• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    俯冲带结构演变解剖与研究展望

    肖文交 宋东方 张继恩 毛启贵 敖松坚 韩春明 万博 张志勇

    肖文交, 宋东方, 张继恩, 毛启贵, 敖松坚, 韩春明, 万博, 张志勇, 2022. 俯冲带结构演变解剖与研究展望. 地球科学, 47(9): 3073-3106. doi: 10.3799/dqkx.2022.380
    引用本文: 肖文交, 宋东方, 张继恩, 毛启贵, 敖松坚, 韩春明, 万博, 张志勇, 2022. 俯冲带结构演变解剖与研究展望. 地球科学, 47(9): 3073-3106. doi: 10.3799/dqkx.2022.380
    Xiao Wenjiao, Song Dongfang, Zhang Ji’en, Mao Qigui, Ao Songjian, Han Chunming, Wan Bo, Zhang Zhiyong, 2022. Anatomy of the Structure and Evolution of Subduction Zones and Research Prospects. Earth Science, 47(9): 3073-3106. doi: 10.3799/dqkx.2022.380
    Citation: Xiao Wenjiao, Song Dongfang, Zhang Ji’en, Mao Qigui, Ao Songjian, Han Chunming, Wan Bo, Zhang Zhiyong, 2022. Anatomy of the Structure and Evolution of Subduction Zones and Research Prospects. Earth Science, 47(9): 3073-3106. doi: 10.3799/dqkx.2022.380

    俯冲带结构演变解剖与研究展望

    doi: 10.3799/dqkx.2022.380
    基金项目: 

    国家自然科学基金项目 41888101

    中国科学院前沿科学重点研究计划项目 QYZDJ⁃SSW⁃SYS012

    新疆自治区重大专项 2021A03001 & 4

    详细信息
      作者简介:

      肖文交(1967-),男,研究员,中国科学院院士,沉积大地构造学专业. E-mail:wj-xiao@mail.iggcas.ac.cn

    • 中图分类号: P54

    Anatomy of the Structure and Evolution of Subduction Zones and Research Prospects

    • 摘要: 俯冲带作为板块构造最为重要的标志之一,是地球最大的物质循环系统,被称为“俯冲工厂”.俯冲作用是驱动和维持板块运动的重要动力引擎.一个完整的俯冲带发育海沟、增生楔、弧前盆地、岩浆弧、弧后盆地(或弧背前陆盆地)等基本构造单元.在一些特殊情况下(如洋脊俯冲、年轻洋壳俯冲、海山俯冲),则可形成一些特殊的俯冲带结构(如平板俯冲、俯冲侵蚀),导致岩浆弧、增生楔、弧前盆地等不发育甚至缺失.俯冲大洋板片可滞留于或穿越地幔过渡带进入下地幔甚至到达核幔边界,把地壳物质带入到地球深部,并通过地幔柱活动上升到浅部.俯冲带是构造活动强烈的区域,存在走滑、挤压、伸展等变形及其构造叠加.俯冲带海沟可向大洋或大陆方向迁移,岛弧及增生楔等也随之发生迁移,使俯冲带上盘发生周期性挤压和伸展,形成复杂的古地理格局.微陆块、岛弧、海山/洋底高原等地质体在俯冲带发生增生时,可阻塞先存的俯冲带,造成俯冲带跃迁或俯冲极性反转,在其外侧形成新的俯冲带.俯冲带深部精细结构、俯冲起始如何发生、板块俯冲与地幔柱的深部关联机制等是当前俯冲带研究中值得关注的前沿问题.开展俯冲带地球物理深部探测、古缝合带与现今俯冲带对比研究、俯冲带动力学数值模拟是解决上述科学问题的重要途径.

       

    • 图  1  全球俯冲带分布,可划分为增生型俯冲带和侵蚀型俯冲带

      Fig.  1.  Distribution of accretionary and erosional subduction zones

      图  2  俯冲带基本结构与组成

      Stern(2002)修改

      Fig.  2.  Basic structures and components of a subduction zone

      图  3  安第斯型造山带结构

      在弧后位置形成弧背褶皱冲断带和弧背前陆盆地,据Pfiffner and Gonzalez(2013)修改

      Fig.  3.  Orogenic structure of the Andes, showing the development of retroarc fold‒thrust belt and retroarc foreland basin

      图  4  地震层析成像揭示全球主要俯冲带深部结构特征

      东太平洋板块在中美洲和南美洲俯冲穿过地幔过渡带进入下地幔;西太平洋板块平躺于东亚大陆地幔过渡带,形成大地幔楔;印度洋板片沿安达曼‒苏门答腊俯冲带穿过地幔过渡带进入下地幔.据Zhao et al.(2007)Li et al.(2008)修改

      Fig.  4.  Deep structures of global subduction zones as revealed by seismic tomography

      图  5  增生型俯冲带和侵蚀型俯冲带结构示意

      Clift and Vannucchi(2004)修改

      Fig.  5.  Schematic diagrams showing structures of accretionary and erosional subduction zones

      图  6  平板型俯冲带结构示意

      Gutscher(2001)修改

      Fig.  6.  Schematic diagram showing the structure of flat-slab subduction

      图  7  美国西海岸Cascades地区50~40 Ma高角度俯冲作用

      Burkett and Gurnis(2013)Schmandt and Humphreys(2011)

      Fig.  7.  High-angle subduction of the Cascades subduction zone in western North America during 50‒40 Ma

      图  8  太平洋板块发生高角度洋内俯冲作用,俯冲大洋板片在下地幔发生垂向堆叠

      Sigloch and Mihalynuk(2013)

      Fig.  8.  High-angle intra-oceanic subduction of the Pacific Plate, showing the vertical stack of subducted slab

      图  9  伊泽纳崎板块‒太平洋板块洋中脊‒转换断层俯冲带结构示意

      Wu and Wu(2019)修改

      Fig.  9.  Schematic diagram of ridge-transform fault subduction of the Izanagi-Pacific Plate

      图  10  南美洋中脊‒转换断层俯冲带结构示意

      Bourgois et al.(2016)修改

      Fig.  10.  Schematic diagram of the ridge-transform fault subduction beneath South American Plate

      图  11  太平洋板块北部几个平行的大洋破碎带俯冲结构示意

      Singer et al.(1996)修改

      Fig.  11.  Structure of the subduction of several parallel oceanic fracture zones in the northern Pacific Plate

      图  12  特提斯造山带金沙江段洋中脊俯冲作用

      Liu et al.(2021)

      Fig.  12.  Schematic diagrams illustrating ridge subduction of the Jinshajiang Ocean in Tethys

      图  13  地幔柱热点或者大火成岩省分布

      Greene et al.(2010)

      Fig.  13.  Global distribution of Phanerozoic hotspots or large igneous provinces

      图  14  OIB再循环形成E-MORB示意

      俯冲的海山在地幔对流的影响下和其他洋壳在上地幔发生再循环并在洋脊处形成EMORB.修改自Ulrich et al.(2012)

      Fig.  14.  Schematic diagram showing OIB recirculated to form E-MORB

      图  15  秘鲁俯冲带板片形态,纳斯卡无震海岭和因卡无震海岭平板型俯冲

      Gutscher et al.(1999)修改

      Fig.  15.  Morphology of the Peru subduction zone, showing the flat slabs induced by subduction of the Nazca and Inca aseismic ridges

      图  16  安纳托利亚下方俯冲板片断离的侧向传播过程

      箭头显示了地幔上涌和环塞浦路斯板块边缘的环形流动.修改自Schildgen et al.(2014)

      Fig.  16.  Lateral propagation of slab break-off beneath Anatolia

      图  17  日本造山带结构,展示增生楔、高压变质岩系与岩浆弧向大洋方向迁移

      修改自Isozaki(1996)

      Fig.  17.  Architecture of the Japan orogen, showing oceanward migration of accretionary complexes, high-pressure metamorphic rocks and magmatic arcs

      图  18  地中海及周边地区俯冲板片结构及地幔对流形式(红色箭头所示)

      Faccenna and Becker(2010)修改

      Fig.  18.  Subducted slab structures and mantle convection patterns (red arrow) in the Mediterranean Sea and surrounding areas

      图  19  班达岛弧俯冲板片三维形态随时间演化模式

      a. 15 Ma;b. 7 Ma;c. 4 Ma;d. 0 Ma. 据Spakman and Hall(2010)修改

      Fig.  19.  Schematic diagrams of subducted slab morphology evolution over time in Banda Island arc

      图  20  华北克拉通东部造山带洋底高原外围诱发大洋俯冲构造演化过程

      Gao et al.(2019)

      Fig.  20.  Schematic tectonic model illustrating the early Neoarchean geodynamic regime conversion from a mantle plume to intraoceanic arc subduction in the eastern North China Craton

      图  21  板块驱动力机制示意

      Collins et al.(2011)修改

      Fig.  21.  Schematic diagram illustrating the role of oceanic subduction in driving plate tectonics

      图  22  大洋破裂带俯冲机制模拟

      a. 模拟均一板块俯冲;b. 模拟蛇纹石化破裂带俯冲. 修改自Manea et al.(2014)

      Fig.  22.  Simulation of subduction mechanism of oceanic fracture zone

    • [1] Almeida, J., Riel, N., Rosas, F. M., et al., 2022. Self-Replicating Subduction Zone Initiation by Polarity Reversal. Communications Earth & Environment, 3: 55. https://doi.org/10.1038/s43247-022-00380-2
      [2] Antonijevic, S. K., Wagner, L. S., Kumar, A., et al., 2015. The Role of Ridges in the Formation and Longevity of Flat Slabs. Nature, 524(7564): 212-215. https://doi.org/10.1038/nature14648
      [3] Bahadori, A., Holt, W. E., 2019. Geodynamic Evolution of Southwestern North America since the Late Eocene. Nature Communications, 10: 5213. https://doi.org/10.1038/s41467-019-12950-8
      [4] Barazangi, M., Isacks, B. L., 1976. Spatial Distribution of Earthquakes and Subduction of the Nazca Plate Beneath South America. Geology, 4(11): 686-692. https://doi.org/10.1130/0091-7613(1976)4686:sdoeas>2.0.co;2 doi: 10.1130/0091-7613(1976)4686:sdoeas>2.0.co;2
      [5] Beate, B., Monzier, M., Spikings, R., et al., 2001. Mio-Pliocene Adakite Generation Related to Flat Subduction in Southern Ecuador: The Quimsacocha Volcanic Center. Earth and Planetary Science Letters, 192(4): 561-570. https://doi.org/10.1016/S0012-821X(01)00466-6
      [6] Berrocal, J., Fernandez, C., 2005. Flat Subduction Beneath the Andean Region from Seismological Evidences. 6th International Symposium on Andean Geodynamics, Barcelona.
      [7] Bian, Q. T., Luo, X. Q., Chen, H. H., et al., 1999. Zircon U-Pb Age of Granodiorite-Tonalite in the A'nyemaqen Ophiolitic Belt and Its Tectonic Significance. Chinese Journal of Geology, 34(4): 420-426 (in Chinese with English abstract).
      [8] Biryol, C. B., Beck, S. L., Zandt, G., et al., 2011. Segmented African Lithosphere beneath the Anatolian Region Inferred from Teleseismic P-Wave Tomography. Geophysical Journal International, 184(3): 1037-1057. https://doi.org/10.1111/j.1365-246X.2010.04910.x
      [9] Bloomer, S. H., Fisher, R. L., 1987. Petrology and Geochemistry of Igneous Rocks from the Tonga Trench: A Non-Accreting Plate Boundary. The Journal of Geology, 95(4): 469-495. https://doi.org/10.1086/629144
      [10] Bonev, N., Stampfli, G., 2011. Alpine Tectonic Evolution of a Jurassic Subduction-Accretionary Complex: Deformation, Kinematics and 40Ar/39Ar Age Constraints on the Mesozoic Low-Grade Schists of the Circum-Rhodope Belt in the Eastern Rhodope-Thrace Region, Bulgaria-Greece. Journal of Geodynamics, 52(2): 143-167. https://doi.org/10.1016/j.jog.2010.12.006
      [11] Bonnardot, M. A., Régnier, M., Christova, C., et al., 2009. Seismological Evidence for a Slab Detachment in the Tonga Subduction Zone. Tectonophysics, 464(1-4): 84-99. https://doi.org/10.1016/j.tecto.2008.10.011
      [12] Bourdon, E., Eissen, J. P., Gutscher, M. A., et al., 2003. Magmatic Response to Early Aseismic Ridge Subduction: The Ecuadorian Margin Case (South America). Earth and Planetary Science Letters, 205(3-4): 123-138. https://doi.org/10.1016/S0012-821X(02)01024-5
      [13] Bourgois, J., Lagabrielle, Y., Martin, H., et al., 2016. A Review on Forearc Ophiolite Obduction, Adakite-Like Generation, and Slab Window Development at the Chile Triple Junction Area: Uniformitarian Framework for Spreading-Ridge Subduction. Pure and Applied Geophysics, 173(10-11): 3217-3246. https://doi.org/10.1007/s00024-016-1317-9
      [14] Breitsprecher, K., Thorkelson, D. J., 2009. Neogene Kinematic History of Nazca-Antarctic-Phoenix Slab Windows beneath Patagonia and the Antarctic Peninsula. Tectonophysics, 464(1-4): 10-20. https://doi.org/10.1016/j.tecto.2008.02.013
      [15] Brown, M., 2010. Paired Metamorphic Belts Revisited. Gondwana Research, 18(1): 46-59. https://doi.org/10.1016/j.gr.2009.11.004
      [16] Burke, K., Ashwal, L. D., Webb, S. J., 2003. New Way to Map Old Sutures Using Deformed Alkaline Rocks and Carbonatites. Geology, 31(5): 391-394. https://doi.org/10.1130/0091-7613(2003)0310391:nwtmos>2.0.co;2 doi: 10.1130/0091-7613(2003)0310391:nwtmos>2.0.co;2
      [17] Burkett, E., Gurnis, M., 2013. Stalled Slab Dynamics. Lithosphere, 5(1): 92-97. https://doi.org/10.1130/l249.1
      [18] Cawood, P. A., Buchan, C., 2007. Linking Accretionary Orogenesis with Supercontinent Assembly. Earth-Science Reviews, 82(3-4): 217-256. https://doi.org/10.1016/j.earscirev.2007.03.003
      [19] Cawood, P. A., Strachan, R. A., Pisarevsky, S. A., et al., 2016. Linking Collisional and Accretionary Orogens during Rodinia Assembly and Breakup: Implications for Models of Supercontinent Cycles. Earth and Planetary Science Letters, 449: 118-126. https://doi.org/10.1016/j.epsl.2016.05.049
      [20] Chen, L., Wang, X., Liang, X. F., et al., 2020. Subduction Tectonics Vs. Plume Tectonics-Discussion on Driving Forces for Plate Motion. Science China Earth Sciences, 63(3): 315-328. https://doi.org/10.1007/s11430-019-9538-2
      [21] Chen, Y. C., Xiao, W. J., Windley, B. F., et al., 2017. Late Devonian-Early Permian Subduction-Accretion of the Zharma-Saur Oceanic Arc, West Junggar (NW China): Insights from Field Geology, Geochemistry and Geochronology. Journal of Asian Earth Sciences, 145: 424-445. https://doi.org/10.1016/j.jseaes.2017.06.010
      [22] Chen, Y. C., Zhang, J. E., Hou, Q. L., et al., 2021a. The Basic Characteristics of Accretion Arcs and Its Geological Implications. Chinese Journal of Geology (Scientia Geologica Sinica), 56(2): 615-634 (in Chinese with English abstract).
      [23] Chen, Y. C., Zhang, J. E., Tian, Z. H., et al., 2021b. The Structure of Suture in Orogenic Belts and Its Tectonic Implications. Acta Petrologica Sinica, 37(8): 2324-2338 (in Chinese with English abstract). doi: 10.18654/1000-0569/2021.08.05
      [24] Chen, Y., Li, W., Yuan, X. H., et al., 2015. Tearing of the Indian Lithospheric Slab beneath Southern Tibet Revealed by SKS-Wave Splitting Measurements. Earth and Planetary Science Letters, 413: 13-24. https://doi.org/10.1016/j.epsl.2014.12.041
      [25] Clift, P., Vannucchi, P., 2004. Controls on Tectonic Accretion Versus Erosion in Subduction Zones: Implications for the Origin and Recycling of the Continental Crust. Reviews of Geophysics, 42(2): RG2001. https://doi.org/10.1029/2003RG000127
      [26] Cloos, M., Shreve, R. L., 1988. Subduction-Channel Model of Prism Accretion, Melange Formation, Sediment Subduction, and Subduction Erosion at Convergent Plate Margins: 2. Implications and Discussion. Pure and Applied Geophysics, 128(3-4): 501-545. https://doi.org/10.1007/BF00874549
      [27] Coleman, M., Hodges, K., 1995. Evidence for Tibetan Plateau Uplift before 14 Myr Ago from a New Minimum Age for East-West Extension. Nature, 374: 49-52. https://doi.org/10.1038/374049A0
      [28] Collins, W. J., Belousova, E. A., Kemp, A. I. S., et al., 2011. Two Contrasting Phanerozoic Orogenic Systems Revealed by Hafnium Isotope Data. Nature Geoscience, 4(5): 333-337. https://doi.org/10.1038/ngeo1127
      [29] Collins, W. J., Huang, H. Q., Bowden, P., et al., 2019. Repeated S- I- A-Type Granite Trilogy in the Lachlan Orogen, and Geochemical Contrasts with A-Type Granites in Nigeria: Implications for Petrogenesis and Tectonic Discrimination. Geological Society London Special Publications, 491(1): SP491-2018-159. https://doi.org/10.1144/SP491-2018-159
      [30] Conrad, C. P., Steinberger, B., Torsvik, T. H., 2013. Stability of Active Mantle Upwelling Revealed by Net Characteristics of Plate Tectonics. Nature, 498(7455): 479-482. https://doi.org/10.1038/nature12203
      [31] Cooke, D. R., Hollings, P., Walshe, J. L., 2005. Giant Porphyry Deposits: Characteristics, Distribution, and Tectonic Controls. Economic Geology, 100(5): 801-818. https://doi.org/10.2113/gsecongeo.100.5.801
      [32] Crameri, F., Magni, V., Domeier, M., et al., 2020. A Transdisciplinary and Community-Driven Database to Unravel Subduction Zone Initiation. Nature Communications, 11: 3750. https://doi.org/10.1038/s41467-020-17522-9
      [33] Dal Piaz, G. V., Bistacchi, A., Massironi, M., 2003. Geological Outline of the Alps. Episodes, 26(3): 175-180 doi: 10.18814/epiiugs/2003/v26i3/004
      [34] Dal Zilio, L., 2018. Subduction-Driven Earth Machine. Nature Geoscience, 11(4): 229. https://doi.org/10.1038/s41561-018-0102-z
      [35] Dal Zilio, L., Faccenda, M., Capitanio, F., 2018. The Role of Deep Subduction in Supercontinent Breakup. Tectonophysics, 746: 312-324. https://doi.org/10.1016/j.tecto.2017.03.006
      [36] Daly, K. A., Abers, G. A., Mann, M. E., et al., 2021. Subduction of an Oceanic Plateau across Southcentral Alaska: High-Resolution Seismicity. Journal of Geophysical Research: Solid Earth, 126(11): e2021JB022809. https://doi.org/10.1029/2021JB022809
      [37] Davies, J. H., von Blanckenburg, F., 1995. Slab Breakoff: A Model of Lithosphere Detachment and Its Test in the Magmatism and Deformation of Collisional Orogens. Earth and Planetary Science Letters, 129(1-4): 85-102. https://doi.org/10.1016/0012-821X(94)00237-S
      [38] DeCelles, P. G., Ducea, M. N., Kapp, P., et al., 2009. Cyclicity in Cordilleran Orogenic Systems. Nature Geoscience, 2(4): 251-257. https://doi.org/10.1038/ngeo469
      [39] DeLong, S. E., Schwarz, W. M., Anderson, R. N., 1979. Thermal Effects of Ridge Subduction. Earth and Planetary Science Letters, 44(2): 239-246. https://doi.org/10.1016/0012-821X(79)90172-9
      [40] Dennis, A. J., 1991. Is the Central Piedmont Suture a Low-Angle Normal Fault? Geology, 19(11): 1081-1084. https://doi.org/10.1130/0091-7613(1991)019<1081:ITCPSA>2.3.CO;2 doi: 10.1130/0091-7613(1991)019<1081:ITCPSA>2.3.CO;2
      [41] Dewey, J., Spall, H., 1975. Pre-Mesozoic Plate Tectonics: How Far Back in Earth History can the Wilson Cycle be Extended? Geology, 3(8): 422-424. https://doi.org/10.1130/0091-7613%281975%293%3C422%3APPTHFB%3E2.0.CO%3B2
      [42] Dilek, Y., Furnes, H., 2011. Ophiolite Genesis and Global Tectonics: Geochemical and Tectonic Fingerprinting of Ancient Oceanic Lithosphere. Bulletin of the Geological Society of America, 123(3-4): 387-411 doi: 10.1130/B30446.1
      [43] Ding, L., Kapp, P., Wan, X. Q., 2005. Paleocene-Eocene Record of Ophiolite Obduction and Initial India-Asia Collision, South Central Tibet. Tectonics, 24(3): TC3001. https://doi.org/10.1029/2004TC001729
      [44] Dominguez, S., Lallemand, S. E., Malavieille, J., et al., 1998. Upper Plate Deformation Associated with Seamount Subduction. Tectonophysics, 293(3-4): 207-224. https://doi.org/10.1016/S0040-1951(98)00086-9
      [45] Ducea, M. N., Saleeby, J. B., Bergantz, G., 2015. The Architecture, Chemistry, and Evolution of Continental Magmatic Arcs. Annual Review of Earth and Planetary Sciences, 43: 299-331. https://doi.org/10.1146/annurev-earth-060614-105049
      [46] Ely, K. S., Sandiford, M., 2010. Seismic Response to Slab Rupture and Variation in Lithospheric Structure Beneath the Savu Sea, Indonesia. Tectonophysics, 483(1-2): 112-124. https://doi.org/10.1016/j.tecto.2009.08.027
      [47] English, J. M., Johnston, S. T., 2004. The Laramide Orogeny: What Were the Driving Forces? International Geology Review, 46(9): 833-838. https://doi.org/10.2747/0020-6814.46.9.833
      [48] Faccenna, C., Becker, T. W., 2010. Shaping Mobile Belts by Small-Scale Convection. Nature, 465(7298): 602-605. https://doi.org/10.1038/nature09064
      [49] Finzel, E. S., Trop, J. M., Ridgway, K. D., et al., 2011. Upper Plate Proxies for Flat-Slab Subduction Processes in Southern Alaska. Earth and Planetary Science Letters, 303(3-4): 348-360. https://doi.org/10.1016/j.epsl.2011.01.014
      [50] Flórez-Rodríguez, A. G., Schellart, W. P., Strak, V., 2019. Impact of Aseismic Ridges on Subduction Systems: Insights from Analog Modeling. Journal of Geophysical Research: Solid Earth, 124(6): 5951-5969. https://doi.org/10.1029/2019JB017488
      [51] Forand, D., Evans, J. P., Janecke, S. U., et al., 2018. Insights into Fault Processes and the Geometry of the San Andreas Fault System: Analysis of Core from the Deep Drill Hole at Cajon Pass, California. Geological Society of America Bulletin, 130: 64-92. https://doi.org/10.1130/B31681.1
      [52] Forsyth, D., Uyeda, S., 1975. On the Relative Importance of the Driving Forces of Plate Motion. Geophysical Journal International, 43(1): 163-200. https://doi.org/10.1111/j.1365-246X.1975.tb00631.x
      [53] Fukao, Y., Obayashi, M., 2013. Subducted Slabs Stagnant Above, Penetrating Through, and Trapped below the 660 km Discontinuity. Journal of Geophysical Research: Solid Earth, 118(11): 5920-5938. https://doi.org/10.1002/2013JB010466
      [54] Gao, L., Liu, S. W., Zhang, B., et al., 2019. A Ca. 2.8-Ga Plume-Induced Intraoceanic Arc System in the Eastern North China Craton. Tectonics, 38(5): 1694-1717. https://doi.org/10.1029/2018TC005432
      [55] Garzanti, E., Radeff, G., Malusà, M. G., 2018. Slab Breakoff: A Critical Appraisal of a Geological Theory as Applied in Space and Time. Earth-Science Reviews, 177: 303-319. https://doi.org/10.1016/j.earscirev.2017.11.012
      [56] Gaschnig, R. M., Vervoort, J. D., Lewis, R. S., et al., 2010. Migrating Magmatism in the Northern US Cordillera: In Situ U-Pb Geochronology of the Idaho Batholith. Contributions to Mineralogy and Petrology, 159(6): 863-883. https://doi.org/10.1007/s00410-009-0459-5
      [57] Geng, H. Y., Sun, M., Yuan, C., et al., 2009. Geochemical, Sr-Nd and Zircon U-Pb-Hf Isotopic Studies of Late Carboniferous Magmatism in the West Junggar, Xinjiang: Implications for Ridge Subduction? Chemical Geology, 266(3-4): 364-389. https://doi.org/10.1016/j.chemgeo.2009.07.001
      [58] Gerya, T. V., Stern, R. J., Baes, M., et al., 2015. Plate Tectonics on the Earth Triggered by Plume-Induced Subduction Initiation. Nature, 527(7577): 221-225. https://doi.org/10.1038/nature15752
      [59] Goes, S., Capitanio, F. A., Morra, G., 2008. Evidence of Lower-Mantle Slab Penetration Phases in Plate Motions. Nature, 451(7181): 981-984. https://doi.org/10.1038/nature06691
      [60] Govers, R., Wortel, M. J. R., 2005. Lithosphere Tearing at STEP Faults: Response to Edges of Subduction Zones. Earth and Planetary Science Letters, 236(1-2): 505-523. https://doi.org/10.1016/j.epsl.2005.03.022
      [61] Greene, A. R., Scoates, J. S., Weis, D., et al., 2010. The Architecture of Oceanic Plateaus Revealed by the Volcanic Stratigraphy of the Accreted Wrangellia Oceanic Plateau. Geosphere, 6(1): 47-73. https://doi.org/10.1130/ges00212.1
      [62] Grove, M., Bebout, G. E., Jacobson, C. E., et al., 2008. The Catalina Schist: Evidence for Middle Cretaceous Subduction Erosion of Southwestern North America. In: Draut, A. E., Clift, P. D., Scholl, D. W., eds., Formation and Applications of the Sedimentary Record in Arc Collision Zones. Geological Society of America, Boulder.
      [63] Gutscher, M. A., 2001. An Andean Model of Interplate Coupling and Strain Partitioning Applied to the Flat Subduction Zone of SW Japan (Nankai Trough). Tectonophysics, 333(1-2): 95-109. https://doi.org/10.1016/S0040-1951(00)00269-9
      [64] Gutscher, M. A., Olivet, J. L., Aslanian, D., et al., 1999. The "Lost Inca Plateau": Cause of Flat Subduction Beneath Peru? Earth and Planetary Science Letters, 171(3): 335-341. https://doi.org/10.1016/S0012-821X(99)00153-3
      [65] Gutscher, M. A., Spakman, W., Bijwaard, H., et al., 2000. Geodynamics of Flat Subduction: Seismicity and Tomographic Constraints from the Andean Margin. Tectonics, 19(5): 814-833. https://doi.org/10.1029/1999TC001152
      [66] Hager, B. H., O'Connell, R. J., 1981. A Simple Global Model of Plate Dynamics and Mantle Convection. Journal of Geophysical Research: Solid Earth, 86(B6): 4843-4867. https://doi.org/10.1029/JB086iB06p04843
      [67] Hall, R., 2017. Southeast Asia: New Views of the Geology of the Malay Archipelago. Annual Review of Earth and Planetary Sciences, 45(1): 331-358. https://doi.org/10.1146/annurev-earth-063016-020633
      [68] Hamilton, W., 1969. Mesozoic California and the Underflow of Pacific Mantle. Geological Society of America Bulletin, 80(12): 2409-2430. doi: 10.1130/0016-7606(1969)80[2409:MCATUO]2.0.CO;2
      [69] Haschke, M. R., Scheuber, E., Günther, A., et al., 2002. Evolutionary Cycles during the Andean Orogeny: Repeated Slab Breakoff and Flat Subduction? Terra Nova, 14(1): 49-55. https://doi.org/10.1046/j.1365-3121.2002.00387.x
      [70] Henry, C. D., Aranda-Gomez, J. J., 2000. Plate Interactions Control Middle-Late Miocene, Proto-Gulf and Basin and Range Extension in the Southern Basin and Range. Tectonophysics, 318(1-4): 1-26. https://doi.org/10.1016/S0040-1951(99)00304-2
      [71] Hofmann, A. W., White, W. M., 1982. Mantle Plumes from Ancient Oceanic Crust. Earth and Planetary Science Letters, 57(2): 421-436. https://doi.org/10.1016/0012-821X(82)90161-3
      [72] Hopson, C. A., Mattinson, J. M., Pessagno, E. A., et al., 2008. California Coast Range Ophiolite: Composite Middle and Late Jurassic Oceanic Lithosphere. In: Wright, J. E., Shervais, J. W., eds., Ophiolites, Arcs, and Batholiths: A Tribute to Cliff Hopson. Geological Society of America, Boulder.
      [73] Horton, B. K., 2021. Unconformity Development in Retroarc Foreland Basins: Implications for the Geodynamics of Andean-Type Margins. Journal of the Geological Society, 179(3). https://doi.org/10.1144/jgs2020-263
      [74] Hou, Z. Q., Zhao, Z. D., Gao, Y. F., et al., 2006. Tearing and Dischronal Subduction of the Indian Continental Slab: Evidence from Cenozoic Gangdese Volcano-Magmatic Rocks in South Tibet. Acta Petrologica Sinica, 22(4): 761-774 (in Chinese with English abstract).
      [75] Ichiki, M., Sumitomo, N., Kagiyama, T., 2000. Resistivity Structure of High-Angle Subduction Zone in the Southern Kyushu District, Southwestern Japan. Earth, Planets and Space, 52: 539-548. https://doi.org/10.1186/BF03351661
      [76] Ingersoll, R. V., 2012. Tectonics of Sedimentary Basins, with Revised Nomenclature. In: Busby, C., Azor, A., eds., Tectonics of Sedimentary Basins: Recent Advances (First Edition). Blackwell Publishing Ltd., Oxford.
      [77] Isozaki, Y., 1996. Anatomy and Genesis of a Subduction-Related Orogen: A New View of Geotectonic Subdivision and Evolution of the Japanese Islands. Island Arc, 5(3): 289-320. https://doi.org/10.1111/j.1440-1738.1996.tb00033.x
      [78] Jara, J. J., Barra, F., Reich, M., et al., 2021. Episodic Construction of the Early Andean Cordillera Unravelled by Zircon Petrochronology. Nature Communications, 12: 4930. https://doi.org/10.1038/s41467-021-25232-z
      [79] Johnston, S. T., Canil, D., 2007. Crustal Architecture of SW Yukon, Northern Cordillera: Implications for Crustal Growth in a Convergent Margin Orogen. Tectonics, 26(1): TC1006. https://doi.org/10.1029/2006TC001950
      [80] Johnston, S. T., Mazzoli, S., 2009. The Calabrian Orocline: Buckling of a Previously more Linear Orogen. Geological Society, London, Special Publications, 327(1): 113-125. https://doi.org/10.1144/sp327.7
      [81] Jones, D. L., 1990. Synopsis of Late Palaeozoic and Mesozoic Terrane Accretion within the Cordillera of Western North America. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 331: 479-486. https://doi.org/10.1098/rsta.1990.0084
      [82] Kerr, A. C., Tarney, J., 2005. Tectonic Evolution of the Caribbean and Northwestern South America: The Case for Accretion of Two Late Cretaceous Oceanic Plateaus. Geology, 33(4): 269. https://doi.org/10.1130/g21109.1
      [83] Kneller, E. A., van Keken, P. E., 2007. Trench-Parallel Flow and Seismic Anisotropy in the Mariana and Andean Subduction Systems. Nature, 450(7173): 1222-1225. https://doi.org/10.1038/nature06429
      [84] Korenaga, J., 2013. Initiation and Evolution of Plate Tectonics on Earth: Theories and Observations. Annual Review of Earth and Planetary Sciences, 41(1): 117-151. https://doi.org/10.1146/annurev-earth-050212-124208
      [85] Kusky, T. M., Windley, B. F., Safonova, I., et al., 2013. Recognition of Ocean Plate Stratigraphy in Accretionary Orogens through Earth History: A Record of 3.8 Billion Years of Sea Floor Spreading, Subduction, and Accretion. Gondwana Research, 24(2): 501-547. https://doi.org/10.1016/j.gr.2013.01.004
      [86] Levin, V., Shapiro, N., Park, J., et al., 2002. Seismic Evidence for Catastrophic Slab Loss Beneath Kamchatka. Nature, 418(6899): 763-767. https://doi.org/10.1038/nature00973
      [87] Li, J. L., Hao, J., Chai, Y. C., et al., 1993. Consortium of Mélange and Accretionary Arc in Southern Jiangxi: Suture Zone of the Turkey-Type Collisional Orogenic Belt. In: Li, J. L., ed., Lithospheric Structure and Geological Evolution of the Southeast China Continent. Metallurgical Industry Press, Beijing (in Chinese).
      [88] Li, C., van der Hilst, R. D., Engdahl, E. R., et al., 2008. A New Global Model for P Wave Speed Variations in Earth's Mantle. Geochemistry, Geophysics, Geosystems, 9(5): Q05018. https://doi.org/10.1029/2007GC001806
      [89] Li, J. L., Klemd, R., Gao, J., et al., 2016. Poly-Cyclic Metamorphic Evolution of Eclogite: Evidence for Multistage Burial-Exhumation Cycling in a Subduction Channel. Journal of Petrology, 57(1): 119-146. https://doi.org/10.1093/petrology/egw002
      [90] Li, J. L., Schwarzenbach, E. M., John, T., et al., 2020. Uncovering and Quantifying the Subduction Zone Sulfur Cycle from the Slab Perspective. Nature Communications, 11: 514. https://doi.org/10.1038/s41467-019-14110-4
      [91] Li, J. T., Song, X. D., 2018. Tearing of Indian Mantle Lithosphere from High-Resolution Seismic Images and Its Implications for Lithosphere Coupling in Southern Tibet. Proceedings of the National Academy of Sciences of the United States of America, 115(33): 8296-8300. https://doi.org/10.1073/pnas.1717258115
      [92] Li, L., Sun, N. Y., Shi, W. G., et al., 2022. Elastic Anomalies across the α-β Phase Transition in Orthopyroxene: Implication for the Metastable Wedge in the Cold Subduction Slab. Geophysical Research Letters, 49(16): e2022GL099366. https://doi.org/10.1029/2022gl099366
      [93] Li, S. Z., Wang, G. Z., Suo, Y. H., et al., 2019. Driving Force of Plate Tectonics: Origin and Nature. Geotectonica et Metallogenia, 43(4): 605-643 (in Chinese with English abstract).
      [94] Li, T. D., Xiao, Q. H., Pan, G. T., et al., 2019. A Consideration about the Development of Ocean Plate Geology. Earth Science, 44(5): 1441-1451 (in Chinese with English abstract).
      [95] Li, Z. X., Li, X. H., 2007. Formation of the 1 300-km-Wide Intracontinental Orogen and Postorogenic Magmatic Province in Mesozoic South China: A Flat-Slab Subduction Model. Geology, 35(2): 179-182. https://doi.org/10.1130/G23193A.1
      [96] Li, Z. X., Li, X. H., Kinny, P. D., et al., 1999. The Breakup of Rodinia: Did it Start with a Mantle Plume Beneath South China? Earth and Planetary Science Letters, 173(3): 171-181. https://doi.org/10.1016/S0012-821X(99)00240-X
      [97] Li, Z. X., Mitchell, R. N., Spencer, C. J., et al., 2019. Decoding Earth's Rhythms: Modulation of Supercontinent Cycles by Longer Superocean Episodes. Precambrian Research, 323: 1-5. https://doi.org/10.1016/j.precamres.2019.01.009
      [98] Lin, S. F., Xing, G. F., Davis, D. W., et al., 2018. Appalachian-Style Multi-Terrane Wilson Cycle Model for the Assembly of South China. Geology, 46(4): 319-322. https://doi.org/10.1130/g39806.1
      [99] Lithgow-Bertelloni, C., Richards, M. A., 1995. Cenozoic Plate Driving Forces. Geophysical Research Letters, 22(11): 1317-1320. https://doi.org/10.1029/95GL01325
      [100] Liu, L. J., Gurnis, M., Seton, M., et al., 2010. The Role of Oceanic Plateau Subduction in the Laramide Orogeny. Nature Geoscience, 3(5): 353-357. https://doi.org/10.1038/ngeo829
      [101] Liu, Y., Xiao, W. J., Windley, B. F., et al., 2021. Three Stages of Arc Migration in the Carboniferous-Triassic in Northern Qiangtang, Central Tibet, China: Ridge Subduction and Asynchronous Slab Rollback of the Jinsha Paleotethys. Geological Society of America Bulletin, 133(11-12): 2485-2500. https://doi.org/10.1130/B35906.1
      [102] Luo, J., Xiao, W. J., Wakabayashi, J., et al., 2017. The Zhaheba Ophiolite Complex in Eastern Junggar (NW China): Long Lived Supra-Subduction Zone Ocean Crust Formation and Its Implications for the Tectonic Evolution in Southern Altaids. Gondwana Research, 43: 17-40. https://doi.org/10.1016/j.gr.2015.04.004
      [103] Manea, V. C., Leeman, W. P., Gerya, T., et al., 2014. Subduction of Fracture Zones Controls Mantle Melting and Geochemical Signature above Slabs. Nature Communications, 5(1): 5095. https://doi.org/10.1038/ncomms6095
      [104] Manea, V. C., Pérez-Gussinyé, M., Manea, M., 2012. Chilean Flat Slab Subduction Controlled by Overriding Plate Thickness and Trench Rollback. Geology, 40(1): 35-38. https://doi.org/10.1130/g32543.1
      [105] Mann, M. E., Abers, G. A., Daly, K. A., et al., 2022. Subduction of an Oceanic Plateau across Southcentral Alaska: Scattered-Wave Imaging. Journal of Geophysical Research: Solid Earth, 127(1): e2021JB022697. https://doi.org/10.1029/2021JB022697
      [106] Mann, P., Taira, A., 2004. Global Tectonic Significance of the Solomon Islands and Ontong Java Plateau Convergent Zone. Tectonophysics, 389(3-4): 137-190. https://doi.org/10.1016/j.tecto.2003.10.024
      [107] Mantovani, E., Albarello, D., Tamburelli, C., et al., 1996. Evolution of the Tyrrhenian Basin and Surrounding Regions as a Result of the Africa-Eurasia Convergence. Journal of Geodynamics, 21(1): 35-72. https://doi.org/10.1016/0264-3707(95)00011-9
      [108] Maruyama, S., Masago, H., Katayama, I., et al., 2010. A New Perspective on Metamorphism and Metamorphic Belts. Gondwana Research, 18(1): 106-137. https://doi.org/10.1016/j.gr.2010.03.007
      [109] Maruyama, S., Santosh, M., Zhao, D., 2007. Superplume, Supercontinent, and Post-Perovskite: Mantle Dynamics and Anti-Plate Tectonics on the Core-Mantle Boundary. Gondwana Research, 11(1-2): 7-37. https://doi.org/10.1016/j.gr.2006.06.003
      [110] Maunder, B., Prytulak, J., Goes, S., et al., 2020. Rapid Subduction Initiation and Magmatism in the Western Pacific Driven by Internal Vertical Forces. Nature Communications, 11(1): 1874. https://doi.org/10.1038/s41467-020-15737-4
      [111] Michaud, F., Royer, J. Y., Bourgois, J., et al., 2006. Oceanic-Ridge Subduction Vs. Slab Break Off: Plate Tectonic Evolution along the Baja California Sur Continental Margin since 15 Ma. Geology, 34(1): 13-16. https://doi.org/10.1130/g22050.1
      [112] Miyashiro, A., 1973. Paired and Unpaired Metamorphic Belts. Tectonophysics, 17(3): 241-254. https://doi.org/10.1016/0040-1951(73)90005-X
      [113] Morell, K. D., 2016. Seamount, Ridge, and Transform Subduction in Southern Central America. Tectonics, 35(2): 357-385. https://doi.org/10.1002/2015TC003950
      [114] Morell, K. D., Fisher, D. M., Gardner, T. W., 2008. Inner Forearc Response to Subduction of the Panama Fracture Zone, Southern Central America. Earth and Planetary Science Letters, 265(1-2): 82-95. https://doi.org/10.1016/j.epsl.2007.09.039
      [115] Morgan, W. J., 1971. Convection Plumes in the Lower Mantle. Nature, 230(5288): 42-43. https://doi.org/10.1038/230042a0
      [116] Morgan, W. J., 1972. Deep Mantle Convection Plumes and Plate Motions. AAPG Bulletin, 56(2): 203-213. https://doi.org/10.1306/819A3E50-16C5-11D7-8645000102C1865D
      [117] Noda, A., 2016. Forearc Basins: Types, Geometries, and Relationships to Subduction Zone Dynamics. Geological Society of America Bulletin, 128: 879-895. https://doi.org/10.1130/B31345.1
      [118] Palin, R. M., Santosh, M., 2021. Plate Tectonics: What, Where, Why, and When? Gondwana Research, 100: 3-24. https://doi.org/10.1016/j.gr.2020.11.001
      [119] Paterson, S. R., Okaya, D., Memeti, V., et al., 2011. Magma Addition and Flux Calculations of Incrementally Constructed Magma Chambers in Continental Margin Arcs: Combined Field, Geochronologic, and Thermal Modeling Studies. Geosphere, 7(6): 1439-1468. https://doi.org/10.1130/ges00696.1
      [120] Pearce, J. A., Stern, R. J., 2006. Origin of Back-Arc Basin Magmas: Trace Element and Isotope Perspectives. In: Christie, D. M., Fisher, C. R., Lee, S. M., et al., eds., Back-Arc Spreading Systems: Geological, Biological, Chemical, and Physical Interactions. American Geophysical Union, Washington, D.C. .
      [121] Pfiffner, O. A., Gonzalez, L., 2013. Mesozoic-Cenozoic Evolution of the Western Margin of South America: Case Study of the Peruvian Andes. Geosciences (Switzerland), 3(2): 262-310. https://doi.org/10.3390/geosciences3020262
      [122] Piromallo, C., Morelli, A., 2003. P Wave Tomography of the Mantle under the Alpine-Mediterranean Area. Journal of Geophysical Research: Solid Earth, 108(B2): 2065. https://doi.org/10.1029/2002JB001757
      [123] Plunder, A., Bandyopadhyay, D., Ganerød, M., et al., 2020. History of Subduction Polarity Reversal during Arc- Continent Collision: Constraints from the Andaman Ophiolite and Its Metamorphic Sole. Tectonics, 39(6): e2019TC005762. https://doi.org/10.1029/2019TC005762
      [124] Pownall, J. M., Hall, R., Lister, G. S., 2016. Rolling Open Earth's Deepest Forearc Basin. Geology, 44(11): 947-950. https://doi.org/10.1130/g38051.1
      [125] Raimbourg, H., Augier, R., Famin, V., et al., 2014. Long-Term Evolution of an Accretionary Prism: The Case Study of the Shimanto Belt, Kyushu, Japan. Tectonics, 33(6): 936-959. https://doi.org/10.1002/2013TC003412
      [126] Ramos, V. A., 2010. The Tectonic Regime along the Andes: Present-Day and Mesozoic Regimes. Geological Journal, 45(1): 2-25. https://doi.org/10.1002/gj.1193
      [127] Rosenbaum, G., Gasparon, M., Lucente, F. P., et al., 2008. Kinematics of Slab Tear Faults during Subduction Segmentation and Implications for Italian Magmatism. Tectonics, 27(2): TC2008. https://doi.org/10.1029/2007TC002143
      [128] Rosenbaum, G., Li, P. F., Rubatto, D., 2012. The Contorted New England Orogen (Eastern Australia): New Evidence from U-Pb Geochronology of Early Permian Granitoids. Tectonics, 31(1): TC1006. https://doi.org/10.1029/2011TC002960
      [129] Rosenbaum, G., Sandiford, M., Caulfield, J., et al., 2019. A Trapdoor Mechanism for Slab Tearing and Melt Generation in the Northern Andes. Geology, 47(1): 23-26. https://doi.org/10.1130/g45429.1
      [130] Sang, M., Xiao, W. J., Windley, B. F., 2020. Unravelling a Devonian-Triassic Seamount Chain in the South Tianshan High-Pressure/Ultrahigh-Pressure Accretionary Complex in the Atbashi Area (Kyrgyzstan). Geological Journal, 55(3): 2300-2317. https://doi.org/10.1002/gj.3776
      [131] Schellart, W. P., 2008. Overriding Plate Shortening and Extension above Subduction Zones: A Parametric Study to Explain Formation of the Andes Mountains. Geological Society of America Bulletin, 120(11-12): 1441-1454. https://doi.org/10.1130/b26360.1
      [132] Schellart, W. P., Lister, G. S., Toy, V. G., 2006. A Late Cretaceous and Cenozoic Reconstruction of the Southwest Pacific Region: Tectonics Controlled by Subduction and Slab Rollback Processes. Earth-Science Reviews, 76(3-4): 191-233. https://doi.org/10.1016/j.earscirev.2006.01.002
      [133] Schildgen, T. F., Yildirim, C., Cosentino, D., et al., 2014. Linking Slab Break-Off, Hellenic Trench Retreat, and Uplift of the Central and Eastern Anatolian Plateaus. Earth-Science Reviews, 128: 147-168. https://doi.org/10.1016/j.earscirev.2013.11.006
      [134] Schmandt, B., Humphreys, E., 2011. Seismically Imaged Relict Slab from the 55 Ma Siletzia Accretion to the Northwest United States. Geology, 39(2): 175-178. https://doi.org/10.1130/G31558.1
      [135] Scholz, C. H., Small, C., 1997. The Effect of Seamount Subduction on Seismic Coupling. Geology, 25(6): 487-490. https://doi.org/10.1130/0091-7613(1997)0250487:teosso>2.3.co;2 doi: 10.1130/0091-7613(1997)0250487:teosso>2.3.co;2
      [136] Sdrolias, M., Müller, R. D., 2006. Controls on Back-Arc Basin Formation. Geochemistry, Geophysics, Geosystems, 7(4): Q04016. https://doi.org/10.1029/2005GC001090
      [137] Şengör, A. M. C., Natal'in, B. A., 1996. Turkic-Type Orogeny and Its Role in the Making of the Continental Crust. Annual Reviews of Earth and Planetary Sciences, 24: 263-337. https://doi.org/10.1146/annurev.earth.24.1.263
      [138] Şengör, A. M. C., Natal'in, B. A., Sunal, G., et al., 2018. The Tectonics of the Altaids: Crustal Growth during the Construction of the Continental Lithosphere of Central Asia Between ~750 and ~130 Ma Ago. Annual Review of Earth and Planetary Sciences, 46: 439-494. https://doi.org/10.1146/annurev-earth-060313-054826
      [139] Şengör, A. M. C., Sunal, G., Natal'in, B. A., et al., 2022. The Altaids: A Review of Twenty-Five Years of Knowledge Accumulation. Earth-Science Reviews, 228: 104013. https://doi.org/10.1016/j.earscirev.2022.104013
      [140] Shen, X. M., Zhang, H. X., Wang, Q., et al., 2011. Late Devonian-Early Permian A-Type Granites in the Southern Altay Range, Northwest China: Petrogenesis and Implications for Tectonic Setting of "A2-Type" Granites. Journal of Asian Earth Sciences, 42(5): 986-1007. https://doi.org/10.1016/j.jseaes.2010.10.004
      [141] Shreve, R. L., Cloos, M., 1986. Dynamics of Sediment Subduction, Melange Formation, and Prism Accretion. Journal of Geophysical Research: Solid Earth, 91(B10): 10229-10245. https://doi.org/10.1029/JB091iB10p10229
      [142] Sigloch, K., Mihalynuk, M. G., 2013. Intra-Oceanic Subduction Shaped the Assembly of Cordilleran North America. Nature, 496(7443): 50-56. https://doi.org/10.1038/nature12019
      [143] Singer, B. S., Leeman, W. P., Thirlwall, M. F., et al., 1996. Does Fracture Zone Subduction Increase Sediment Flux and Mantle Melting in Subduction Zones? Trace Element Evidence from Aleutian Arc Basalt. In: Bebout, G. E., et al., eds., Subduction Top to Bottom. AGU, Washington, D.C. .
      [144] Sisson, V. B., Hollister, L. S., Onstott, T. C., 1989. Petrologic and Age Constraints on the Origin of a Low- Pressure/High-Temperature Metamorphic Complex, Southern Alaska. Journal of Geophysical Research: Solid Earth, 94(B4): 4392-4410. https://doi.org/10.1029/JB094iB04p04392
      [145] Song, D. F., Xiao, W. J., Han, C. M., et al., 2013a. Progressive Accretionary Tectonics of the Beishan Orogenic Collage, Southern Altaids: Insights from Zircon U-Pb and Hf Isotopic Data of High-Grade Complexes. Precambrian Research, 227: 368-388. https://doi.org/10.1016/j.precamres.2012.06.011
      [146] Song, D. F., Xiao, W. J., Han, C. M., et al., 2013b. Provenance of Metasedimentary Rocks from the Beishan Orogenic Collage, Southern Altaids: Constraints from Detrital Zircon U-Pb and Hf Isotopic Data. Gondwana Research, 24(3-4): 1127-1151. https://doi.org/10.1016/j.gr.2013.02.002
      [147] Song, S. G., Niu, Y. L., Zhang, L. F., et al., 2009. Tectonic Evolution of Early Paleozoic HP Metamorphic Rocks in the North Qilian Mountains, NW China: New Perspectives. Journal of Asian Earth Sciences, 35(3-4): 334-353. https://doi.org/10.1016/j.jseaes.2008.11.005
      [148] Spakman, W., Hall, R., 2010. Surface Deformation and Slab-Mantle Interaction during Banda Arc Subduction Rollback. Nature Geoscience, 3(8): 562-566. https://doi.org/10.1038/ngeo917
      [149] Stern, C. R., 2011. Subduction Erosion: Rates, Mechanisms, and Its Role in Arc Magmatism and the Evolution of the Continental Crust and Mantle. Gondwana Research, 20(2-3): 284-308. https://doi.org/10.1016/j.gr.2011.03.006
      [150] Stern, R. J., 2002. Subduction Zones. Reviews of Geophysics, 40(4): 1012. https://doi.org/10.1029/2001RG000108
      [151] Stern, R. J., 2004. Subduction Initiation: Spontaneous and Induced. Earth and Planetary Science Letters, 226(3-4): 275-292. https://doi.org/10.1016/j.epsl.2004.08.007
      [152] Stern, R. J., Bloomer, S. H., 1992. Subduction Zone Infancy: Examples from the Eocene Izu-Bonin-Mariana and Jurassic California Arcs. Geological Society of America Bulletin, 104(12): 1621-1636. https://doi.org/10.1130/0016-7606(1992)104<1621:SZIEFT>2.3.CO;2 doi: 10.1130/0016-7606(1992)104<1621:SZIEFT>2.3.CO;2
      [153] Strak, V., Schellart, W. P., 2021. Thermo-Mechanical Numerical Modeling of the South American Subduction Zone: A Multi-Parametric Investigation. Journal of Geophysical Research: Solid Earth, 126(4): e2020JB021527. https://doi.org/10.1029/2020JB021527
      [154] Straub, S. M., Gómez-Tuena, A., Vannucchi, P., 2020. Subduction Erosion and Arc Volcanism. Nature Reviews Earth & Environment, 1(11): 574-589. https://doi.org/10.1038/s43017-020-0095-1
      [155] Sun, W. D., 2019. The Magma Engine and the Driving Force of Plate Tectonics. Chinese Science Bulletin, 64(S2): 2988-3006 (in Chinese with English abstract).
      [156] Sun, W. D., Ling, M. X., Yang, X. Y., et al., 2010. Ridge Subduction and Porphyry Copper-Gold Mineralization: an Overview. Science China Earth Sciences, 53(4): 475-484. https://doi.org/10.1007/s11430-010-0024-0
      [157] Takahashi, N., Kodaira, S., Klemperer, S. L., et al., 2007. Crustal Structure and Evolution of the Mariana Intra-Oceanic Island Arc. Geology, 35: 203-206. https://doi.org/10.1130/G23212A.1
      [158] Thorkelson, D. J., 1996. Subduction of Diverging Plates and the Principles of Slab Window Formation. Tectonophysics, 255(1-2): 47-63. https://doi.org/10.1016/0040-1951(95)00106-9
      [159] Tilley, H. L., Moore, G. F., Yamashita, M., et al., 2021. Along-Strike Variations in Protothrust Zone Characteristics at the Nankai Trough Subduction Margin. Geosphere 17: 389-408. https://doi.org/10.1130/GES02305.1.
      [160] Ulrich, M., Hémond, C., Nonnotte, P., et al., 2012. OIB/Seamount Recycling as a Possible Process for E-MORB Genesis. Geochemistry, Geophysics, Geosystems, 13(6): Q0AC19. https://doi.org/10.1029/2012GC004078
      [161] van Hinsbergen, D. V., Lippert, P., Dupont-Nivet, G., et al., 2012. Greater India Basin Hypothesis and a Two-Stage Cenozoic Collision between India and Asia. Proceedings of the National Academy of Sciences, 109: 7659-7664. https://doi.org/10.1073/pnas.1117262109
      [162] van Staal, C. R., 1994. Brunswick Subduction Complex in the Canadian Appalachians: Record of the Late Ordovician to Late Silurian Collision between Laurentia and the Gander Margin of Avalon. Tectonics, 13(4): 946-962. https://doi.org/10.1029/93TC03604
      [163] van Summeren, J., Conrad, C. P., Lithgow-Bertelloni, C., 2012. The Importance of Slab Pull and a Global Asthenosphere to Plate Motions. Geochemistry, Geophysics, Geosystems, 13(2): Q0AK03. https://doi.org/10.1029/2011GC003873
      [164] Vargas, C. A., Mann, P., 2013. Tearing and Breaking off of Subducted Slabs as the Result of Collision of the Panama Arc-Indenter with Northwestern South America. Bulletin of the Seismological Society of America, 103(3): 2025-2046. https://doi.org/10.1785/0120120328
      [165] Vignaroli, G., Faccenna, C., Jolivet, L., et al., 2008. Subduction Polarity Reversal at the Junction between the Western Alps and the Northern Apennines, Italy. Tectonophysics, 450(1-4): 34-50. https://doi.org/10.1016/j.tecto.2007.12.012
      [166] Von Huene, R., Lallemand, S., 1990. Tectonic Erosion along the Japan and Peru Convergent Margins. Geological Society of America Bulletin, 102(6): 704-720. https://doi.org/10.1130/0016-7606(1990)102<0704:TEATJA>2.3.CO;2 doi: 10.1130/0016-7606(1990)102<0704:TEATJA>2.3.CO;2
      [167] Von Huene, R., Scholl, D. W., 1991. Observations at Convergent Margins Concerning Sediment Subduction, Subduction Erosion, and the Growth of Continental Crust. Reviews of Geophysics, 29(3): 279-316. https://doi.org/10.1029/91RG00969
      [168] Wan, B., Wu, F. Y., Chen, L., et al., 2019. Cyclical One-Way Continental Rupture-Drift in the Tethyan Evolution: Subduction-Driven Plate Tectonics. Science in China (Series D), 49(12): 2004-2017 (in Chinese).
      [169] Wang, H., Xiao, W. J., Windley, B. F., et al., 2022. Diverse P-T-t Paths Reveal High-Grade Metamorphosed Forearc Complexes in NW China. Journal of Geophysical Research: Solid Earth, 127(6): e2022JB024309. https://doi.org/10.1029/2022JB024309
      [170] Wang, J. P., Kusky, T. M., Wang, L., et al., 2015. A Neoarchean Subduction Polarity Reversal Event in the North China Craton. Lithos, 220-223: 133-146. https://doi.org/10.1016/j.lithos.2015.01.029
      [171] Wells, M. L., Beyene, M. A., Spell, T. L., et al., 2005. The Pinto Shear Zone; a Laramide Synconvergent Extensional Shear Zone in the Mojave Desert Region of the Southwestern United States. Journal of Structural Geology, 27(9): 1697-1720. https://doi.org/10.1016/j.jsg.2005.03.005
      [172] Whalen, J. B., McNicoll, V. J., van Staal, C. R., et al., 2006. Spatial, Temporal and Geochemical Characteristics of Silurian Collision-Zone Magmatism, Newfoundland Appalachians: An Example of a Rapidly Evolving Magmatic System Related to Slab Break-off. Lithos, 89(3-4): 377-404. https://doi.org/10.1016/j.lithos.2005.12.011
      [173] Windley, B. F., Kusky, T. M., Polat, A., 2021. Onset of Plate Tectonics by the Eoarchean. Precambrian Research, 352: 105980. https://doi.org/10.1016/j.precamres.2020.105980
      [174] Windley, B. F., Xiao, W. J., 2018. Ridge Subduction and Slab Windows in the Central Asian Orogenic Belt: Tectonic Implications for the Evolution of an Accretionary Orogen. Gondwana Research, 61: 73-87. https://doi.org/10.1016/j.gr.2018.05.003
      [175] Wu, F. Y., Wang, J. G., Liu, C. Z., et al., 2019. Intra-Oceanic Arc: Its Formation and Evolution. Acta Petrologica Sinica, 35(1): 1-15 (in Chinese with English abstract). doi: 10.18654/1000-0569/2019.01.01
      [176] Wu, J. T. J., Wu, J., 2019. Izanagi-Pacific Ridge Subduction Revealed by a 56 to 46 Ma Magmatic Gap along the Northeast Asian Margin. Geology, 47(10): 953-957. https://doi.org/10.1130/G46778.1
      [177] Xiao, W. J., Ao, S. J., Yang, L., et al., 2017. Anatomy of Composition and Nature of Plate Convergence: Insights for Alternative Thoughts for Terminal India-Eurasia Collision. Science China Earth Sciences, 60(6): 1015-1039. https://doi.org/10.1007/s11430-016-9043-3
      [178] Xiao, W. J., Han, C. M., Liu, W., et al., 2014. How many Sutures in the Southern Central Asian Orogenic Belt: Insights from East Xinjiang-West Gansu (NW China)? Geoscience Frontiers, 5(4): 525-536. https://doi.org/10.1016/j.gsf.2014.04.002
      [179] Xiao, W. J., Han, C. M., Yuan, C., et al., 2010. Transitions among Mariana-, Japan-, Cordillera- and Alaska-Type Arc Systems and Their Final Juxtapositions Leading to Accretionary and Collisional Orogenesis. Geological Society, London, Special Publications, 338(1): 35-53. https://doi.org/10.1144/SP338.3
      [180] Xiao, W. J., Li, J. L., Song, D. F., et al., 2019. Structural Analyses and Spatio-Temporal Constraints of Accretionary Orogens. Earth Science, 44(5): 1661-1687 (in Chinese with English abstract).
      [181] Xiao, W. J., Santosh, M., 2014. The Western Central Asian Orogenic Belt: A Window to Accretionary Orogenesis and Continental Growth. Gondwana Research, 25(4): 1429-1444. https://doi.org/10.1016/j.gr.2014.01.008
      [182] Xiao, W. J., Windley, B. F., Han, C. M., et al., 2009. End-Permian to Mid-Triassic Termination of the Accretionary Processes of the Southern Altaids: Implications for the Geodynamic Evolution, Phanerozoic Continental Growth, and Metallogeny of Central Asia. International Journal of Earth Sciences, 98: 1189-1217. https://doi.org/10.1007/s00531-008-0407-z
      [183] Xiao, W. J., Windley, B. F., Han, C. M., et al., 2018. Late Paleozoic to Early Triassic Multiple Roll-Back and Oroclinal Bending of the Mongolia Collage in Central Asia. Earth-Science Reviews, 186: 94-128. https://doi.org/10.1016/j.earscirev.2017.09.020
      [184] Xiao, W. J., Windley, B., Hao, J., et al., 2002. Arc-Ophiolite Obduction in the Western Kunlun Range (China): Implications for the Palaeozoic Evolution of Central Asia. Journal of the Geological Society, 159(5): 517-528. https://doi.org/10.1144/0016-764901-093
      [185] Xiao, W. J., Windley, B., Sun, S., et al., 2015. A Tale of Amalgamation of Three Permo-Triassic Collage Systems in Central Asia: Oroclines, Sutures, and Terminal Accretion. Annual Review of Earth and Planetary Sciences, 43: 477-507. https://doi.org/10.1146/annurev-earth-060614-105254
      [186] Xiao, Y., Zhang, R. Q., Kuang, C. L., 2021. Mantle Transition Zone Structure Beneath the Alaska-Aleutian Subduction Zone and Its Surroundings. Chinese Journal of Geophysics, 64(3): 838-850 (in Chinese with English abstract).
      [187] Xu, Y. G., Li, H. Y., Hong, L. B., et al., 2018. Generation of Cenozoic Intraplate Basalts in the Big Mantle Wedge under Eastern Asia. Science China Earth Sciences, 61(7): 869-886. https://doi.org/10.1007/s11430-017-9192-y
      [188] Xu, Z. Q., Dilek, Y., Yang, J. S., et al., 2015. Crustal Structure of the Indus-Tsangpo Suture Zone and Its Ophiolites in Southern Tibet. Gondwana Research, 27(2): 507-524. https://doi.org/10.1016/j.gr.2014.08.001
      [189] Yan, Z., Fu, C. L., Niu, M. L., et al., 2021. Recognition and Significance of Accretionary Prism in Orogenic Belts. Chinese Journal of Geology, 56(2): 430-448 (in Chinese with English abstract).
      [190] Yang, G. X., 2022. Subduction Initiation Triggered by Collision: A Review Based on Examples and Models. Earth-Science Reviews, 232: 104129. https://doi.org/10.1016/j.earscirev.2022.104129
      [191] Yang, G. X., Li, Y. J., Tong, L. L., et al., 2017. Geological Effects of Seamount Subduction in West Junggar: Insight from Geochemical Characteristics of Devonian-Carboniferous Volcanic Rocks. Earth Science Frontiers, 24(6): 60-67 (in Chinese with English abstract).
      [192] Yang, G. X., Li, Y. J., Xiao, W. J., et al., 2015. OIB-Type Rocks within West Junggar Ophiolitic Mélanges: Evidence for the Accretion of Seamounts. Earth-Science Reviews, 150: 477-496. https://doi.org/10.1016/j.earscirev.2015.09.002
      [193] Yang, G. X., Si, G. H., Tong, L. L., et al., 2022. The Effect of Seamount Chain Subduction and Accretion. Geological Journal, 57(7): 2712-2734. https://doi.org/10.1002/gj.4435
      [194] Yao, J. L., Cawood, P. A., Zhao, G. C., et al., 2021. Mariana-Type Ophiolites Constrain the Establishment of Modern Plate Tectonic Regime during Gondwana Assembly. Nature Communications, 12: 4189. https://doi.org/10.1038/s41467-021-24422-z
      [195] Yin, A., Manning, C. E., Lovera, O., et al., 2007. Early Paleozoic Tectonic and Thermomechanical Evolution of Ultrahigh-Pressure (UHP) Metamorphic Rocks in the Northern Tibetan Plateau, Northwest China. International Geology Review, 49(8): 681-716. https://doi.org/10.2747/0020-6814.49.8.681
      [196] Yin, J. Y., Chen, W., Xiao, W. J., et al., 2017. Late Silurian-Early Devonian Adakitic Granodiorite, A-Type and I-Type Granites in NW Junggar, NW China: Partial Melting of Mafic Lower Crust and Implications for Slab Roll-back. Gondwana Research, 43: 55-73. https://doi.org/10.1016/j.gr.2015.06.016
      [197] Yuan, J., Deng, C. L., Yang, Z. Y., et al., 2022. Triple-Stage India-Asia Collision Involving Arc-Continent Collision and Subsequent Two-Stage Continent-Continent Collision. Global and Planetary Change, 212: 103821. https://doi.org/10.1016/j.gloplacha.2022.103821
      [198] Žák, J., Svojtka, M., Hajná, J., et al., 2020. Detrital Zircon Geochronology and Processes in Accretionary Wedges. Earth-Science Reviews, 207: 103214. https://doi.org/10.1016/j.earscirev.2020.103214
      [199] Zhang, J. E., Xiao, W. J., Luo, J., et al., 2018a. Collision of the Tacheng Block with the Mayile-Barleik-Tangbale Accretionary Complex in Western Junggar, NW China: Implication for Early-Middle Paleozoic Architecture of the Western Altaids. Journal of Asian Earth Sciences, 159: 259-278. https://doi.org/10.1016/j.jseaes.2017.03.023
      [200] Zhang, J. E., Xiao, W. J., Windley, B. F., et al., 2018b. Multiple Alternating Forearc- and Backarc-Ward Migration of Magmatism in the Indo-Myanmar Orogenic Belt since the Jurassic: Documentation of the Orogenic Architecture of Eastern Neotethys in SE Asia. Earth-Science Reviews, 185: 704-731. https://doi.org/10.1016/j.earscirev.2018.07.009
      [201] Zhang, J. X., 2020. The Study of Subduction Channels: Progress, Controversies, and Challenges. Science China Earth Sciences, 63(12): 1831-1851. https://doi.org/10.1007/s11430-019-9626-5
      [202] Zhao, D. P., Christensen, D., Pulpan, H., 1995. Tomographic Imaging of the Alaska Subduction Zone. Journal of Geophysical Research: Solid Earth, 100(B4): 6487-6504. https://doi.org/10.1029/95JB00046
      [203] Zhao, D. P., Maruyama, S., Omori, S., 2007. Mantle Dynamics of Western Pacific and East Asia: Insight from Seismic Tomography and Mineral Physics. Gondwana Research, 11(1-2): 120-131. https://doi.org/10.1016/j.gr.2006.06.006
      [204] Zhao, D. P., Tian, Y., Lei, J. S., et al., 2009. Seismic Image and Origin of the Changbai Intraplate Volcano in East Asia: Role of Big Mantle Wedge above the Stagnant Pacific Slab. Physics of the Earth and Planetary Interiors, 173(3-4): 197-206. https://doi.org/10.1016/j.pepi.2008.11.009
      [205] Zheng, Y. F., Zhao, G. C., 2020. Two Styles of Plate Tectonics in Earth's History. Science Bulletin, 65(4): 329-334. https://doi.org/10.1016/j.scib.2018.12.029
      [206] Zhu, R. X., Zhao, G. C., Xiao, W. J., et al., 2021. Origin, Accretion, and Reworking of Continents. Reviews of Geophysics, 59(3): e2019RG000689. https://doi.org/10.1029/2019RG000689
      [207] 边千韬, 罗小全, 陈海泓, 等, 1999. 阿尼玛卿蛇绿岩带花岗-英云闪长岩锆石U-Pb同位素定年及大地构造意义. 地质科学, 34(4): 420-426. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199904002.htm
      [208] 陈艺超, 张继恩, 田忠华, 等, 2021b. 造山带中缝合面结构特征与构造意义. 岩石学报, 37(8): 2324-2338. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202108005.htm
      [209] 陈艺超, 张继恩, 侯泉林, 等, 2021a. 增生弧基本特征与地质意义. 地质科学, 56(2): 615-634. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202102012.htm
      [210] 侯增谦, 赵志丹, 高永丰, 等, 2006. 印度大陆板片前缘撕裂与分段俯冲: 来自冈底斯新生代火山-岩浆作用证据. 岩石学报, 22(4): 761-774. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200604001.htm
      [211] 李继亮, 郝杰, 柴育成, 等, 1993. 赣南混杂带与增生弧联合体: 图尔基型碰撞造山带的缝合带. 见: 李继亮编. 东南大陆岩石圈结构与地质演化. 北京: 冶金工业出版社.
      [212] 李三忠, 王光增, 索艳慧, 等, 2019. 板块驱动力: 问题本源与本质. 大地构造与成矿学, 43(4): 605-643. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201904002.htm
      [213] 李廷栋, 肖庆辉, 潘桂棠, 等, 2019. 关于发展洋板块地质学的思考. 地球科学, 44(5): 1441-1451. doi: 10.3799/dqkx.2019.970
      [214] 孙卫东, 2019. "岩浆引擎"与板块运动驱动力. 科学通报, 64(S2): 2988-3006. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2019Z2005.htm
      [215] 万博, 吴福元, 陈凌, 等, 2019. 重力驱动的特提斯单向裂解-聚合动力学. 中国科学(D辑), 49(12): 2004-2017.
      [216] 吴福元, 王建刚, 刘传周, 等, 2019. 大洋岛弧的前世今生. 岩石学报, 35(1): 1-15. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201901002.htm
      [217] 肖文交, 李继亮, 宋东方, 等, 2019. 增生型造山带结构解析与时空制约. 地球科学, 44(5): 1661-1687. doi: 10.3799/dqkx.2019.979
      [218] 肖勇, 张瑞青, 况春利, 2021. 阿留申-阿拉斯加俯冲带及周边地区地幔过渡带结构研究. 地球物理学报, 64(3): 838-850. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202103008.htm
      [219] 闫臻, 付长垒, 牛漫兰, 等, 2021. 造山带中增生楔识别与地质意义. 地质科学, 56(2): 430-448. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX202102004.htm
      [220] 杨高学, 李永军, 佟丽莉, 等, 2017. 西准噶尔海山俯冲的地质效应: 来自泥盆纪-石炭纪火山岩地球化学证据. 地学前缘, 24(6): 60-67. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201706007.htm
    • 加载中
    图(22)
    计量
    • 文章访问数:  664
    • HTML全文浏览量:  422
    • PDF下载量:  312
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-09-01
    • 刊出日期:  2022-09-25

    目录

      /

      返回文章
      返回