Mechanical Analysis of Rock Bolts under Action of Tension and Shearing in Bedding Rock Slopes
-
摘要:
锚杆能够显著增强顺层岩质边坡的稳定性.基于顺层边坡结构效应,应用锚杆加固顺层边坡的力学模型,根据结构力学理论和变形协调关系,建立拉剪作用下全长粘结型锚杆加固顺层边坡抗剪计算的理论分析方法.与相关试验数据进行了比较验证,结果表明顺层边坡锚固抗力模型计算结果与试验结果比较一致,验证了理论模型的合理性.讨论了锚杆倾角、锚杆直径、灌浆体强度、结构面内摩擦角、剪胀角等对加锚顺层岩体抗剪性能的影响.分析表明:锚杆锚固抗力模型能够较好地反映锚杆轴力及横向剪切力对顺层岩质边坡的抗剪作用.锚杆倾角越大,锚杆总的抗力呈减小趋势,而锚杆抗力随剪胀角增大而增加;当锚杆倾角等于内摩擦角时,锚杆抗力达到最大;锚杆抗力随锚杆直径增加而增大;当锚杆直径不变时,锚杆抗力随灌浆体抗压强度增大而有所减小.
Abstract:Bolting is one of the important methods to harness the bedding rock slopes. The stability of the rock can be strengthened by rock bolts. The mechanical model of bolted bedding rock slope is employed to analyses the behavior of the rock bolt. The force method approach and the deformation compatibility principles are used to model the contribution of the axial and shear bolt forces at the intersection between the bolt and the joint plane. The theoretical analyses of the shearing resistance for the fully grouted rock bolts in the bedding rock slope are evaluated in the action of axial and shear loads. Comparisons and validations were carried out between the shearing resistance mechanical model predictions and the experimental data. It is shown that the data of the both methods have a good agreement. The effects of bolt inclination, the length of shearing deformation, bolt diameter, the grout compressive strength, and the internal friction angle of the joint plane on the shear strength of the bolted bedding rocks are investigated in detail. The results show that the bolt shearing resistance model expresses the contribution of the axial force and shearing force of the bolts to the shear strength of the bedding rock slopes. The total resistance is reduced with the larger of the bolt inclination. With increasing of the dilation angle, the rock bolt resisting force increases. When the inclination of rock bolt equals to the friction angle, the bolt contribution to resist the rock movement is the maximum value.The greater the diameter of the bolts, the larger the bolt resistance. The resistance of the rock bolt will have a little reduction with the increasing of the grout compressive strength for a certain diameter of the bolt.
-
表 1 试验材料参数
Table 1. Mechanical parameters of meterials
材料 弹性模量
E(GPa)泊松比
μ屈服强度
fy(MPa)抗压强度
fc(MPa)直径
(mm)锚杆 186.0 0.18 505 - 8 岩体 31.5 0.20 - 33.0 - 灌浆 13.0 0.15 - 45.5 - 表 2 锚杆抗力理论与试验结果对比
Table 2. Comparison of theoretical data with experimental results for rock bolt resistances
工况 试验值(kN) 文献(Ranjbarnia, 2022)(kN) 本文(kN) $ \alpha $=45°,φ=42.1° 30.4 29.1 31.8 $ \alpha $=60°,φ=38.7° 27.6 26.3 28.7 $ \alpha $=75°,φ=42.5° 25.6 23.1 26.7 $ \alpha $=90°,φ=36.4° 13.7 13.3 14.9 -
[1] Chen, Y., 2014. Experimental Study and Stress Analysis of Rock Bolt Anchorage Performance. Journal of Rock Mechanics and Geotechnical Engineering, 6(5): 428-437. doi: 10.1016/j.jrmge.2014.06.002 [2] Cheng, L. K., Fan, J. L., Han, J., et al., 2001. Rock and Soil Anchorage. China Architecture & Building Press, Beijing(in Chinese). [3] Ferrero, A. M., 1995. The Shear Strength of Reinforced Rock Joints. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 32(6): 595-605. https://doi.org/10.1016/0148⁃9062(95)00002⁃x [4] Ge, X. R., Liu, J. W., 1988. Study on the Shear Resistance Behaviour of Bolted Rock Joints. Chinese Journal of Geotechnical Engineering, 10(1): 8-19(in Chinese with English abstract). [5] Grasselli, G., 2005.3D Behaviour of Bolted Rock Joints: Experimental and Numerical Study. International Journal of Rock Mechanics and Mining Sciences, 42(1): 13-24. https://doi.org/10.1016/j.ijrmms.2004.06.003 [6] Jalalifar, H., Aziz, N., 2010. Analytical Behaviour of Bolt⁃Joint Intersection under Lateral Loading Conditions. Rock Mechanics and Rock Engineering, 43(1): 89-94. https://doi.org/10.1007/s00603⁃009⁃0032⁃6 [7] Jalalifar, H., Aziz, N., Hadi, M., 2006. The Effect of Surface Profile, Rock Strength and Pretension Load on Bending Behaviour of Fully Grouted Bolts. Geotechnical & Geological Engineering, 24(5): 1203-1227. https://doi.org/10.1007/s10706⁃005⁃1340⁃6 [8] Li, C. C., 2010. Field Observations of Rock Bolts in High Stress Rock Masses. Rock Mechanics and Rock Engineering, 43(4): 491-496. https://doi.org/10.1007/s00603⁃009⁃0067⁃8 [9] Li, C. C., Stjern, G., Myrvang, A., 2014. A Review on the Performance of Conventional and Energy⁃Absorbing Rockbolts. Journal of Rock Mechanics and Geotechnical Engineering, 6(4): 315-327. doi: 10.1016/j.jrmge.2013.12.008 [10] Li, Y. Z., Liu, C. H., 2016. An Analytical Model of Jointed Rock Bolts under the Combination of Tensile and Shear Loads. Chinese Journal of Rock Mechanics and Engineering, 35(12): 2471-2478. https://doi.org/10.13722/j.cnki.jrme.2016.1085(in Chinese with English abstract). [11] Liu, C. H., Li, Y. Z., 2017. Analytical Study of the Mechanical Behavior of Fully Grouted Bolts in Bedding Rock Slopes. Rock Mechanics and Rock Engineering, 50(9): 2413-2423. https://doi.org/10.1007/s00603-017-1244⁃9 [12] Liu, C. H., Li, Y. Z., 2018. Research Progress in Bolting Mechanism and Theories of Fully Grouted Bolts in Jointed Rock Masses. Chinese Journal of Rock Mechanics and Engineering, 37(8): 1856-1872(in Chinese with English abstract). [13] Ranjbarnia, M., Oreste, P., Fahimifar, A., et al., 2016. Analytical Numerical Solution for Stress Distribution around Tunnel Reinforced by Radial Fully Grouted Rockbolts. International Journal for Numerical and Analytical Methods in Geomechanics, 40(13): 1844-1862. https://doi.org/10.1002/nag.2517 [14] Ranjbarnia, M., Rashedi, M. M., Dias, D., 2022. Analytical and Numerical Simulations to Investigate Effective Parameters on Pre⁃Tensioned Rockbolt Behavior in Rock Slopes. Bulletin of Engineering Geology and the Environment, 81(2): 74. https://doi.org/10.1007/s10064⁃021⁃02563⁃1 [15] Spang, K., Egger, P., 1990. Action of Fully⁃Grouted Bolts in Jointed Rock and Factors of Influence. Rock Mechanics and Rock Engineering, 23(3): 201-229. https://doi.org/10.1007/bf01022954 [16] Tang, Z. H., Yu, X. L., Chai, B., et al., 2021. Energetic Criterion of Entering Acceleration in Progressive Failure Process of Bedding Rockslide: A Case Study for Shanshucao Landslide. Earth Science, 46(11): 4033-4042(in Chinese with English abstract). [17] The National Standards of People's Republic of China, 2014. Technical Code for Building Slope Engineering (GB50330-2013). China Architecture & Building Press, Beijing(in Chinese). [18] Wang, F. L., Liu, C. H., Gong, Z., 2014. Mechanisms of Bolt Support for Bedding Rock Slopes. Chinese Journal of Rock Mechanics and Engineering, 33(7): 1465-1470(in Chinese with English abstract). [19] Wang, L. Q., Zhu, L. F., Zheng, L. B., et al., 2021. Shear Test of Bolted Joint Rock Masses Considering Joint Roughness. China Journal of Highway and Transport, 34(6): 38-47(in Chinese with English abstract). [20] Wang, Z. W., Fang, J. Q., 2010. Numerical Analysis for the Shear Characteristic of Structure Plane Reinforced by Rock Bolt in Rock Mass. Journal of China Coal Society, 35(5): 729-733(in Chinese with English abstract). [21] Zhang, L. W., Wang, R., 2002. Research on Status Quo of Anchorage Theory of Rock and Soil. Rock and Soil Mechanics, 23(5): 627-631(in Chinese with English abstract). [22] Zhang, W., Liu, Q. S., 2014. Analysis of Deformation Characteristics of Prestressed Anchor Bolt Based on Shear Test. Rock and Soil Mechanics, 35(8): 2231-2240(in Chinese with English abstract). [23] Zhang, Z. Q., Zhang, G., Zhao, C. Y., et al., 1999. Experimental Study on Prestressly Anchoring Structure of Slope. Journal of Northeastern University, 20(5): 536-539(in Chinese with English abstract). [24] Zhou, H. F., Fu, W. X., Ye, F., et al., 2021. Study on Sliding⁃Shearing Deformation and Failure Mode of Rock Slope with Steep Weak Structural Plane. Earth Science, 46(4): 1437-1446(in Chinese with English abstract). [25] 程良奎, 范景伦, 韩军, 等, 2001. 岩土锚固. 北京: 中国建筑工业出版社. [26] 葛修润, 刘建武, 1988. 加锚节理面抗剪性能研究. 岩土工程学报, 10(1): 8-19. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC198801001.htm [27] 李育宗, 刘才华, 2016. 拉剪作用下节理岩体锚固力学分析模型. 岩石力学与工程学报, 35(12): 2471-2478. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201612011.htm [28] 刘才华, 李育宗, 2018. 考虑横向抗剪效应的节理岩体全长黏结型锚杆锚固机制研究及进展. 岩石力学与工程学报, 37(8): 1856-1872. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201808008.htm [29] 唐朝晖, 余小龙, 柴波, 等, 2021. 顺层岩质滑坡渐进破坏进入加速的能量学判据. 地球科学, 46(11): 4033-4042. doi: 10.3799/dqkx.2019.960 [30] 王发玲, 刘才华, 龚哲, 2014. 顺层岩质边坡锚杆支护机制研究. 岩石力学与工程学报, 33(7): 1465-1470. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201407019.htm [31] 王亮清, 朱林锋, 郑罗斌, 等, 2021. 考虑节理粗糙度的锚固节理岩体剪切试验. 中国公路学报, 34(6): 38-47. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202106005.htm [32] 王中文, 方建勤, 2010. 岩体结构面锚固剪切特性的数值分析. 煤炭学报, 35(5): 729-733. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201005009.htm [33] 张乐文, 汪稔, 2002. 岩土锚固理论研究之现状. 岩土力学, 23(5): 627-631. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200205023.htm [34] 张伟, 刘泉声, 2014. 基于剪切试验的预应力锚杆变形性能分析. 岩土力学, 35(8): 2231-2240. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201408016.htm [35] 张治强, 张国, 赵赤云, 等, 1999. 边坡预应力锚固结构的实验研究. 东北大学学报, 20(5): 536-539. https://www.cnki.com.cn/Article/CJFDTOTAL-DBDX199905024.htm [36] 中华人民共和国国家标准, 2014. 建筑边坡工程技术规范(GB50330-2013). 北京: 中国建筑工业出版社. [37] 周洪福, 符文熹, 叶飞, 等, 2021. 陡倾坡外弱面控制的斜坡滑移-剪损变形破坏模式. 地球科学, 46(4): 1437-1446. doi: 10.3799/dqkx.2020.097