [31] Cooke, D. R., Hollings, P., Walshe, J. L., 2005. Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls. Economic Geology, 100(5): 801-818. https://doi.org/10.2113/gsecongeo.100.5.801
      [32] Crameri, F., Magni, V., Domeier, M., et al., 2020. A Transdisciplinary and Community-Driven Database to Unravel Subduction Zone Initiation. Nature Communications, 11: 3750. https://doi.org/10.1038/s41467-020-17522-9
      [33] Dal Piaz, G. V., Bistacchi, A., Massironi, M., 2003. Geological Outline of the Alps. Episodes, 26(3): 175-180 doi: 10.18814/epiiugs/2003/v26i3/004
      [34] Dal Zilio, L., 2018. Subduction-Driven Earth Machine. Nature Geoscience, 11(4): 229. https://doi.org/10.1038/s41561-018-0102-z
      [35] Dal Zilio, L., Faccenda, M., Capitanio, F., 2018. The Role of Deep Subduction in Supercontinent Breakup. Tectonophysics, 746: 312-324. https://doi.org/10.1016/j.tecto.2017.03.006
      [36] Daly, K. A., Abers, G. A., Mann, M. E., et al., 2021. Subduction of an Oceanic Plateau across Southcentral Alaska: High-Resolution Seismicity. Journal of Geophysical Research: Solid Earth, 126(11): e2021JB022809. https://doi.org/10.1029/2021JB022809
      [37] Davies, J. H., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1-4): 85-102. https://doi.org/10.1016/0012-821X(94)00237-S
      [38] DeCelles, P. G., Ducea, M. N., Kapp, P., et al., 2009. Cyclicity in Cordilleran Orogenic Systems. Nature Geoscience, 2(4): 251-257. https://doi.org/10.1038/ngeo469
      [39] DeLong, S. E., Schwarz, W. M., Anderson, R. N., 1979. Thermal Effects of Ridge Subduction. Earth and Planetary Science Letters, 44(2): 239-246. https://doi.org/10.1016/0012-821X(79)90172-9
      [40] Dennis, A. J., 1991. Is the Central Piedmont Suture a Low-Angle Normal Fault? Geology, 19(11): 1081-1084. https://doi.org/10.1130/0091-7613(1991)019<1081:ITCPSA>2.3.CO;2 doi: 10.1130/0091-7613(1991)019<1081:ITCPSA>2.3.CO;2
      [41] Dewey, J., Spall, H., 1975. Pre-Mesozoic Plate Tectonics: How Far Back in Earth History can the Wilson Cycle be Extended? Geology, 3(8): 422-424. https://doi.org/10.1130/0091-7613%281975%293%3C422%3APPTHFB%3E2.0.CO%3B2
      [42] Dilek, Y., Furnes, H., 2011. Ophiolite Genesis and Global Tectonics: Geochemical and Tectonic Fingerprinting of Ancient Oceanic Lithosphere. Bulletin of the Geological Society of America, 123(3-4): 387-411 doi: 10.1130/B30446.1
      [43] Ding, L., Kapp, P., Wan, X. Q., 2005. Paleocene-Eocene Record of Ophiolite Obduction and Initial India-Asia Collision, South Central Tibet. Tectonics, 24(3): TC3001. https://doi.org/10.1029/2004TC001729
      [44] Dominguez, S., Lallemand, S. E., Malavieille, J., et al., 1998. Upper Plate Deformation Associated with Seamount Subduction. Tectonophysics, 293(3-4): 207-224. https://doi.org/10.1016/S0040-1951(98)00086-9
      [45] Ducea, M. N., Saleeby, J. B., Bergantz, G., 2015. The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs. Annual Review of Earth and Planetary Sciences, 43: 299-331. https://doi.org/10.1146/annurev-earth-060614-105049
      [46] Ely, K. S., Sandiford, M., 2010. Seismic Response to Slab Rupture and Variation in Lithospheric Structure Beneath the Savu Sea, Indonesia. Tectonophysics, 483(1-2): 112-124. https://doi.org/10.1016/j.tecto.2009.08.027
      [47] English, J. M., Johnston, S. T., 2004. The Laramide Orogeny: What Were the Driving Forces? International Geology Review, 46(9): 833-838. https://doi.org/10.2747/0020-6814.46.9.833
      [48] Faccenna, C., Becker, T. W., 2010. Shaping Mobile Belts by Small-Scale Convection. Nature, 465(7298): 602-605. https://doi.org/10.1038/nature09064
      [49] Finzel, E. S., Trop, J. M., Ridgway, K. D., et al., 2011. Upper Plate Proxies for Flat-Slab Subduction Processes in Southern Alaska. Earth and Planetary Science Letters, 303(3-4): 348-360. https://doi.org/10.1016/j.epsl.2011.01.014
      [50] Flórez-Rodríguez, A. G., Schellart, W. P., Strak, V., 2019. Impact of Aseismic Ridges on Subduction Systems: Insights from Analog Modeling. Journal of Geophysical Research: Solid Earth, 124(6): 5951-5969. https://doi.org/10.1029/2019JB017488
      [51] Forand, D., Evans, J. P., Janecke, S. U., et al., 2018. Insights into Fault Processes and the Geometry of the San Andreas Fault System: Analysis of Core from the Deep Drill Hole at Cajon Pass, California. Geological Society of America Bulletin, 130: 64-92. https://doi.org/10.1130/B31681.1
      [52] Forsyth, D., Uyeda, S., 1975. On the Relative Importance of the Driving Forces of Plate Motion. Geophysical Journal International, 43(1): 163-200. https://doi.org/10.1111/j.1365-246X.1975.tb00631.x
      [53] Fukao, Y., Obayashi, M., 2013. Subducted Slabs Stagnant Above, Penetrating Through, and Trapped below the 660 km Discontinuity. Journal of Geophysical Research: Solid Earth, 118(11): 5920-5938. https://doi.org/10.1002/2013JB010466
      [54] Gao, L., Liu, S. W., Zhang, B., et al., 2019. A Ca. 2.8-Ga Plume-Induced Intraoceanic Arc System in the Eastern North China Craton. Tectonics, 38(5): 1694-1717. https://doi.org/10.1029/2018TC005432
      [55] Garzanti, E., Radeff, G., Malusà, M. G., 2018. Slab Breakoff: A Critical Appraisal of a Geological Theory as Applied in Space and Time. Earth-Science Reviews, 177: 303-319. https://doi.org/10.1016/j.earscirev.2017.11.012
      [56] Gaschnig, R. M., Vervoort, J. D., Lewis, R. S., et al., 2010. Migrating Magmatism in the Northern US Cordillera: In Situ U-Pb Geochronology of the Idaho Batholith. Contributions to Mineralogy and Petrology, 159(6): 863-883. https://doi.org/10.1007/s00410-009-0459-5
      [57] Geng, H. Y., Sun, M., Yuan, C., et al., 2009. Geochemical, Sr-Nd and Zircon U-Pb-Hf Isotopic Studies of Late Carboniferous Magmatism in the West Junggar, Xinjiang: Implications for Ridge Subduction? Chemical Geology, 266(3-4): 364-389. https://doi.org/10.1016/j.chemgeo.2009.07.001
      [58] Gerya, T. V., Stern, R. J., Baes, M., et al., 2015. Plate Tectonics on the Earth Triggered by Plume-Induced Subduction Initiation. Nature, 527(7577): 221-225. https://doi.org/10.1038/nature15752
      [59] Goes, S., Capitanio, F. A., Morra, G., 2008. Evidence of Lower-Mantle Slab Penetration Phases in Plate Motions. Nature, 451(7181): 981-984. https://doi.org/10.1038/nature06691
      [60] Govers, R., Wortel, M. J. R., 2005. Lithosphere Tearing at STEP Faults: Response to Edges of Subduction Zones. Earth and Planetary Science Letters, 236(1-2): 505-523. https://doi.org/10.1016/j.epsl.2005.03.022
      [61] Greene, A. R., Scoates, J. S., Weis, D., et al., 2010. The Architecture of Oceanic Plateaus Revealed by the Volcanic Stratigraphy of the Accreted Wrangellia Oceanic Plateau. Geosphere, 6(1): 47-73. https://doi.org/10.1130/ges00212.1
      [62] Grove, M., Bebout, G. E., Jacobson, C. E., et al., 2008. The Catalina Schist: Evidence for Middle Cretaceous Subduction Erosion of Southwestern North America. In: Draut, A. E., Clift, P. D., Scholl, D. W., eds., Formation and Applications of the Sedimentary Record in Arc Collision Zones. Geological Society of America, Boulder.
      [63] Gutscher, M. A., 2001. An Andean Model of Interplate Coupling and Strain Partitioning Applied to the Flat Subduction Zone of SW Japan (Nankai Trough). Tectonophysics, 333(1-2): 95-109. https://doi.org/10.1016/S0040-1951(00)00269-9
      [64] Gutscher, M. A., Olivet, J. L., Aslanian, D., et al., 1999. The "Lost Inca Plateau": Cause of Flat Subduction Beneath Peru? Earth and Planetary Science Letters, 171(3): 335-341. https://doi.org/10.1016/S0012-821X(99)00153-3
      [65] Gutscher, M. A., Spakman, W., Bijwaard, H., et al., 2000. Geodynamics of Flat Subduction: Seismicity and Tomographic Constraints from the Andean Margin. Tectonics, 19(5): 814-833. https://doi.org/10.1029/1999TC001152
      [66] Hager, B. H., O'Connell, R. J., 1981. A Simple Global Model of Plate Dynamics and Mantle Convection. Journal of Geophysical Research: Solid Earth, 86(B6): 4843-4867. https://doi.org/10.1029/JB086iB06p04843
      [67] Hall, R., 2017. Southeast Asia: New Views of the Geology of the Malay Archipelago. Annual Review of Earth and Planetary Sciences, 45(1): 331-358. https://doi.org/10.1146/annurev-earth-063016-020633
      [68] Hamilton, W., 1969. Mesozoic California and the Underflow of Pacific Mantle. Geological Society of America Bulletin, 80(12): 2409-2430. doi: 10.1130/0016-7606(1969)80[2409:MCATUO]2.0.CO;2
      [69] Haschke, M. R., Scheuber, E., Günther, A., et al., 2002. Evolutionary Cycles during the Andean Orogeny: Repeated Slab Breakoff and Flat Subduction? Terra Nova, 14(1): 49-55. https://doi.org/10.1046/j.1365-3121.2002.00387.x
      [70] Henry, C. D., Aranda-Gomez, J. J., 2000. Plate Interactions Control Middle-Late Miocene, Proto-Gulf and Basin and Range Extension in the Southern Basin and Range. Tectonophysics, 318(1-4): 1-26. https://doi.org/10.1016/S0040-1951(99)00304-2
      [71] Hofmann, A. W., White, W. M., 1982. Mantle Plumes from Ancient Oceanic Crust. Earth and Planetary Science Letters, 57(2): 421-436. https://doi.org/10.1016/0012-821X(82)90161-3
      [72] Hopson, C. A., Mattinson, J. M., Pessagno, E. A., et al., 2008. California Coast Range Ophiolite: Composite Middle and Late Jurassic Oceanic Lithosphere. In: Wright, J. E., Shervais, J. W., eds., Ophiolites, Arcs, and Batholiths: A Tribute to Cliff Hopson. Geological Society of America, Boulder.
      [73] Horton, B. K., 2021. Unconformity Development in Retroarc Foreland Basins: Implications for the Geodynamics of Andean-Type Margins. Journal of the Geological Society, 179(3). https://doi.org/10.1144/jgs2020-263
      [74] Hou, Z. Q., Zhao, Z. D., Gao, Y. F., et al., 2006. Tearing and Dischronal Subduction of the Indian Continental Slab: Evidence from Cenozoic Gangdese Volcano-Magmatic Rocks in South Tibet. Acta Petrologica Sinica, 22(4): 761-774 (in Chinese with English abstract).
      [75] Ichiki, M., Sumitomo, N., Kagiyama, T., 2000. Resistivity Structure of High-Angle Subduction Zone in the Southern Kyushu District, Southwestern Japan. Earth, Planets and Space, 52: 539-548. https://doi.org/10.1186/BF03351661
      [76] Ingersoll, R. V., 2012. Tectonics of Sedimentary Basins, with Revised Nomenclature. In: Busby, C., Azor, A., eds., Tectonics of Sedimentary Basins: Recent Advances (First Edition). Blackwell Publishing Ltd., Oxford.
      [77] Isozaki, Y., 1996. Anatomy and Genesis of a Subduction-Related Orogen: A New View of Geotectonic Subdivision and Evolution of the Japanese Islands. Island Arc, 5(3): 289-320. https://doi.org/10.1111/j.1440-1738.1996.tb00033.x
      [78] Jara, J. J., Barra, F., Reich, M., et al., 2021. Episodic Construction of the Early Andean Cordillera Unravelled by Zircon Petrochronology. Nature Communications, 12: 4930. https://doi.org/10.1038/s41467-021-25232-z
      [79] Johnston, S. T., Canil, D., 2007. Crustal Architecture of SW Yukon, Northern Cordillera: Implications for Crustal Growth in a Convergent Margin Orogen. Tectonics, 26(1): TC1006. https://doi.org/10.1029/2006TC001950
      [80] Johnston, S. T., Mazzoli, S., 2009. The Calabrian Orocline: Buckling of a Previously more Linear Orogen. Geological Society, London, Special Publications, 327(1): 113-125. https://doi.org/10.1144/sp327.7
      [81] Jones, D. L., 1990. Synopsis of Late Palaeozoic and Mesozoic Terrane Accretion within the Cordillera of Western North America. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 331: 479-486. https://doi.org/10.1098/rsta.1990.0084
      [82] Kerr, A. C., Tarney, J., 2005. Tectonic Evolution of the Caribbean and Northwestern South America: The Case for Accretion of Two Late Cretaceous Oceanic Plateaus. Geology, 33(4): 269. https://doi.org/10.1130/g21109.1
      [83] Kneller, E. A., van Keken, P. E., 2007. Trench-Parallel Flow and Seismic Anisotropy in the Mariana and Andean Subduction Systems. Nature, 450(7173): 1222-1225. https://doi.org/10.1038/nature06429
      [84] Korenaga, J., 2013. Initiation and Evolution of Plate Tectonics on Earth: Theories and Observations. Annual Review of Earth and Planetary Sciences, 41(1): 117-151. https://doi.org/10.1146/annurev-earth-050212-124208
      [85] Kusky, T. M., Windley, B. F., Safonova, I., et al., 2013. Recognition of Ocean Plate Stratigraphy in Accretionary Orogens through Earth History: A Record of 3.8 Billion Years of Sea Floor Spreading, Subduction, and Accretion. Gondwana Research, 24(2): 501-547. https://doi.org/10.1016/j.gr.2013.01.004
      [86] Levin, V., Shapiro, N., Park, J., et al., 2002. Seismic Evidence for Catastrophic Slab Loss Beneath Kamchatka. Nature, 418(6899): 763-767. https://doi.org/10.1038/nature00973
      [87] Li, J. L., Hao, J., Chai, Y. C., et al., 1993. Consortium of Mélange and Accretionary Arc in Southern Jiangxi: Suture Zone of the Turkey-Type Collisional Orogenic Belt. In: Li, J. L., ed., Lithospheric Structure and Geological Evolution of the Southeast China Continent. Metallurgical Industry Press, Beijing (in Chinese).
      [88] Li, C., van der Hilst, R. D., Engdahl, E. R., et al., 2008. A New Global Model for P Wave Speed Variations in Earth's Mantle. Geochemistry, Geophysics, Geosystems, 9(5): Q05018. https://doi.org/10.1029/2007GC001806
      [89] Li, J. L., Klemd, R., Gao, J., et al., 2016. Poly-Cyclic Metamorphic Evolution of Eclogite: Evidence for Multistage Burial-Exhumation Cycling in a Subduction Channel. Journal of Petrology, 57(1): 119-146. https://doi.org/10.1093/petrology/egw002
      [90] Li, J. L., Schwarzenbach, E. M., John, T., et al., 2020. Uncovering and Quantifying the Subduction Zone Sulfur Cycle from the Slab Perspective. Nature Communications, 11: 514. https://doi.org/10.1038/s41467-019-14110-4
      [91] Li, J. T., Song, X. D., 2018. Tearing of Indian Mantle Lithosphere from High-Resolution Seismic Images and Its Implications for Lithosphere Coupling in Southern Tibet. Proceedings of the National Academy of Sciences of the United States of America, 115(33): 8296-8300. https://doi.org/10.1073/pnas.1717258115
      [92] Li, L., Sun, N. Y., Shi, W. G., et al., 2022. Elastic Anomalies across the α-β Phase Transition in Orthopyroxene: Implication for the Metastable Wedge in the Cold Subduction Slab. Geophysical Research Letters, 49(16): e2022GL099366. https://doi.org/10.1029/2022gl099366
      [93] Li, S. Z., Wang, G. Z., Suo, Y. H., et al., 2019. Driving Force of Plate Tectonics: Origin and Nature. Geotectonica et Metallogenia, 43(4): 605-643 (in Chinese with English abstract).
      [94] Li, T. D., Xiao, Q. H., Pan, G. T., et al., 2019. A Consideration about the Development of Ocean Plate Geology. Earth Science, 44(5): 1441-1451 (in Chinese with English abstract).
      [95] Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/G23193A.1
      [96] Li, Z. X., Li, X. H., Kinny, P. D., et al., 1999. The Breakup of Rodinia: Did it Start with a Mantle Plume Beneath South China? Earth and Planetary Science Letters, 173(3): 171-181. https://doi.org/10.1016/S0012-821X(99)00240-X
      [97] Li, Z. X., Mitchell, R. N., Spencer, C. J., et al., 2019. Decoding Earth's Rhythms: Modulation of Supercontinent Cycles by Longer Superocean Episodes. Precambrian Research, 323: 1-5. https://doi.org/10.1016/j.precamres.2019.01.009
      [98] Lin, S. F., Xing, G. F., Davis, D. W., et al., 2018. Appalachian-Style Multi-Terrane Wilson Cycle Model for the Assembly of South China. Geology, 46(4): 319-322. https://doi.org/10.1130/g39806.1
      [99] Lithgow-Bertelloni, C., Richards, M. A., 1995. Cenozoic Plate Driving Forces. Geophysical Research Letters, 22(11): 1317-1320. https://doi.org/10.1029/95GL01325
      [100] Liu, L. J., Gurnis, M., Seton, M., et al., 2010. The Role of Oceanic Plateau Subduction in the Laramide Orogeny. Nature Geoscience, 3(5): 353-357. https://doi.org/10.1038/ngeo829
      [101] Liu, Y., Xiao, W. J., Windley, B. F., et al., 2021. Three Stages of Arc Migration in the Carboniferous-Triassic in Northern Qiangtang, Central Tibet, China: Ridge Subduction and Asynchronous Slab Rollback of the Jinsha Paleotethys. Geological Society of America Bulletin, 133(11-12): 2485-2500. https://doi.org/10.1130/B35906.1
      [102] Luo, J., Xiao, W. J., Wakabayashi, J., et al., 2017. The Zhaheba Ophiolite Complex in Eastern Junggar (NW China): Long Lived Supra-Subduction Zone Ocean Crust Formation and Its Implications for the Tectonic Evolution in Southern Altaids. Gondwana Research, 43: 17-40. https://doi.org/10.1016/j.gr.2015.04.004
      [103] Manea, V. C., Leeman, W. P., Gerya, T., et al., 2014. Subduction of Fracture Zones Controls Mantle Melting and Geochemical Signature above Slabs. Nature Communications, 5(1): 5095. https://doi.org/10.1038/ncomms6095
      [104] Manea, V. C., Pérez-Gussinyé, M., Manea, M., 2012. Chilean Flat Slab Subduction Controlled by Overriding Plate Thickness and Trench Rollback. Geology, 40(1): 35-38. https://doi.org/10.1130/g32543.1
      [105] Mann, M. E., Abers, G. A., Daly, K. A., et al., 2022. Subduction of an Oceanic Plateau across Southcentral Alaska: Scattered-Wave Imaging. Journal of Geophysical Research: Solid Earth, 127(1): e2021JB022697. https://doi.org/10.1029/2021JB022697
      [106] Mann, P., Taira, A., 2004. Global Tectonic Significance of the Solomon Islands and Ontong Java Plateau Convergent Zone. Tectonophysics, 389(3-4): 137-190. https://doi.org/10.1016/j.tecto.2003.10.024
      [107] Mantovani, E., Albarello, D., Tamburelli, C., et al., 1996. Evolution of the Tyrrhenian Basin and Surrounding Regions as a Result of the Africa-Eurasia Convergence. Journal of Geodynamics, 21(1): 35-72. https://doi.org/10.1016/0264-3707(95)00011-9
      [108] Maruyama, S., Masago, H., Katayama, I., et al., 2010. A New Perspective on Metamorphism and Metamorphic Belts. Gondwana Research, 18(1): 106-137. https://doi.org/10.1016/j.gr.2010.03.007
      [109] Maruyama, S., Santosh, M., Zhao, D., 2007. Superplume, Supercontinent, and Post-Perovskite: Mantle Dynamics and Anti-Plate Tectonics on the Core-Mantle Boundary. Gondwana Research, 11(1-2): 7-37. https://doi.org/10.1016/j.gr.2006.06.003
      [110] Maunder, B., Prytulak, J., Goes, S., et al., 2020. Rapid Subduction Initiation and Magmatism in the Western Pacific Driven by Internal Vertical Forces. Nature Communications, 11(1): 1874. https://doi.org/10.1038/s41467-020-15737-4
      [111] Michaud, F., Royer, J. Y., Bourgois, J., et al., 2006. Oceanic-Ridge Subduction Vs. Slab Break Off: Plate Tectonic Evolution along the Baja California Sur Continental Margin since 15 Ma. Geology, 34(1): 13-16. https://doi.org/10.1130/g22050.1
      [112] Miyashiro, A., 1973. Paired and Unpaired Metamorphic Belts. Tectonophysics, 17(3): 241-254. https://doi.org/10.1016/0040-1951(73)90005-X
      [113] Morell, K. D., 2016. Seamount, Ridge, and Transform Subduction in Southern Central America. Tectonics, 35(2): 357-385. https://doi.org/10.1002/2015TC003950
      [114] Morell, K. D., Fisher, D. M., Gardner, T. W., 2008. Inner Forearc Response to Subduction of the Panama Fracture Zone, Southern Central America. Earth and Planetary Science Letters, 265(1-2): 82-95. https://doi.org/10.1016/j.epsl.2007.09.039
      [115] Morgan, W. J., 1971. Convection Plumes in the Lower Mantle. Nature, 230(5288): 42-43. https://doi.org/10.1038/230042a0
      [116] Morgan, W. J., 1972. Deep Mantle Convection Plumes and Plate Motions. AAPG Bulletin, 56(2): 203-213. https://doi.org/10.1306/819A3E50-16C5-11D7-8645000102C1865D
      [117] Noda, A., 2016. Forearc Basins: Types, Geometries, and Relationships to Subduction Zone Dynamics. Geological Society of America Bulletin, 128: 879-895. https://doi.org/10.1130/B31345.1
      [118] Palin, R. M., Santosh, M., 2021. Plate Tectonics: What, Where, Why, and When? Gondwana Research, 100: 3-24. https://doi.org/10.1016/j.gr.2020.11.001
      [119] Paterson, S. R., Okaya, D., Memeti, V., et al., 2011. Magma Addition and Flux Calculations of Incrementally Constructed Magma Chambers in Continental Margin Arcs: Combined Field, Geochronologic, and Thermal Modeling Studies. Geosphere, 7(6): 1439-1468. https://doi.org/10.1130/ges00696.1
      [120] Pearce, J. A., Stern, R. J., 2006. Origin of Back-Arc Basin Magmas: Trace Element and Isotope Perspectives. In: Christie, D. M., Fisher, C. R., Lee, S. M., et al., eds., Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. American Geophysical Union, Washington, D.C. .
      [121] Pfiffner, O. A., Gonzalez, L., 2013. Mesozoic-Cenozoic Evolution of the Western Margin of South America: Case Study of the Peruvian Andes. Geosciences (Switzerland), 3(2): 262-310. https://doi.org/10.3390/geosciences3020262
      [122] Piromallo, C., Morelli, A., 2003. P Wave Tomography of the Mantle under the Alpine-Mediterranean Area. Journal of Geophysical Research: Solid Earth, 108(B2): 2065. https://doi.org/10.1029/2002JB001757
      [123] Plunder, A., Bandyopadhyay, D., Ganerød, M., et al., 2020. History of Subduction Polarity Reversal during Arc- Continent Collision: Constraints from the Andaman Ophiolite and Its Metamorphic Sole. Tectonics, 39(6): e2019TC005762. https://doi.org/10.1029/2019TC005762
      [124] Pownall, J. M., Hall, R., Lister, G. S., 2016. Rolling Open Earth's Deepest Forearc Basin. Geology, 44(11): 947-950. https://doi.org/10.1130/g38051.1
      [125] Raimbourg, H., Augier, R., Famin, V., et al., 2014. Long-Term Evolution of an Accretionary Prism: The Case Study of the Shimanto Belt, Kyushu, Japan. Tectonics, 33(6): 936-959. https://doi.org/10.1002/2013TC003412
      [126] Ramos, V. A., 2010. The Tectonic Regime along the Andes: Present-Day and Mesozoic Regimes. Geological Journal, 45(1): 2-25. https://doi.org/10.1002/gj.1193
      [127] Rosenbaum, G., Gasparon, M., Lucente, F. P., et al., 2008. Kinematics of Slab Tear Faults during Subduction Segmentation and Implications for Italian Magmatism. Tectonics, 27(2): TC2008. https://doi.org/10.1029/2007TC002143
      [128] Rosenbaum, G., Li, P. F., Rubatto, D., 2012. The Contorted New England Orogen (Eastern Australia): New Evidence from U-Pb Geochronology of Early Permian Granitoids. Tectonics, 31(1): TC1006. https://doi.org/10.1029/2011TC002960
      [129] Rosenbaum, G., Sandiford, M., Caulfield, J., et al., 2019. A Trapdoor Mechanism for Slab Tearing and Melt Generation in the Northern Andes. Geology, 47(1): 23-26. https://doi.org/10.1130/g45429.1
      [130] Sang, M., Xiao, W. J., Windley, B. F., 2020. Unravelling a Devonian-Triassic Seamount Chain in the South Tianshan High-Pressure/Ultrahigh-Pressure Accretionary Complex in the Atbashi Area (Kyrgyzstan). Geological Journal, 55(3): 2300-2317. https://doi.org/10.1002/gj.3776
      [131] Schellart, W. P., 2008. Overriding Plate Shortening and Extension above Subduction Zones: A Parametric Study to Explain Formation of the Andes Mountains. Geological Society of America Bulletin, 120(11-12): 1441-1454. https://doi.org/10.1130/b26360.1
      [132] Schellart, W. P., Lister, G. S., Toy, V. G., 2006. A Late Cretaceous and Cenozoic Reconstruction of the Southwest Pacific Region: Tectonics Controlled by Subduction and Slab Rollback Processes. Earth-Science Reviews, 76(3-4): 191-233. https://doi.org/10.1016/j.earscirev.2006.01.002
      [133] Schildgen, T. F., Yildirim, C., Cosentino, D., et al., 2014. Linking Slab Break-Off, Hellenic Trench Retreat, and Uplift of the Central and Eastern Anatolian Plateaus. Earth-Science Reviews, 128: 147-168. https://doi.org/10.1016/j.earscirev.2013.11.006
      [134] Schmandt, B., Humphreys, E., 2011. Seismically Imaged Relict Slab from the 55 Ma Siletzia Accretion to the Northwest United States. Geology, 39(2): 175-178. https://doi.org/10.1130/G31558.1
      [135] Scholz, C. H., Small, C., 1997. The Effect of Seamount Subduction on Seismic Coupling. Geology, 25(6): 487-490. https://doi.org/10.1130/0091-7613(1997)0250487:teosso>2.3.co;2 doi: 10.1130/0091-7613(1997)0250487:teosso>2.3.co;2
      [136] Sdrolias, M., Müller, R. D., 2006. Controls on Back-Arc Basin Formation. Geochemistry, Geophysics, Geosystems, 7(4): Q04016. https://doi.org/10.1029/2005GC001090
      [137] Şengör, A. M. C., Natal'in, B. A., 1996. Turkic-Type Orogeny and Its Role in the Making of the Continental Crust. Annual Reviews of Earth and Planetary Sciences, 24: 263-337. https://doi.org/10.1146/annurev.earth.24.1.263
      [138] Şengör, A. M. C., Natal'in, B. A., Sunal, G., et al., 2018. The Tectonics of the Altaids: Crustal Growth during the Construction of the Continental Lithosphere of Central Asia Between ~750 and ~130 Ma Ago. Annual Review of Earth and Planetary Sciences, 46: 439-494. https://doi.org/10.1146/annurev-earth-060313-054826
      [139] Şengör, A. M. C., Sunal, G., Natal'in, B. A., et al., 2022. The Altaids: A Review of Twenty-Five Years of Knowledge Accumulation. Earth-Science Reviews, 228: 104013. https://doi.org/10.1016/j.earscirev.2022.104013
      [140] Shen, X. M., Zhang, H. X., Wang, Q., et al., 2011. Late Devonian-Early Permian A-Type Granites in the Southern Altay Range, Northwest China: Petrogenesis and Implications for Tectonic Setting of "A2-Type" Granites. Journal of Asian Earth Sciences, 42(5): 986-1007. https://doi.org/10.1016/j.jseaes.2010.10.004
      [141] Shreve, R. L., Cloos, M., 1986. Dynamics of Sediment Subduction, Melange Formation, and Prism Accretion. Journal of Geophysical Research: Solid Earth, 91(B10): 10229-10245. https://doi.org/10.1029/JB091iB10p10229
      [142] Sigloch, K., Mihalynuk, M. G., 2013. Intra-Oceanic Subduction Shaped the Assembly of Cordilleran North America. Nature, 496(7443): 50-56. https://doi.org/10.1038/nature12019
      [143] Singer, B. S., Leeman, W. P., Thirlwall, M. F., et al., 1996. Does Fracture Zone Subduction Increase Sediment Flux and Mantle Melting in Subduction Zones? Trace Element Evidence from Aleutian Arc Basalt. In: Bebout, G. E., et al., eds., Subduction Top to Bottom. AGU, Washington, D.C. .
      [144] Sisson, V. B., Hollister, L. S., Onstott, T. C., 1989. Petrologic and Age Constraints on the Origin of a Low- Pressure/High-Temperature Metamorphic Complex, Southern Alaska. Journal of Geophysical Research: Solid Earth, 94(B4): 4392-4410. https://doi.org/10.1029/JB094iB04p04392
      [145] Song, D. F., Xiao, W. J., Han, C. M., et al., 2013a. Progressive Accretionary Tectonics of the Beishan Orogenic Collage, Southern Altaids: Insights from Zircon U-Pb and Hf Isotopic Data of High-Grade Complexes. Precambrian Research, 227: 368-388. https://doi.org/10.1016/j.precamres.2012.06.011
      [146] Song, D. F., Xiao, W. J., Han, C. M., et al., 2013b. Provenance of Metasedimentary Rocks from the Beishan Orogenic Collage, Southern Altaids: Constraints from Detrital Zircon U-Pb and Hf Isotopic Data. Gondwana Research, 24(3-4): 1127-1151. https://doi.org/10.1016/j.gr.2013.02.002
      [147] Song, S. G., Niu, Y. L., Zhang, L. F., et al., 2009. Tectonic Evolution of Early Paleozoic HP Metamorphic Rocks in the North Qilian Mountains, NW China: New Perspectives. Journal of Asian Earth Sciences, 35(3-4): 334-353. https://doi.org/10.1016/j.jseaes.2008.11.005
      [148] Spakman, W., Hall, R., 2010. Surface Deformation and Slab-Mantle Interaction during Banda Arc Subduction Rollback. Nature Geoscience, 3(8): 562-566. https://doi.org/10.1038/ngeo917
      [149] Stern, C. R., 2011. Subduction Erosion: Rates, Mechanisms, and Its Role in Arc Magmatism and the Evolution of the Continental Crust and Mantle. Gondwana Research, 20(2-3): 284-308. https://doi.org/10.1016/j.gr.2011.03.006
      [150] Stern, R. J., 2002. Subduction Zones. Reviews of Geophysics, 40(4): 1012. https://doi.org/10.1029/2001RG000108
      [151] Stern, R. J., 2004. Subduction Initiation: Spontaneous and Induced. Earth and Planetary Science Letters, 226(3-4): 275-292. https://doi.org/10.1016/j.epsl.2004.08.007
      [152] Stern, R. J., Bloomer, S. H., 1992. Subduction Zone Infancy: Examples from the Eocene Izu-Bonin-Mariana and Jurassic California Arcs. Geological Society of America Bulletin, 104(12): 1621-1636. https://doi.org/10.1130/0016-7606(1992)104<1621:SZIEFT>2.3.CO;2 doi: 10.1130/0016-7606(1992)104<1621:SZIEFT>2.3.CO;2
      [153] Strak, V., Schellart, W. P., 2021. Thermo-Mechanical Numerical Modeling of the South American Subduction Zone: A Multi-Parametric Investigation. Journal of Geophysical Research: Solid Earth, 126(4): e2020JB021527. https://doi.org/10.1029/2020JB021527
      [154] Straub, S. M., Gómez-Tuena, A., Vannucchi, P., 2020. Subduction Erosion and Arc Volcanism. Nature Reviews Earth & Environment, 1(11): 574-589. https://doi.org/10.1038/s43017-020-0095-1
      [155] Sun, W. D., 2019. The Magma Engine and the Driving Force of Plate Tectonics. Chinese Science Bulletin, 64(S2): 2988-3006 (in Chinese with English abstract).
      [156] Sun, W. D., Ling, M. X., Yang, X. Y., et al., 2010. Ridge Subduction and Porphyry Copper-Gold Mineralization: an Overview. Science China Earth Sciences, 53(4): 475-484. https://doi.org/10.1007/s11430-010-0024-0
      [157] Takahashi, N., Kodaira, S., Klemperer, S. L., et al., 2007. Crustal Structure and Evolution of the Mariana Intra-Oceanic Island Arc. Geology, 35: 203-206. https://doi.org/10.1130/G23212A.1
      [158] Thorkelson, D. J., 1996. Subduction of Diverging Plates and the Principles of Slab Window Formation. Tectonophysics, 255(1-2): 47-63. https://doi.org/10.1016/0040-1951(95)00106-9
      [159] Tilley, H. L., Moore, G. F., Yamashita, M., et al., 2021. Along-Strike Variations in Protothrust Zone Characteristics at the Nankai Trough Subduction Margin. Geosphere 17: 389-408. https://doi.org/10.1130/GES02305.1.
      [160] Ulrich, M., Hémond, C., Nonnotte, P., et al., 2012. OIB/Seamount Recycling as a Possible Process for E-MORB Genesis. Geochemistry, Geophysics, Geosystems, 13(6): Q0AC19. https://doi.org/10.1029/2012GC004078
      [161] van Hinsbergen, D. V., Lippert, P., Dupont-Nivet, G., et al., 2012. Greater India Basin Hypothesis and a Two-Stage Cenozoic Collision between India and Asia. Proceedings of the National Academy of Sciences, 109: 7659-7664. https://doi.org/10.1073/pnas.1117262109
      [162] van Staal, C. R., 1994. Brunswick Subduction Complex in the Canadian Appalachians: Record of the Late Ordovician to Late Silurian Collision between Laurentia and the Gander Margin of Avalon. Tectonics, 13(4): 946-962. https://doi.org/10.1029/93TC03604
      [163] van Summeren, J., Conrad, C. P., Lithgow-Bertelloni, C., 2012. The Importance of Slab Pull and a Global Asthenosphere to Plate Motions. Geochemistry, Geophysics, Geosystems, 13(2): Q0AK03. https://doi.org/10.1029/2011GC003873
      [164] Vargas, C. A., Mann, P., 2013. Tearing and Breaking off of Subducted Slabs as the Result of Collision of the Panama Arc-Indenter with Northwestern South America. Bulletin of the Seismological Society of America, 103(3): 2025-2046. https://doi.org/10.1785/0120120328
      [165] Vignaroli, G., Faccenna, C., Jolivet, L., et al., 2008. Subduction Polarity Reversal at the Junction between the Western Alps and the Northern Apennines, Italy. Tectonophysics, 450(1-4): 34-50. https://doi.org/10.1016/j.tecto.2007.12.012
      [166] Von Huene, R., Lallemand, S., 1990. Tectonic Erosion along the Japan and Peru Convergent Margins. Geological Society of America Bulletin, 102(6): 704-720. https://doi.org/10.1130/0016-7606(1990)102<0704:TEATJA>2.3.CO;2 doi: 10.1130/0016-7606(1990)102<0704:TEATJA>2.3.CO;2
      [167] Von Huene, R., Scholl, D. W., 1991. Observations at Convergent Margins Concerning Sediment Subduction, Subduction Erosion, and the Growth of Continental Crust. Reviews of Geophysics, 29(3): 279-316. https://doi.org/10.1029/91RG00969
      [168] Wan, B., Wu, F. Y., Chen, L., et al., 2019. Cyclical One-Way Continental Rupture-Drift in the Tethyan Evolution: Subduction-Driven Plate Tectonics. Science in China (Series D), 49(12): 2004-2017 (in Chinese).
      [169] Wang, H., Xiao, W. J., Windley, B. F., et al., 2022. Diverse P-T-t Paths Reveal High-Grade Metamorphosed Forearc Complexes in NW China. Journal of Geophysical Research: Solid Earth, 127(6): e2022JB024309. https://doi.org/10.1029/2022JB024309
      [170] Wang, J. P., Kusky, T. M., Wang, L., et al., 2015. A Neoarchean Subduction Polarity Reversal Event in the North China Craton. Lithos, 220-223: 133-146. https://doi.org/10.1016/j.lithos.2015.01.029
      [171] Wells, M. L., Beyene, M. A., Spell, T. L., et al., 2005. The Pinto Shear Zone; a Laramide Synconvergent Extensional Shear Zone in the Mojave Desert Region of the Southwestern United States. Journal of Structural Geology, 27(9): 1697-1720. https://doi.org/10.1016/j.jsg.2005.03.005
      [172] Whalen, J. B., McNicoll, V. J., van Staal, C. R., et al., 2006. Spatial, Temporal and Geochemical Characteristics of Silurian Collision-Zone Magmatism, Newfoundland Appalachians: An Example of a Rapidly Evolving Magmatic System Related to Slab Break-off. Lithos, 89(3-4): 377-404. https://doi.org/10.1016/j.lithos.2005.12.011
      [173] Windley, B. F., Kusky, T. M., Polat, A., 2021. Onset of Plate Tectonics by the Eoarchean. Precambrian Research, 352: 105980. https://doi.org/10.1016/j.precamres.2020.105980
      [174] Windley, B. F., Xiao, W. J., 2018. Ridge Subduction and Slab Windows in the Central Asian Orogenic Belt: Tectonic Implications for the Evolution of an Accretionary Orogen. Gondwana Research, 61: 73-87. https://doi.org/10.1016/j.gr.2018.05.003
      [175] Wu, F. Y., Wang, J. G., Liu, C. Z., et al., 2019. Intra-Oceanic Arc: Its Formation and Evolution. Acta Petrologica Sinica, 35(1): 1-15 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.01.01
      [176] Wu, J. T. J., Wu, J., 2019. Izanagi-Pacific Ridge Subduction Revealed by a 56 to 46 Ma Magmatic Gap along the Northeast Asian Margin. Geology, 47(10): 953-957. https://doi.org/10.1130/G46778.1
      [177] Xiao, W. J., Ao, S. J., Yang, L., et al., 2017. Anatomy of Composition and Nature of Plate Convergence: Insights for Alternative Thoughts for Terminal India-Eurasia Collision. Science China Earth Sciences, 60(6): 1015-1039. https://doi.org/10.1007/s11430-016-9043-3
      [178] Xiao, W. J., Han, C. M., Liu, W., et al., 2014. How many Sutures in the Southern Central Asian Orogenic Belt: Insights from East Xinjiang-West Gansu (NW China)? Geoscience Frontiers, 5(4): 525-536. https://doi.org/10.1016/j.gsf.2014.04.002
      [179] Xiao, W. J., Han, C. M., Yuan, C., et al., 2010. Transitions among Mariana-, Japan-, Cordillera- and Alaska-Type Arc Systems and Their Final Juxtapositions Leading to Accretionary and Collisional Orogenesis. Geological Society, London, Special Publications, 338(1): 35-53. https://doi.org/10.1144/SP338.3
      [180] Xiao, W. J., Li, J. L., Song, D. F., et al., 2019. Structural Analyses and Spatio-Temporal Constraints of Accretionary Orogens. Earth Science, 44(5): 1661-1687 (in Chinese with English abstract).
      [181] Xiao, W. J., Santosh, M., 2014. The Western Central Asian Orogenic Belt: A Window to Accretionary Orogenesis and Continental Growth. Gondwana Research, 25(4): 1429-1444. https://doi.org/10.1016/j.gr.2014.01.008
      [182] Xiao, W. J., Windley, B. F., Han, C. M., et al., 2009. End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 98: 1189-1217. https://doi.org/10.1007/s00531-008-0407-z
      [183] Xiao, W. J., Windley, B. F., Han, C. M., et al., 2018. Late Paleozoic to Early Triassic Multiple Roll-Back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186: 94-128. https://doi.org/10.1016/j.earscirev.2017.09.020
      [184] Xiao, W. J., Windley, B., Hao, J., et al., 2002. Arc-Ophiolite Obduction in the Western Kunlun Range (China): Implications for the Palaeozoic Evolution of Central Asia. Journal of the Geological Society, 159(5): 517-528. https://doi.org/10.1144/0016-764901-093
      [185] Xiao, W. J., Windley, B., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43: 477-507. https://doi.org/10.1146/annurev-earth-060614-105254
      [186] Xiao, Y., Zhang, R. Q., Kuang, C. L., 2021. Mantle Transition Zone Structure Beneath the Alaska-Aleutian Subduction Zone and Its Surroundings. Chinese Journal of Geophysics, 64(3): 838-850 (in Chinese with English abstract).
      [187] Xu, Y. G., Li, H. Y., Hong, L. B., et al., 2018. Generation of Cenozoic Intraplate Basalts in the Big Mantle Wedge under Eastern Asia. Science China Earth Sciences, 61(7): 869-886. https://doi.org/10.1007/s11430-017-9192-y
      [188] Xu, Z. Q., Dilek, Y., Yang, J. S., et al., 2015. Crustal Structure of the Indus-Tsangpo Suture Zone and Its Ophiolites in Southern Tibet. Gondwana Research, 27(2): 507-524. https://doi.org/10.1016/j.gr.2014.08.001
      [189] Yan, Z., Fu, C. L., Niu, M. L., et al., 2021. Recognition and Significance of Accretionary Prism in Orogenic Belts. Chinese Journal of Geology, 56(2): 430-448 (in Chinese with English abstract).
      [190] Yang, G. X., 2022. Subduction Initiation Triggered by Collision: A Review Based on Examples and Models. Earth-Science Reviews, 232: 104129. https://doi.org/10.1016/j.earscirev.2022.104129
      [191] Yang, G. X., Li, Y. J., Tong, L. L., et al., 2017. Geological Effects of Seamount Subduction in West Junggar: Insight from Geochemical Characteristics of Devonian-Carboniferous Volcanic Rocks. Earth Science Frontiers, 24(6): 60-67 (in Chinese with English abstract).
      [192] Yang, G. X., Li, Y. J., Xiao, W. J., et al., 2015. OIB-Type Rocks within West Junggar Ophiolitic Mélanges: Evidence for the Accretion of Seamounts. Earth-Science Reviews, 150: 477-496. https://doi.org/10.1016/j.earscirev.2015.09.002
      [193] Yang, G. X., Si, G. H., Tong, L. L., et al., 2022. The Effect of Seamount Chain Subduction and Accretion. Geological Journal, 57(7): 2712-2734. https://doi.org/10.1002/gj.4435
      [194] Yao, J. L., Cawood, P. A., Zhao, G. C., et al., 2021. Mariana-Type Ophiolites Constrain the Establishment of Modern Plate Tectonic Regime during Gondwana Assembly. Nature Communications, 12: 4189. https://doi.org/10.1038/s41467-021-24422-z
      [195] Yin, A., Manning, C. E., Lovera, O., et al., 2007. Early Paleozoic Tectonic and Thermomechanical Evolution of Ultrahigh-Pressure (UHP) Metamorphic Rocks in the Northern Tibetan Plateau, Northwest China. International Geology Review, 49(8): 681-716. https://doi.org/10.2747/0020-6814.49.8.681
      [196] Yin, J. Y., Chen, W., Xiao, W. J., et al., 2017. Late Silurian-Early Devonian Adakitic Granodiorite, A-Type and I-Type Granites in NW Junggar, NW China: Partial Melting of Mafic Lower Crust and Implications for Slab Roll-back. Gondwana Research, 43: 55-73. https://doi.org/10.1016/j.gr.2015.06.016
      [197] Yuan, J., Deng, C. L., Yang, Z. Y., et al., 2022. Triple-Stage India-Asia Collision Involving Arc-Continent Collision and Subsequent Two-Stage Continent-Continent Collision. Global and Planetary Change, 212: 103821. https://doi.org/10.1016/j.gloplacha.2022.103821
      [198] Žák, J., Svojtka, M., Hajná, J., et al., 2020. Detrital Zircon Geochronology and Processes in Accretionary Wedges. Earth-Science Reviews, 207: 103214. https://doi.org/10.1016/j.earscirev.2020.103214
      [199] Zhang, J. E., Xiao, W. J., Luo, J., et al., 2018a. Collision of the Tacheng Block with the Mayile-Barleik-Tangbale Accretionary Complex in Western Junggar, NW China: Implication for Early-Middle Paleozoic Architecture of the Western Altaids. Journal of Asian Earth Sciences, 159: 259-278. https://doi.org/10.1016/j.jseaes.2017.03.023
      [200] Zhang, J. E., Xiao, W. J., Windley, B. F., et al., 2018b. Multiple Alternating Forearc- and Backarc-Ward Migration of Magmatism in the Indo-Myanmar Orogenic Belt since the Jurassic: Documentation of the Orogenic Architecture of Eastern Neotethys in SE Asia. Earth-Science Reviews, 185: 704-731. https://doi.org/10.1016/j.earscirev.2018.07.009
      [201] Zhang, J. X., 2020. The Study of Subduction Channels: Progress, Controversies, and Challenges. Science China Earth Sciences, 63(12): 1831-1851. https://doi.org/10.1007/s11430-019-9626-5
      [202] Zhao, D. P., Christensen, D., Pulpan, H., 1995. Tomographic Imaging of the Alaska Subduction Zone. Journal of Geophysical Research: Solid Earth, 100(B4): 6487-6504. https://doi.org/10.1029/95JB00046
      [203] Zhao, D. P., Maruyama, S., Omori, S., 2007. Mantle Dynamics of Western Pacific and East Asia: Insight from Seismic Tomography and Mineral Physics. Gondwana Research, 11(1-2): 120-131. https://doi.org/10.1016/j.gr.2006.06.006
      [204] Zhao, D. P., Tian, Y., Lei, J. S., et al., 2009. Seismic Image and Origin of the Changbai Intraplate Volcano in East Asia: Role of Big Mantle Wedge above the Stagnant Pacific Slab. Physics of the Earth and Planetary Interiors, 173(3-4): 197-206. https://doi.org/10.1016/j.pepi.2008.11.009
      [205] Zheng, Y. F., Zhao, G. C., 2020. Two Styles of Plate Tectonics in Earth's History. Science Bulletin, 65(4): 329-334. https://doi.org/10.1016/j.scib.2018.12.029
      [206] Zhu, R. X., Zhao, G. C., Xiao, W. J., et al., 2021. Origin, Accretion, and Reworking of Continents. Reviews of Geophysics, 59(3): e2019RG000689. https://doi.org/10.1029/2019RG000689
      [207] 边千韬, 罗小全, 陈海泓, 等, 1999. 阿尼玛卿蛇绿岩带花岗-英云闪长岩锆石U-Pb同位素定年及大地构造意义. 地质科学, 34(4): 420-426. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199904002.htm
      [208] 陈艺超, 张继恩, 田忠华, 等, 2021b. 造山带中缝合面结构特征与构造意义. 岩石学报, 37(8): 2324-2338. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202108005.htm
      [209] 陈艺超, 张继恩, 侯泉林, 等, 2021a. 增生弧基本特征与地质意义. 地质科学, 56(2): 615-634. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202102012.htm
      [210] 侯增谦, 赵志丹, 高永丰, 等, 2006. 印度大陆板片前缘撕裂与分段俯冲: 来自冈底斯新生代火山-岩浆作用证据. 岩石学报, 22(4): 761-774. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604001.htm
      [211] 李继亮, 郝杰, 柴育成, 等, 1993. 赣南混杂带与增生弧联合体: 图尔基型碰撞造山带的缝合带. 见: 李继亮编. 东南大陆岩石圈结构与地质演化. 北京: 冶金工业出版社.
      [212] 李三忠, 王光增, 索艳慧, 等, 2019. 板块驱动力: 问题本源与本质. 大地构造与成矿学, 43(4): 605-643. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201904002.htm
      [213] 李廷栋, 肖庆辉, 潘桂棠, 等, 2019. 关于发展洋板块地质学的思考. 地球科学, 44(5): 1441-1451. doi: 10.3799/dqkx.2019.970
      [214] 孙卫东, 2019. "岩浆引擎"与板块运动驱动力. 科学通报, 64(S2): 2988-3006. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2019Z2005.htm
      [215] 万博, 吴福元, 陈凌, 等, 2019. 重力驱动的特提斯单向裂解-聚合动力学. 中国科学(D辑), 49(12): 2004-2017.
      [216] 吴福元, 王建刚, 刘传周, 等, 2019. 大洋岛弧的前世今生. 岩石学报, 35(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201901002.htm
      [217] 肖文交, 李继亮, 宋东方, 等, 2019. 增生型造山带结构解析与时空制约. 地球科学, 44(5): 1661-1687. doi: 10.3799/dqkx.2019.979
      [218] 肖勇, 张瑞青, 况春利, 2021. 阿留申-阿拉斯加俯冲带及周边地区地幔过渡带结构研究. 地球物理学报, 64(3): 838-850. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202103008.htm
      [219] 闫臻, 付长垒, 牛漫兰, 等, 2021. 造山带中增生楔识别与地质意义. 地质科学, 56(2): 430-448. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202102004.htm
      [220] 杨高学, 李永军, 佟丽莉, 等, 2017. 西准噶尔海山俯冲的地质效应: 来自泥盆纪-石炭纪火山岩地球化学证据. 地学前缘, 24(6): 60-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201706007.htm
    • 期刊类型引用(28)

      1. 钱青,孙宝璐,董飞羽. 藏东怒江峡谷蛇绿岩:早侏罗世拉萨地块被动陆缘俯冲起始的记录?. 中国科学:地球科学. 2025(03): 747-769 . 百度学术
      2. Qing QIAN,Baolu SUN,Feiyu DONG. Nujiang Canyon ophiolites(eastern Tibetan Plateau): Records of early Jurassic subduction initiation at passive continental margin of the Lhasa block?. Science China Earth Sciences. 2025(03): 730-749 . 必应学术
      3. 张克信,宋博文,何卫红,骆满生,寇晓虎,徐亚东,王嘉轩,王盛栋,王丽君,柯学,任飞,陈奋宁,陈锐明. 青藏中-南部特提斯洋板块地层分布与演化. 地球科学. 2025(03): 1162-1200 . 本站查看
      4. 唐建科,刘育,张泽国,何林武,邓科,段炳鑫,王金贵. 罗布莎蛇绿混杂岩中堆晶辉长岩U-Pb定年、地球化学特征及其地质意义. 矿产勘查. 2024(06): 928-937 . 百度学术
      5. 刘朋东,刘飞,李观龙,龚小晗,牛晓露,冯光英. 西藏丁青蛇绿岩早侏罗世堆晶斜方辉石岩的弧前特征及其地质意义. 岩石学报. 2024(12): 3781-3800 . 百度学术
      6. 闫金禹,熊发挥,徐向珍,张承杰,卢雨潇,何兰芳,王天泽,杨经绥. 西藏班公湖-怒江缝合带中段切里湖豆荚状铬铁矿地球化学特征及构造意义. 地质学报. 2022(12): 4294-4311 . 百度学术
      7. 马安林,胡修棉. 沉积记录约束班公湖-怒江缝合带东巧蛇绿岩的仰冲过程. 沉积与特提斯地质. 2021(02): 163-175 . 百度学术
      8. 张华,彭义荣,赵莉,王宇,康晓波,王波,柴金龙. 怒江大峡谷“瓦拉亚窟”溶洞景观及地质旅游资源评价. 中国岩溶. 2021(06): 977-986 . 百度学术
      9. 廖宇斌,李碧乐,孙永刚,杨佰慧,高歌悦,刘国文. 柴达木盆地北缘锡铁山铅锌矿区辉长岩锆石U-Pb年代、岩石地球化学和Hf同位素特征. 世界地质. 2020(03): 495-508 . 百度学术
      10. 董玉飞,杨经绥,连东洋,熊发挥,赵慧,陈晓坚,李观龙,王天泽. 西藏班公湖—怒江缝合带中段东巧地幔橄榄岩岩石成因及构造环境分析. 中国地质. 2019(01): 87-114 . 百度学术
      11. 宋扬,曾庆高,刘海永,刘治博,李海峰,德西央宗. 班公湖-怒江洋形成演化新视角:兼论西藏中部古-新特提斯转换. 岩石学报. 2019(03): 625-641 . 百度学术
      12. 田绍海,李佑国,彭柱源,李威,余乐,袁华云,张伟. 班公湖-怒江缝合带西段亚龙日地区硅质岩地球化学特征及其沉积环境. 河南理工大学学报(自然科学版). 2019(04): 65-74 . 百度学术
      13. 张然,熊发挥,徐向珍,刘钊,杨经绥. 西藏依拉山蛇绿岩中铬铁矿特征及构造背景. 地质学报. 2019(07): 1655-1670 . 百度学术
      14. 刘海永,岳鋆璋,顿珠旺堆,旺姆,毛国正,吴浩. 青藏高原中部麻米地区晚侏罗世火山岩岩石成因及其地质意义. 地球科学. 2019(07): 2368-2382 . 本站查看
      15. 曾孝文,王明,范建军,于云鹏,罗安波,郝宇杰. 藏北阿索地区早白垩世基性岩脉地球化学及年代学特征:对班公湖-怒江洋闭合时限的约束. 地球科学. 2019(07): 2408-2425 . 本站查看
      16. 罗安波,范建军,王明,曾孝文. 班公湖-怒江洋复理石沉积时代:来自改则县亚多村碎屑锆石的制约. 地球科学. 2019(07): 2426-2444 . 本站查看
      17. 杨剑洲,龚晶晶,高健翁,蔡永文,席明杰,马生明. 北山造山带白云山蛇绿岩地幔橄榄岩成因及形成环境. 西北地质. 2019(03): 1-13 . 百度学术
      18. 王喜臣,夏斌,刘维亮,钟云,胡西冲,关瑶,黄炜,殷征欣. 西藏蓬错蛇绿岩年代学、地球化学及岩石成因. 大地构造与成矿学. 2018(03): 550-569 . 百度学术
      19. 武勇,陈松永,秦明宽,郭冬发,郭国林,张财,杨经绥. 西藏班公湖-怒江缝合带西段洞错蛇绿岩中的辉长岩锆石U-Pb年代学及地质意义. 地球科学. 2018(04): 1070-1087 . 本站查看
      20. 朱晓青,郭兴伟,张训华,侯方辉,温珍河,耿威,王忠蕾,孙建伟,祁江豪. 青藏高原中-南部新生代构造演化的热年代学制约. 地球科学. 2018(06): 1903-1920 . 本站查看
      21. 林宇,韦伟,李喜林,吴继文. 大峡谷中的瑰宝:泸水地质遗迹. 中国矿业. 2018(S2): 308-311 . 百度学术
      22. 苗忠英,张震,郑绵平,牛新生,张雪飞. 东特提斯构造演化与兰坪—思茅盆地蒸发岩的形成. 地球学报. 2017(06): 883-896 . 百度学术
      23. 施炜,董树文,黄兴富,陈虹,崔建军. 东亚大陆西缘侏罗纪变形——以班公湖—怒江带中段韧性变形为例. 地质力学学报. 2017(04): 515-525 . 百度学术
      24. 孔维华,蒋之飞,周新,徐学金,方明,方洁,肖霞. 西藏班戈县白拉SSZ型蛇绿岩锆石U-Pb年龄及其构造意义. 资源环境与工程. 2017(06): 669-674 . 百度学术
      25. Yanwang Wu,Cai Li,Mengjing Xu,Chaoming Xie,Ming Wang. Zircon U-Pb Age, Geochemical Data:Constraints on the Origin and Tectonic Evolution of the Metamafic Rocks from Longmuco-Shuanghu-Lancang Suture Zone, Tibet. Journal of Earth Science. 2017(03): 422-432 . 必应学术
      26. 史同强,段文勇. 西藏地区蛇绿岩岩石特征、时代及其地质意义研究. 城市地理. 2016(12): 89 . 百度学术
      27. 刘池洋,郑孟林,杨兴科,何碧竹,任战利,郭佩. 羌塘中生代海相盆地演化与后期改造及油气赋存. 地质学报. 2016(11): 3259-3281 . 百度学术
      28. 邱啸飞,杨红梅,张利国,赵小明,段桂玲,卢山松,谭娟娟,施念. 扬子陆块庙湾蛇绿岩中橄榄岩的同位素年代学及其构造意义. 地球科学(中国地质大学学报). 2015(07): 1121-1128 . 百度学术

      其他类型引用(26)

    • 加载中
    图(22)
    计量
    • 文章访问数:  665
    • HTML全文浏览量:  422
    • PDF下载量:  312
    • 被引次数: 54
    出版历程
    • 收稿日期:  2022-09-01
    • 刊出日期:  2022-09-25

    目录

    /

    返回文章
    返回