Deep Structures and Lithospheric Breakup Processes at Northern Continent-Ocean Transition Zone of the South China Sea
-
摘要: 洋-陆过渡带是理解大陆岩石圈破裂和海底初始扩张的关键位置,但是在南海北部地区仍然存在关于相关地质过程的诸多疑问.通过近年开展的国际大洋发现计划航次以及深部地质地球物理探测,取得以下4个方面的认识.(1)南海北部的洋-陆边界一般与自由空间重力异常的正-负值过渡位置对应,而更加准确地限定需要结合反射、折射地震资料.稳定大洋岩石圈生成与大陆岩石圈最终破裂之间的洋-陆过渡边界的位置比以往认为的还应往深海盆方向移动.(2)洋-陆过渡带代表了远端带构造作用减弱和岩浆作用逐渐增强的区域.陆坡地壳发育扩张后岩浆底侵、洋-陆过渡带发育同破裂期岩浆喷出结构和侵入反射体.(3)在中生代的古俯冲带弧前区域,新生代的断裂沿着早期的构造开始活动,岩石圈多处发生强烈的共轭韧性剪切作用.随着大陆岩石圈的进一步拉伸减薄,部分靠陆一侧的裂谷中心停止张裂,成为夭折裂谷,以台西南盆地南部凹陷、白云凹陷、西沙海槽为代表,而南海陆缘异常伸展和最终破裂的地方集中在南侧裂谷中心.夭折裂谷下亦发现地幔蛇纹石化,进一步反映了较弱的同破裂岩浆活动.(4)南海初始洋壳的增生沿着大陆边缘走向具有显著的变化,南海东北部洋-陆过渡带下伏地幔明显抬升和部分蛇纹石化,地震纵、横波速度以及折射波衰减特征都支持此观点,反映南海东北部是一个贫岩浆型大陆边缘.未来,南海北部洋-陆过渡带有望成为南海“莫霍钻”的理想备选钻探区.Abstract: Continent-ocean transition zone is a key position to understand the breakup of continental lithosphere and the initial seafloor spreading processes, but some questions about related geological processes still remain controversial in the northern margin of the South China Sea (SCS) today. Four new perspectives have been acquired by International Ocean Discovery Program (IODP) and deep geological and geophysical surveys in recent years. (1) Spatially, the continent-ocean boundary generally corresponds to positive-negative transition zone of the free-air gravity anomaly, but more accurate delimitation needs to be calibrated with seismic reflection and refraction data. True continent-ocean boundary between steady oceanic lithosphere and final breakup point of continental lithosphere should be located further toward the oceanic basin by about 20 km on average than previous definitions. (2) The continent-ocean transition zone represents a region with gradually weakened tectonism and strengthened magmatism in the distal margin, where magma underplated the lower crust of the continental slope after cessation of seafloor spreading. (3) In forearc areas of Mesozoic paleo-subduction zone, Cenozoic faulting inherited from early structures was reactivated to generate strong conjugated ductile shear deformation in the lithosphere. With further thinning of the lithosphere, rift center on the continental side stopped stretching and evolved into failed rift, represented by the southern sag of the Taixinan basin, the Baiyun sag and the Xisha trough. The hyper-extended crust and final continental breakup focused on the rift axis in the southern branch of the two conjugated rifts. Serpentinized mantle is found beneath failed rift, further indicating relatively weak syn-rifting magmatism. (4) The accretion pattern of initial oceanic crust in the SCS has significant variations along the marginal trend. Evidenced by seismic P-and S-wave velocities and attenuation characteristics, deep mantle upwelling and serpentinization, along with syn-rifting eruptive magma and intrusive reflectors occurred in the continent-ocean boundary of the northeastern SCS. This indicates a magma-poor northeastern continental margin. The continent-ocean boundary of the SCS could be an ideal candidate site of Moho drilling in the future with its elevated Moho and extremely thinned crust.
-
Key words:
- South China Sea /
- continent-ocean transition /
- deep structure /
- continental breakup /
- seafloor spreading /
- seismic survey /
- tectonics
-
图 1 南海北部洋‒陆边界位置
圆圈数字1~5为标记的不同洋‒陆边界,分别据Taylor and Hayes, 1983;Briais et al., 1993;McIntosh et al., 2014;Song et al., 2019;Wen et al., 2021
Fig. 1. The distribution of continent-ocean boundary in the northern SCS
图 2 南海东北部洋‒陆过渡带的深部折射、反射成像结构
a~c.OBS2016-2折射剖面,修改自Hou et al., 2019;Wan et al., 2019;V1-3代表下地壳高速异常体;d.T1反射剖面,修改自Wen et al., 2021;位置见图 1
Fig. 2. The deep seismic refraction/reflection structure in the northeastern continent-ocean boundary
图 3 南海北部远端带岩石圈变形及夭折裂谷演化机制
a.中‒上地壳的韧性剪切变形,修改自Peng et al., 2022;b.地震解释及P波速度投影,修改自Liu et al., 2021;c.夭折裂谷的同张裂竞争型演化模式,修改自Li et al., 2020;位置见图 1
Fig. 3. The deformation of continental lithosphere in the distal domain of the northern SCS and the evolution mechanism of failed rifts
图 4 南海北部洋壳初始扩张沿走向的变化示意图
a.南海东北部蛇纹岩地幔代表的初始洋壳,修改自Wen et al., 2021;b,c.南海中北部岩浆侵入构造代表的初始洋壳,分别修改自Ding et al., 2020;Zhang et al., 2021;位置见图 1
Fig. 4. The along-strike variation of initial oceanic crust in the northern SCS margin
-
[1] Boillot, G., Grimaud, S., Mauffret, A., et al., 1980. Ocean-Continent Boundary off the Iberian Margin: A Serpentinite Diapir West of the Galicia Bank. Earth and Planetary Science Letters, 48(1): 23-34. https://doi.org/10.1016/0012-821x(80)90166-1 [2] Briais, A., Patriat, P., Tapponnier, P., 1993. Updated Interpretation of Magnetic Anomalies and Seafloor Spreading Stages in the South China Sea: Implications for the Tertiary Tectonics of Southeast Asia. Journal of Geophysical Research, 98(B4): 6299-6328. https://doi.org/10.1029/92jb02280 [3] Chao, P., Manatschal, G., Chenin, P., et al., 2021. The Tectono-Stratigraphic and Magmatic Evolution of Conjugate Rifted Margins: Insights from the NW South China Sea. Journal of Geodynamics, 148: 101877. https://doi.org/10.1016/j.jog.2021.101877 [4] Chen, H., Xie, X., Mao, K., et al., 2020. Depositional Characteristics and Formation Mechanisms of Deep-Water Canyon Systems along the Northern South China Sea Margin. Journal of Earth Science, 31(4): 808–819. https://doi.org/10.1007/s12583-020-1284-z [5] Childress, L., The Expedition 368X Scientists, 2019. Expedition 368X Preliminary Report: South China Sea Rifted Margin. International Ocean Discovery Program, College Station, Texas. https://doi.org/10.14379/iodp.pr.368X.2019 [6] Ding, W., Sun, Z., Mohn, G., et al., 2020. Lateral Evolution of the Rift-to-Drift Transition in the South China Sea: Evidence from Multi-Channel Seismic Data and IODP Expeditions 367 & 368 Drilling Results. Earth and Planetary Science Letters, 531: 115932. https://doi.org/10.1016/j.epsl.2019.115932 [7] Ding, W.W., 2021. Continental Margin Dynamics of South China Sea: From Continental Break-up to Seafloor Spreading. Earth Science, 46(3): 790-800 (in Chinese with English abstract). [8] Eagles, G., Pérez-Díaz, L., Scarselli, N., 2015. Getting over Continent Ocean Boundaries. Earth-Science Reviews, 151: 244-265. https://doi.org/10.1016/j.earscirev.2015.10.009 [9] Expedition 349 Scientists, 2014. South China Sea Tectonics: Opening of the South China Sea and Its Implications for Southeast Asian Tectonics, Climates, and Deep Mantle Processes since the Late Mesozoic. International Ocean Discovery Program Preliminary Report, College Station, Texas. https://doi.org/10.14379/iodp.pr.349.2014 [10] Fan, C., Xia, S., Cao, J., et al., 2020. Seismic Constraints on a Remnant Mesozoic Forearc Basin in the Northeastern South China Sea. Gondwana Research, 102: 77-94. https://doi.org/10.1016/j.gr.2020.10.006 [11] Gao, J., Wu, S., McIntosh, K., et al., 2015. The Continent-Ocean Transition at the Mid-Northern Margin of the South China Sea. Tectonophysics, 654: 1-19. https://doi.org/10.1016/j.tecto.2015.03.003 [12] Hou, W., Li, C.F., Wan, X., et al., 2019. Crustal S-Wave Velocity Structure across the Northeastern South China Sea Continental Margin: Implications for Lithology and Mantle Exhumation. Earth and Planetary Physics, 3 (4): 314-329. https://doi.org/10.26464/epp2019033 [13] Hsu, S. K., Yeh, Y. C., Doo, W. B., et al., 2004. New Bathymetry and Magnetic Lineations Identifications in the Northernmost South China Sea and Their Tectonic Implications. Marine Geophysical Researches, 25(1/2): 29-44. https://doi.org/10.1007/s11001-005-0731-7 [14] Huang, H., Klingelhoefer, F., Qiu, X., et al., 2021. Seismic Imaging of an Intracrustal Deformation in the Northwestern Margin of the South China Sea: The Role of a Ductile Layer in the Crust. Tectonics, 40(2): e2020TC006260. https://doi.org/10.1029/2020TC006260 [15] Ildefonse, B., Abe, N., Blackman, D. K., et al., 2010. The Mohole: A Crustal Journey and Mantle Quest, Workshop in Kanazawa, Japan, 3‒5 June 2010. Scientific Drilling, 10: 56-63. https://doi.org/10.5194/sd-10-56-2010 [16] Jian, Z., Larsen, H.C., Zarikian, C.A., et al., 2018. Expedition 368 Preliminary Report: South China Sea Rifted Margin. International Ocean Discovery Program, College Station, Texas. https://doi.org/10.14379/iodp.pr.368.2018 [17] Kelemen, P. B., Koga, K., Shimizu, N., 1997. Geochemistry of Gabbro Sills in the Crust-Mantle Transition Zone of the Oman Ophiolite: Implications for the Origin of the Oceanic Lower Crust. Earth and Planetary Science Letters, 146 (3-4): 475-488. https://doi.org/10.1016/s0012-821x(96)00235-x [18] Larsen, H.C., Mohn, G., Nirrengarten, M., et al., 2018. Rapid Transition from Continental Breakup to Igneous Oceanic Crust in the South China Sea. Nature Geoscience, 11(10): 782-789. https://doi.org/10.1038/s41561-018-0198-1 [19] Lei, C., Ren, J., 2016. Hyper-Extended Rift Systems in the Xisha Trough, Northwestern South China Sea: Implications for Extreme Crustal Thinning ahead of a Propagating Ocean. Tectonophysics, 77: 846-864. https://doi.org/10.1016/j.marpetgeo.2016.07.022 [20] Li, C.F., Clift, P., Sun, Z., et al., 2019. Starting a New Ocean and Stopping It. Oceanography, 32 (1): 153-156. https://doi.org/10.5670/oceanog.2019.138 [21] Li, C.F., Li, J., Ding, W., et al., 2015. Seismic Stratigraphy of the Central South China Sea Basin and Implications for Neotectonics. Journal of Geophysical Research: Solid Earth, 120(3): 1377-1399. https://doi.org/10.1002/2014JB011686 [22] Li, C.F., Li, Z.K., Li, Y.Q., et al., 2020. Large Geological Differences between the East and Southwest Subbasins of the South China Sea. Science & Technology Review, 38(18): 40-45 (in Chinese with English abstract). [23] Li, C. F., Song, T. R., 2012. Magnetic Recording of the Cenozoic Oceanic Crustal Accretion and Evolution of the South China Sea Basin. Chinese Science Bulletin, 57(24): 3165-3181. https://doi.org/10.1007/s11434-012-5063-9 [24] Li, C.F., Xu, X., Lin, J., et al., 2014. Ages and Magnetic Structures of the South China Sea Constrained by Deep Tow Magnetic Surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15 (12): 4958-4983. https://doi.org/10.1002/2014GC005567 [25] Li, C.F., Zhou, D., Li, G., et al., 2021. Geodynamic Problems in the Western Pacific and Future Scientific Drill Targets. Earth Science, 46(3): 759-769 (in Chinese with English abstract). [26] Li, C.F., Zhou, Z., Hao, H., et al., 2008. Late Mesozoic Tectonic Structure and Evolution along the Present-Day Northeastern South China Sea Continental Margin. Journal of Asian Earth Sciences, 31(4-6): 546-561. https://doi.org/10.1016/j.jseaes.2007.09.004 [27] Li, Y., Abbas, A., Li, C. F., et al., 2020. Numerical Modeling of Failed Rifts in the Northern South China Sea Margin: Implications for Continental Rifting and Breakup. Journal of Asian Earth Sciences, 199: 104402. https://doi.org/10.1016/j.jseaes.2020.104402 [28] Lin, J., Li, J.B., Xu, Y.G., et al., 2019. Ocean Drilling and Major Advances in Marine Geological and Geophysical Research of the South China Sea. Acta Oceanologica Sinica, 41(10): 125-140 (in Chinese with English abstract). doi: 10.3969/j.issn.0253-4193.2019.10.009 [29] Liu, Y. T., Li, C. F., Wen, Y. L., et al., 2021. Mantle Serpentinization beneath a Failed Rift and Post-Spreading Magmatism in the Northeastern South China Sea Margin. Geophysical Journal International, 225(2): 811-828. https://doi.org/10.1093/gji/ggab006 [30] McIntosh, K., Lavier, L., van Avendonk, H., et al., 2014. Crustal Structure and Inferred Rifting Processes in the Northeast South China Sea. Marine and Petroleum Geology, 58: 612-626. https://doi.org/10.1016/j.marpetgeo.2014.03.012 [31] Nissen, S.S., Hayes, D.E., Buhl, P., et al., 1995. Deep Penetration Seismic Soundings across the Northern Margin of the South China Sea. Journal of Geophysical Research, 100 (B11): 22407-22433. https://doi.org/10.1029/95jb01866 [32] Peng, X., Li, C. F., Shen, C., et al., 2022. Intra-Basement Structures and Their Implications for Rifting of the Northeastern South China Sea Margin. Journal of Asian Earth Sciences, 225: 105073. https://doi.org/10.1016/j.jseaes.2021.105073 [33] Péron-Pinvidic, G., Manatschal, G., 2009. The Final Rifting Evolution at Deep Magma-Poor Passive Margins from Iberia-Newfoundland: A New Point of View. International Journal of Earth Sciences, 98(7): 1581-1597. https://doi.org/10.1007/s00531-008-0337-9 [34] Prada, M., Sallares, V., Ranero, C. R., et al., 2015. The Complex 3-D Transition from Continental Crust to Backarc Magmatism and Exhumed Mantle in the Central Tyrrhenian Basin. Geophysical Journal International, 203(1): 63-78. https://doi.org/10.1093/gji/ggv271 [35] Ren, J.Y., Pang, X., Lei, C., et al., 2015. Ocean and Continent Transition in Passive Continental Margins and Analysis of Lithospheric Extension and Breakup Process: Implication for Research of the Deepwater Basins in the Continental Margins of South China Sea. Earth Science Frontiers, 22(1): 102-114 (in Chinese with English abstract). [36] Song, T., Li, C. F., Wu, S., et al., 2019. Extensional Styles of the Conjugate Rifted Margins of the South China Sea. Journal of Asian Earth Sciences, 177: 117-128. https://doi.org/10.1016/j.jseaes.2019.03.008 [37] Sun, Z., Lin, J., Qiu, N., et al., 2019. The Role of Magmatism in the Thinning and Breakup of the South China Sea Continental Margin Special Topic: The South China Sea Ocean Drilling. National Science Review, 6(5): 871-876. https://doi.org/10.1093/nsr/nwz116 [38] Sun, Z., Stock, J., Klaus, A., et al., 2018. Expedition 367 Preliminary Report: South China Sea Rifted Margin. International Ocean Discovery Program, College Station, Texas. https://doi.org/10.14379/iodp.pr.367.2018 [39] Tang, F.G., Liu, Y.T., Li, G., et al., 2022. Attenuation Characteristics of Refracted Seismic Wave in the Continent-Ocean Transition Zone of the Northeastern South China Sea. Chinese Journal of Geophysics, in press (in Chinese). [40] Taylor, B., Hayes, D.E., 1983. Origin and History of the South China Sea Basin. In: Hayes, D. E., ed., The Tectonic and Geologic Evolution of the Southeast Asian Seas and Islands: Part 2. Geophysical Monograph Series 27, AGU, Washington, D.C., 23-56. https://doi.org/10.1029/GM027p0023 [41] Wan, X., Li, C. F., Zhao, M., et al., 2019. Seismic Velocity Structure of the Magnetic Quiet Zone and Continent‐Ocean Boundary in the Northeastern South China Sea. Journal of Geophysical Research: Solid Earth, 124 (11): 11866-11899. https://doi.org/10.1029/2019jb017785 [42] Wang, P. X., Huang, C. Y., Lin, J., et al., 2019. The South China Sea is not a Mini-Atlantic: Plate-Edge Rifting vs Intra-Plate Rifting. National Science Review, 6(5): 902-913. https://doi.org/10.1093/nsr/nwz135 [43] Wang, T.K., Chen, M. K., Lee, C. S., et al., 2006. Seismic Imaging of the Transitional Crust across the Northeastern Margin of the South China Sea. Tectonophysics, 412 (3-4): 237-254. https://doi.org/10.1016/j.tecto.2005.10.039 [44] Wei, X.D., Ruan, A.G., Zhao, M.H., et al., 2011. A Wide-Angle OBS Profile across Dongsha Uplift and Chaoshan Depression in the Mid-Northern South China Sea. Chinese Journal of Geophysics, 54(12): 3325-3335 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5733.2011.12.030 [45] Wen, Y., Li, C. F., Wang, L., et al., 2021. The Onset of Seafloor Spreading at the Northeastern Continent-Ocean Boundary of the South China Sea. Marine and Petroleum Geology, 133: 105255. https://doi.org/10.1016/j.marpetgeo.2021.105255 [46] Yan, P., Zhou, D., Liu, Z., 2001. A Crustal Structure Profile across the Northern Continental Margin of the South China Sea. Tectonophysics, 338 (1): 1-21. https://doi.org/10.1016/s0040-1951(01)00062-2 [47] Zhang, C., Manatschal, G., Pang, X., et al., 2020. Discovery of Mega‐Sheath Folds Flooring the Liwan Subbasin (South China Sea): Implications for the Rheology of Hyperextended Crust. Geochemistry, Geophysics, Geosystems, 21: e2020GC009023. https://doi.org/10.1029/2020GC009023 [48] Zhang, C., Sun, Z., Manatschal, G., et al., 2021. Ocean-Continent Transition Architecture and Breakup Mechanism at the Mid-Northern South China Sea. Earth-Science Reviews, 217: 103620. https://doi.org/10.1016/j.earscirev.2021.103620 [49] Zhao, Y., Ding, W., Ren, J., et al., 2021. Extension Discrepancy of the Hyper-Thinned Continental Crust in the Baiyun Rift, Northern Margin of the South China Sea. Tectonics, 40 (5): e2020TC006547. https://doi.org/10.1029/2020TC006547 [50] Zhong, L.F., Cai, G.Q., Koppers, A.A.P., et al., 2018. 40Ar/39Ar Dating of Oceanic Plagiogranite: Constraints on the Initiation of Seafloor Spreading in the South China Sea. Lithos, 302-303: 421-426. https://doi.org/10.1016/j.lithos.2018.01.018 [51] Zhou, D., Wang, W. Y., Wang, J. L., et al., 2006. Mesozoic Subduction-Accretion Zone in Northeastern South China Sea Inferred from Geophysical Interpretations. Science in China (Series D: Earth Sciences), 49(5): 471-482. https://doi.org/10.1007/s11430-006-0471-9 [52] Zhou, Z., Mei, L., Liu, J., et al., 2018. Continentward-Dipping Detachment Fault System and Asymmetric Rift Structure of the Baiyun Sag, Northern South China Sea. Tectonophysics, 726: 121-136. https://doi.org/10.1016/j.tecto.2018.02.002 [53] Zhu, J., Qiu, X., Kopp, H., et al., 2012. Shallow Anatomy of a Continent-Ocean Transition Zone in the Northern South China Sea from Multichannel Seismic Data. Tectonophysics, 554-557: 18-29. https://doi.org/10.1016/j.tecto.2012.05.027 [54] 丁巍伟, 2021. 南海大陆边缘动力学: 从陆缘破裂到海底扩张. 地球科学, 46(3): 790-800. doi: 10.3799/dqkx.2020.303 [55] 李春峰, 李志康, 李亚清, 等, 2020. 南海海盆东‒西部地质特征存在巨大差异. 科技导报, 38(18): 40-45. [56] 李春峰, 周多, 李刚, 等, 2021. 西太平洋地球动力学问题与未来大洋钻探目标. 地球科学, 46(3): 759-769. doi: 10.3799/dqkx.2020.356 [57] 林间, 李家彪, 徐义刚, 等, 2019. 南海大洋钻探及海洋地质与地球物理前沿研究新突破. 海洋学报, 41(10): 125-140. https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201910008.htm [58] 任建业, 庞雄, 雷超, 等, 2015. 被动陆缘洋陆转换带和岩石圈伸展破裂过程分析及其对南海陆缘深水盆地研究的启示. 地学前缘, 22(1): 102-114. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201501011.htm [59] 唐福贵, 刘宇涛, 李刚, 等, 2022. 南海东北部洋陆过渡区域地震折射波衰减特征. 地球物理学报, 待刊. [60] 卫小冬, 阮爱国, 赵明辉, 等, 2011. 穿越东沙隆起和潮汕坳陷的OBS广角地震剖面. 地球物理学报, 54(12): 3325-3335. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201112032.htm