• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    泥石流防治措施与冲击力研究进展

    石振明 吴彬 郑鸿超 彭铭

    石振明, 吴彬, 郑鸿超, 彭铭, 2022. 泥石流防治措施与冲击力研究进展. 地球科学, 47(12): 4339-4349. doi: 10.3799/dqkx.2022.376
    引用本文: 石振明, 吴彬, 郑鸿超, 彭铭, 2022. 泥石流防治措施与冲击力研究进展. 地球科学, 47(12): 4339-4349. doi: 10.3799/dqkx.2022.376
    Shi Zhenming, Wu Bin, Zheng Hongchao, Peng Ming, 2022. State of the Art on Prevention and Control Measures and Impact Model for Debris Flow. Earth Science, 47(12): 4339-4349. doi: 10.3799/dqkx.2022.376
    Citation: Shi Zhenming, Wu Bin, Zheng Hongchao, Peng Ming, 2022. State of the Art on Prevention and Control Measures and Impact Model for Debris Flow. Earth Science, 47(12): 4339-4349. doi: 10.3799/dqkx.2022.376

    泥石流防治措施与冲击力研究进展

    doi: 10.3799/dqkx.2022.376
    基金项目: 

    国家重点研发计划 2019YFC1509702

    国家自然科学基金青年基金 42007252

    详细信息
      作者简介:

      石振明(1968-), 男, 教授, 博士, 主要从事地质灾害与防治技术方面研究工作.E-mail: shi_tongji@tongji.edu.cn

      通讯作者:

      郑鸿超, E-mail: 1410274@tongji.edu.cn

    • 中图分类号: P642

    State of the Art on Prevention and Control Measures and Impact Model for Debris Flow

    • 摘要:

      泥石流是一种世界范围内各个历史时期均普遍发生的地质灾害现象,尤其频发于地震多发的山地地区,每年均给人民的生命财产造成重大损失.为了应对这种暴发突然,来势凶猛,破坏力强的泥石流灾害,一系列防治措施应运而生.系统总结泥石流的防治措施.泥石流的防治措施可分为结构化措施和非结构化措施.其中结构化措施包括拦挡坝、拦挡网、导流渠、沉淀池和植被防护措施等,其设计依据可通过泥石流冲击力模型获取.泥石流冲击力模型可分为静力模型、动力模型.非结构化措施即建立泥石流预警和预报系统体系.

       

    • 图  1  我国泥石流分布范围

      地形底图来自Esri ArcGIS;地理底图来自自然资源部标准地图服务系统,审图号:国审受字(2022)第05285号

      Fig.  1.  Debris flow distribution of China

      图  2  泥石流阶梯拦挡坝群(据Cui and Lin, 2013)

      Fig.  2.  Step⁃check dams for controlling debris flow (modified from Cui and Lin, 2013)

      图  3  开口拦挡坝和梳子坝(据Theule et al., 2012)

      Fig.  3.  Open type check dam and slit dam (modified from Theule et al., 2012)

      图  4  柔性拦挡网

      a.据Lee et al.(2008);b.据Brighenti et al.(2013)

      Fig.  4.  Flexible net barriers

      图  5  导流渠和消能结构

      a.据Chen et al.(2015); b.据Chen et al.(2014)

      Fig.  5.  Drainage channel and energy dissipation cabinet

      图  6  泥石流静力、动力模型参数与弗劳德数关系

      Fig.  6.  The relationship between empirical coefficient and Froude number

      图  7  泥石流预警系统(修改自Kung et al., 2008)

      Fig.  7.  Debris flow warning system (modified from Kung et al., 2008)

      表  1  kaFr的拟合关系

      Table  1.   The fitting relationship between empirical coefficient and Froude number

      模型 表达式 拟合度(R2) 来源
      Fr-k k=9.1Fr 0.77 Scheidl et al.(2013)
      k=4.86Fr 0.84 Scheidl et al.(2013)
      k=Fr2 Huang and Zhang(2022)
      Fr-a a=7.23Fr-0.74 0.60 Scheidl et al.(2013)
      a=5.44Fr-1.08 0.86 Scheidl et al.(2013)
      a=5.3Fr-1.3 0.91 Cui et al.(2015)
      a=3.476Fr-2.389 0.845 Wang et al.(2018)
      a=4.2Fr-1.2 0.89 Li et al.(2020)
      下载: 导出CSV
    • [1] Abancó, C., Hürlimann, M., Fritschi, B., et al., 2012. Transformation of Ground Vibration Signal for Debris-Flow Monitoring and Detection in Alarm Systems. Sensors, 12(4): 4870-4891. https://doi.org/10.3390/s120404870
      [2] Arattano, M., 1999. On the Use of Seismic Detectors as Monitoring and Warning Systems for Debris Flows. Natural Hazards, 20(2-3): 197-213.
      [3] Arattano, M., Moia, F., 1999. Monitoring the Propagation of a Debris Flow along a Torrent. Hydrological Sciences Journal, 44(5): 811-823. https://doi.org/10.1080/02626669909492275
      [4] Armanini, A., 2007. On the Dynamic Impact of Debris Flows. In: Armanini, A., Masanori, M., eds., Recent Developments on Debris Flows. Springer, Berlin, 208-226. https://doi.org/10.1007/bfb0117770
      [5] Badoux, A., Graf, C., Rhyner, J., et al., 2009. A Debris-Flow Alarm System for the Alpine Illgraben Catchment: Design and Performance. Natural Hazards, 49(3): 517-539. https://doi.org/10.1007/s11069-008-9303-x
      [6] Berger, C., McArdell, B.W., Fritschi, B., et al., 2010. A Novel Method for Measuring the Timing of Bed Erosion during Debris Flows and Floods. Water Resources Research, 46(2). https://doi.org/10.1029/2009wr007993
      [7] Bisson, M., Favalli, M., Fornaciai, A., et al., 2005. A Rapid Method to Assess Fire-Related Debris Flow Hazard in the Mediterranean Region: An Example from Sicily (Southern Italy). International Journal of Applied Earth Observation and Geoinformation, 7(3): 217-231. https://doi.org/10.1016/j.jag.2005.04.003
      [8] Brighenti, R., Segalini, A., Ferrero, A.M., 2013. Debris Flow Hazard Mitigation: A Simplified Analytical Model for the Design of Flexible Barriers. Computers and Geotechnics, 54: 1-15. https://doi.org/10.1016/j.compgeo.2013.05.010
      [9] Bugnion, L., McArdell, B.W., Bartelt, P., et al., 2012. Measurements of Hillslope Debris Flow Impact Pressure on Obstacles. Landslides, 9(2): 179-187. https://doi.org/10.1007/s10346-011-0294-4
      [10] Chai, B., Tao, Y.Y., Du, J., et al., 2020. Hazard Assessment of Debris Flow Triggered by Outburst of Jialong Glacial Lake in Nyalam County, Tibet. Earth Science, 45(12): 4630-4639(in Chinese with English abstract)
      [11] Chen, H., Lee, C.F., 2004. Geohazards of Slope Mass Movement and Its Prevention in Hong Kong. Engineering Geology, 76(1-2): 3-25. https://doi.org/10.1016/j.enggeo.2004.06.003
      [12] Chen, J.G., Chen, X.Q., Li, Y., et al., 2015. An Experimental Study of Dilute Debris Flow Characteristics in a Drainage Channel with an Energy Dissipation Structure. Engineering Geology, 193: 224-230. https://doi.org/10.1016/j.enggeo.2015.05.004
      [13] Chen, J.G., Chen, X.Q., Wang, T., et al., 2014. Types and Causes of Debris Flow Damage to Drainage Channels in the Wenchuan Earthquake Area. Journal of Mountain Science, 11(6): 1406-1419. https://doi.org/10.1007/s11629-014-3045-x
      [14] Chen, N.S., Li, T.C., Gao, Y.C., 2005. A Great Disastrous Debris Flow on 11 July 2003 in Shuikazi Valley, Danba County, Western Sichuan, China. Landslides, 2(1): 71-74. https://doi.org/10.1007/s10346-004-0041-1
      [15] Chen, S.C., Wu, C.Y., 2014. Debris Flow Disaster Prevention and Mitigation of Non-Structural Strategies in Taiwan. Journal of Mountain Science, 11(2): 308-322. https://doi.org/10.1007/s11629-014-2987-3
      [16] Chen, X.Q., Cui, P., You, Y., et al., 2015. Engineering Measures for Debris Flow Hazard Mitigation in the Wenchuan Earthquake Area. Engineering Geology, 194: 73-85. doi: 10.1016/j.enggeo.2014.10.002
      [17] Collins, T.K., 2008. Debris Flows Caused by Failure of Fill Slopes: Early Detection, Warning, and Loss Prevention. Landslides, 5(1): 107-120. https://doi.org/10.1007/s10346-007-0107-y
      [18] Cui, P., Lin, Y.M., 2013. Debris-Flow Treatment: The Integration of Botanical and Geotechnical Methods. Journal of Resources and Ecology, 4(2): 97-104. https://doi.org/10.5814/j.issn.1674-764x.2013.02.001
      [19] Cui, P., Zeng, C., Lei, Y., 2015. Experimental Analysis on the Impact Force of Viscous Debris Flow. Earth Surface Processes and Landforms, 40(12): 1644-1655. https://doi.org/10.1002/esp.3744
      [20] Decaulne, A., 2007. Snow-Avalanche and Debris-Flow Hazards in the Fjords. Natural Hazards, 41(1): 81-98. https://doi.org/10.1007/s11069-006-9025-x
      [21] DeWolfe, V.G., Santi, P.M., Ey, J., et al., 2008. Effective Mitigation of Debris Flows at Lemon Dam, La Plata County, Colorado. Geomorphology, 96(3-4): 366-377. https://doi.org/10.1016/j.geomorph.2007.04.008
      [22] Fei, X.J., Shu, A.P., 2004. Movemet Mechanism and Disaster Control for Debris Flow. Tsinghua University Press, Beijing, 26-32(in Chinese)
      [23] Han, W.B., Ou, G.Q., 2006. Efficiency of Slit Dam Prevention against Non-Viscous Debris Flow. Wuhan University Journal of Natural Sciences, 11(4): 865-869. https://doi.org/10.1007/bf02830178
      [24] Hong, Y., Wang, J.P., Li, D.Q., et al., 2015. Statistical and Probabilistic Analyses of Impact Pressure and Discharge of Debris Flow from 139 Events during 1961 and 2000 at Jiangjia Ravine, China. Engineering Geology, 187: 122-134. https://doi.org/10.1016/j.enggeo.2014.12.011
      [25] Hou, R.N., Li, Z., Chen, N.S., et al., 2022. Modeling of Debris Flow Susceptibility Assessment in Tianshan Based on Watershed Unit and Stacking Ensemble Algorithm. Earth Science (in press)(in Chinese with English abstract). https://doi.org/10.3799/dqkx.2022.271
      [26] Hu, K.H., Wei, F.Q., Li, Y., 2011. Real-Time Measurement and Preliminary Analysis of Debris-Flow Impact Force at Jiangjia Ravine, China. Earth Surface Processes and Landforms, 36(9): 1268-1278. https://doi.org/10.1002/esp.2155
      [27] Huang, H.P., Yang, K.C., Lai, S.W., 2007. Impact Force of Debris Flow on Filter Dam. Momentum, 9(2): 03218.
      [28] Huang, J., Huang, R.Q., Ju, N.P., et al., 2015.3D WebGIS-Based Platform for Debris Flow Early Warning: A Case Study. Engineering Geology, 197: 57-66. https://doi.org/10.1016/j.enggeo.2015.08.013
      [29] Huang, M.L., Hong, J.H., 2010. A Geospatial Service Approach towards the Development of a Debris Flow Early-Warning Systems. Advances in Information Sciences and Service Sciences, 2(2): 107-117. https://doi.org/10.4156/aiss.vol2.issue2.13
      [30] Huang, Y., Zhang, B., 2022. Challenges and Perspectives in Designing Engineering Structures against Debris-Flow Disaster. European Journal of Environmental and Civil Engineering, 26(10): 4476-4497. https://doi.org/10.1080/19648189.2020.1854126
      [31] Hübl, J., Suda, J., Proske, D., et al., 2009. Debris Flow Impact Estimation. In: Proceedings of the 11th International Symposium on Water Management and Hydraulic Engineering. Ohrid, Macedonia.
      [32] Ikeya, H., 1989. Debris Flow and Its Countermeasures in Japan. Bulletin of the International Association of Engineering Geology, 40(1): 15-33. https://doi.org/10.1007/bf02590339
      [33] Imaizumi, F., Sidle, R.C., Kamei, R., 2008. Effects of Forest Harvesting on the Occurrence of Landslides and Debris Flows in Steep Terrain of Central Japan. Earth Surface Processes and Landforms, 33(6): 827-840. https://doi.org/10.1002/esp.1574
      [34] Jaeggi, M.N.R., Pellandini, S., 2007. Torrent Check Dams as a Control Measure for Debris Flows. In: Recent Developments on Debris Flows. Springer, Berlin, Heidelberg, 186-207. https://doi.org/10.1007/bfb0117769
      [35] Jakob, M., Hungr, O., 2005. Debris-Flow Hazards and Related Phenomena. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-27129-5_1
      [36] Kim, Y., Nakagawa, H., Kawaike, K., et al., 2017. Study on Hydraulic Characteristics of Sabo Dam with a Flap Structure for Debris Flow. International Journal of Sediment Research, 32(3): 452-464. https://doi.org/10.1016/j.ijsrc.2017.05.001
      [37] Kung, H.Y., Ku, H.H., Wu, C.I., et al., 2008. Intelligent and Situation-Aware Pervasive System to Support Debris-Flow Disaster Prediction and Alerting in Taiwan. Journal of Network and Computer Applications, 31(1): 1-18. https://doi.org/10.1016/j.jnca.2006.06.008
      [38] Lee, S.U., Choi, S.I., Choi, Y.K., 2008. Hazard Prevention Using Multi-Level Debris Flow Barriers. Korean Society for Railway, (2008): 815-829.
      [39] Lichtenhahn, C., 1973. Berechnung Von Sperren in Beton Und Eisenbeton. Mitteilungen der Forstlichen Bundesanstalt Wien, 102: 91-127.
      [40] Lin, X.C., Zhang, H.Y., Chen, H.F., et al., 2015. Field Investigation on Severely Damaged Aseismic Buildings in 2014 Ludian Earthquake. Earthquake Engineering and Engineering Vibration, 14(1): 169-176. https://doi.org/10.1007/s11803-015-0014-5
      [41] Liu, C.R., Zhao, S.G., 2016. Experimental Study on Mechanism of Large River Blocking by Debris Flow. Journal of Chongqing Jiaotong University (Natural Science), 35(1): 90-95(in Chinese with English abstract).
      [42] Liu, D.L., Leng, X.P., Wei, F.Q., et al., 2015. Monitoring and Recognition of Debris Flow Infrasonic Signals. Journal of Mountain Science, 12(4): 797-815. https://doi.org/10.1007/s11629-015-3471-4
      [43] Liu, J.F., You, Y., Chen, X.C., et al., 2010. Identification of Potential Sites of Debris Flows in the Upper Min River Drainage, Following Environmental Changes Caused by the Wenchuan Earthquake. Journal of Mountain Science, 7(3): 255-263. https://doi.org/10.1007/s11629-010-2017-z
      [44] Ng, C.W.W., Song, D., Choi, C.E., et al., 2017. Impact Mechanisms of Granular and Viscous Flows on Rigid and Flexible Barriers. Canadian Geotechnical Journal, 54(2): 188-206. https://doi.org/10.1139/cgj-2016-0128
      [45] Osanai, N., Mizuno, H., Mizuyama, T., et al., 2010. Design Standard of Control Structures against Debris Flow in Japan. Journal of Disaster Research, 5(3): 307-314. https://doi.org/10.20965/jdr.2010.p0307
      [46] Proske, D., Suda, J., Hübl, J., 2011. Debris Flow Impact Estimation for Breakers. Georisk, 5(2): 143-155. https://doi.org/10.1080/17499518.2010.516227
      [47] Remaître, A., Malet, J.P., 2011. The Effectiveness of Torrent Check Dams to Control Channel Instability: Example of Debris-Flow Events in Clay Shales. Check Dams, Morphological Adjustements and Erosion Control in Torrential Streams. Nova Science Publishers Inc., New York, 211-237.
      [48] Scheidl, C., Chiari, M., Kaitna, R., et al., 2013. Analysing Debris-Flow Impact Models, Based on a Small Scale Modelling Approach. Surveys in Geophysics, 34(1): 121-140. https://doi.org/10.1007/s10712-012-9199-6
      [49] Scotton, P., Deganutti, A., 1997. Phreatic Line and Dynamic Impact in Laboratory Debris Flow Experiments. In: International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction and Assessment. American Society of Civil Engineers, New York, 777-786.
      [50] Shi, Z.M., Ma, X.L., Peng, M., et al., 2014. Statistical Analysis and Efficient Dam Burst Modelling of Landslide Dams Based on a Large-Scale Database. Chinese Journal of Rock Mechanics and Engineering, 33(9): 1780-1790(in Chinese with English abstract).
      [51] Shi, Z.M., Xiong, Y.F., Peng, M., et al., 2016. An Efficient Risk Assessment Method for Landslide Dam Breach: Taking the Hongshiyan Landslide Dam Formed by the 2014 Ludian Earthquake as an Example. Journal of Hydraulic Engineering, 47(6): 742-751(in Chinese with English abstract).
      [52] Shieh, C.L., Ting, C.H., Pan, H.W., 2008. Impulsive Force of Debris Flow on a Curved Dam. International Journal of Sediment Research, 23(2): 149-158. https://doi.org/10.1016/s1001-6279(08)60014-1
      [53] Shima, J., Moriyama, H., Kokuryo, H., et al., 2016. Prevention and Mitigation of Debris Flow Hazards by Using Steel Open-Type Sabo Dams. International Journal of Erosion Control Engineering, 9(3): 135-144. https://doi.org/10.13101/ijece.9.135
      [54] Suwa, H., Okano, K., Kanno, T., 2009. Behavior of Debris Flows Monitored on Test Slopes of Kamikamihorizawa Creek, Mount Yakedake, Japan. International Journal of Erosion Control Engineering, 2(2): 33-45. https://doi.org/10.13101/ijece.2.33
      [55] Takahashi, T., 2007. Debris Flow: Mechanics, Prediction and Countermeasures. Taylor & Francis, London.
      [56] Tang, B.X., Zhou, B.F., Wu, J.S., 2000. Debris Flow of China. The Commercial Press, Beijing (in Chinese)
      [57] Tang, C., Rengers, N., van Asch, T.W.J., et al., 2011a. Triggering Conditions and Depositional Characteristics of a Disastrous Debris Flow Event in Zhouqu City, Gansu Province, Northwestern China. Natural Hazards and Earth System Sciences, 11(11): 2903-2912. https://doi.org/10.5194/nhess-11-2903-2011
      [58] Tang, C., Zhu, J., Ding, J., et al., 2011b. Catastrophic Debris Flows Triggered by a 14 August 2010 Rainfall at the Epicenter of the Wenchuan Earthquake. Landslides, 8(4): 485-497. https://doi.org/10.1007/s10346-011-0269-5
      [59] Tecca, P.R., Armento, C., Genevois, R., 2006. Debris Flow Hazard and Mitigation Works in Fiames Slope (Dolomites, Italy). WIT Transactions on Ecology and the Environment. WIT Press, UK. https://doi.org/10.2495/deb060021
      [60] Theule, J.I., Liébault, F., Loye, A., et al., 2012. Sediment Budget Monitoring of Debris-Flow and Bedload Transport in the Manival Torrent, SE France. Natural Hazards and Earth System Sciences, 12(3): 731-749. https://doi.org/10.5194/nhess-12-731-2012
      [61] Wang, D.P., Chen, Z., He, S.M., et al., 2018. Measuring and Estimating the Impact Pressure of Debris Flows on Bridge Piers Based on Large-Scale Laboratory Experiments. Landslides, 15(7): 1331-1345. https://doi.org/10.1007/s10346-018-0944-x
      [62] Wang, G.L., 2013. Lessons Learned from Protective Measures Associated with the 2010 Zhouqu Debris Flow Disaster in China. Natural Hazards, 69(3): 1835-1847. https://doi.org/10.1007/s11069-013-0772-1
      [63] Wang, Y.Y., Zhan, Q.D., Yan, B.Y., 2014. Debris-Flow Rheology and Movement. Hunan Science & Technology Press, Changsha, 2-7(in Chinese).
      [64] Watanabe, M., I., 1981. Investigation and Analysis of Volcanic Mud Flows on Mount Sakurajima, Japan. In: International Association on Hydrology, ed., Erosion Sediment Transport Measurement. Science Publication, Florence, 245-256.
      [65] Wendeler, C., Volkwein, A., Denk, M., et al., 2007. Field Measurements Used for Numerical Modelling of Flexible Debris Flow Barriers. 4th International Conference on Debris-Flow Hazards Mitigation-Mechanics, Prediction, and Assessment. Chengdu, China, 681-687 https://doi.org/20.500.11850/57642
      [66] Yang, Q.G., Wang, X.R., Ma, W.F., et al., 2021. Design of Geo-Hazard Early Warning and Forecast System Based on Micro-Service Architecture. Earth Science, 46 (4): 1505-1517(in Chinese with English abstract).
      [67] Yin, H., Huang, C.J., Chen, C.Y., et al., 2011. The Present Development of Debris Flow Monitoring Technology in Taiwan: A Case Study Presentation. Italian Journal of Engineering Geology and Environment. https://doi.org/10.4408/ijege.2011-03.b-068
      [68] You, Y., Pan, H.L., Liu, J.F., et al., 2011. The Optimal Cross-Section Design of the "Trapezoid-V" Shaped Drainage Canal of Viscous Debris Flow. Journal of Mountain Science, 8(1): 103-107. https://doi.org/10.1007/s11629-011-1023-0
      [69] Yu, B., Ma, Y., Wu, Y.F., 2010a. Investigation of Severe Debris Flow Hazards in Wenjia Gully of Sichuan Province after the Wenchuan Earthquake. Journal of Engineering Geology, 18(6): 827-836(in Chinese with English abstract).
      [70] Yu, B., Yang, Y.H., Su, Y.C., et al., 2010b. Research on the Giant Debris Flow Hazards in Zhouqu County, Gansu Province on August 7, 2010. Journal of Engineering Geology, 18(4): 437-444(in Chinese with English abstract).
      [71] Yu, G.A., Huang, H.Q., Wang, Z.Y., et al., 2012. Rehabilitation of a Debris-Flow Prone Mountain Stream in Southwestern China: Strategies, Effects and Implications. Journal of Hydrology, 414-415: 231-243. https://doi.org/10.1016/j.jhydrol.2011.10.036
      [72] Zanuttigh, B., Lamberti, A., 2006. Experimental Analysis of the Impact of Dry Avalanches on Structures and Implication for Debris Flows. Journal of Hydraulic Research, 44(4): 522-534. https://doi.org/10.1080/00221686.2006.9521703
      [73] Zhang, B., Huang, Y., Liu, J., 2021. Micro-Mechanism and Efficiency of Baffle Structure in Deceleration of Granular Flows. Acta Geotechnica, 16(11): 3667-3688. https://doi.org/10.1007/s11440-021-01290-x
      [74] Zhang, S.C., 1993. A Comprehensive Approach to the Observation and Prevention of Debris Flows in China. Natural Hazards, 7(1): 1-23. https://doi.org/10.1007/bf00595676
      [75] Zhang, W., Li, H.Z., Chen, J.P., et al., 2011. Comprehensive Hazard Assessment and Protection of Debris Flows along Jinsha River Close to the Wudongde Dam Site in China. Natural Hazards, 58(1): 459-477. https://doi.org/10.1007/s11069-010-9680-9
      [76] Zheng, H.C., Shi, Z.M., de Haas, T., et al., 2022. Characteristics of the Impact Pressure of Debris Flows. Journal of Geophysical Research: Earth Surface, 127(3): e2021JF006488. https://doi.org/10.1029/2021jf006488
      [77] Zhou, G.D., Cui, P., Tang, J.B., et al., 2015. Experimental Study on the Triggering Mechanisms and Kinematic Properties of Large Debris Flows in Wenjia Gully. Engineering Geology, 194: 52-61. https://doi.org/10.1016/j.enggeo.2014.10.021
      [78] Zhuang, J.Q., Cui, P., Hu, K.H., et al., 2010. Characteristics of Earthquake-Triggered Landslides and Post-Earthquake Debris Flows in Beichuan County. Journal of Mountain Science, 7(3): 246-254. https://doi.org/10.1007/s11629-010-2016-0
      [79] Zhuang, J.Q., Cui, P., Peng, J.B., et al., 2013. Initiation Process of Debris Flows on Different Slopes Due to Surface Flow and Trigger-Specific Strategies for Mitigating Post-Earthquake in Old Beichuan County, China. Environmental Earth Sciences, 68(5): 1391-1403. https://doi.org/10.1007/s12665-012-1837-2
      [80] 柴波, 陶阳阳, 杜娟, 等, 2020. 西藏聂拉木县嘉龙湖冰湖溃决型泥石流危险性评价. 地球科学, 45(12): 4630-4639. doi: 10.3799/dqkx.2020.294
      [81] 费祥俊, 舒安平, 2004. 泥石流运动机理与灾害防治. 北京: 清华大学出版社, 26-32.
      [82] 侯儒宁, 李志, 陈宁生, 等, 2022. 基于流域单元和堆叠集成模型的天山地区泥石流易发性评估建模. 地球科学(待刊).
      [83] 刘翠容, 赵世刚, 2016. 泥石流阻塞大河机理试验研究. 重庆交通大学学报(自然科学版), 35(1): 90-95. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT201601018.htm
      [84] 石振明, 马小龙, 彭铭, 等, 2014. 基于大型数据库的堰塞坝特征统计分析与溃决参数快速评估模型. 岩石力学与工程学报, 33(9): 1780-1790. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201409008.htm
      [85] 石振明, 熊永峰, 彭铭, 等, 2016. 堰塞湖溃坝快速定量风险评估方法: 以2014年鲁甸地震形成的红石岩堰塞湖为例. 水利学报, 47(6): 742-751. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201606004.htm
      [86] 唐邦兴, 周必凡, 吴积善, 2000. 中国泥石流. 北京: 商务印书馆.
      [87] 王裕宜, 詹钱登, 严璧玉, 2014. 泥石流体的流变特性与运移特征. 长沙: 湖南科学技术出版社, 2-7.
      [88] 杨强根, 王晓蕊, 马维峰, 等, 2021. 基于微服务架构的地质灾害监测预警预报系统设计. 地球科学, 46(4): 1505-1517. doi: 10.3799/dqkx.2020.128
      [89] 余斌, 马煜, 吴雨夫, 2010a. 汶川地震后四川省绵竹市清平乡文家沟泥石流灾害调查研究. 工程地质学报, 18(6): 827-836. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201006003.htm
      [90] 余斌, 杨永红, 苏永超, 等, 2010b. 甘肃省舟曲8·7特大泥石流调查研究. 工程地质学报, 18(4): 437-444. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201004002.htm
    • 加载中
    图(7) / 表(1)
    计量
    • 文章访问数:  211
    • HTML全文浏览量:  124
    • PDF下载量:  71
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-30
    • 刊出日期:  2022-12-25

    目录

      /

      返回文章
      返回