Recent Advances in U-Th-Pb Dating of Accessory Minerals by Laser Ablation Inductively Coupled Plasma Mass Spectrometry
-
摘要: 激光剥蚀电感耦合等离子体质谱(LA-ICP-MS)副矿物U-Th-Pb定年技术为精确厘定地质演化历史、探讨成岩成矿等重要地质作用过程提供重要的时间参数,是地质年代学快速发展的重要技术支撑.总结了LA-ICP-MS副矿物U-Th-Pb定年技术在元素分馏校正、非基体匹配分析、标准样品研发、普通铅校正、高空间分辨率及高效率分析等方面取得的重要进展.展望未来,需更进一步深入探讨和研究元素分馏及基体效应机理,研发更多种类的高质量副矿物标样,建立更多更准确、更精密、更高空间分辨率及更高效的LA-ICP-MS副矿物U-Th-Pb定年新方法和新技术,以实现从更微观和更精细的角度探讨地质问题,并持续为高效解决地球与行星科学研究领域重大科学问题提供关键支撑.
-
关键词:
- 激光剥蚀电感耦合等离子体质谱 /
- U-Th-Pb年代学 /
- 元素分馏 /
- 基体效应 /
- 标准样品 /
- 普通铅校正 /
- 年代学
Abstract: Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) U-Th-Pb dating technique provides crucial temporal constraints to accurately determine geological evolution history and explore important geological processes such as diagenesis and mineralization, which is an important technical support for the rapid development of geochronology. In this study, it summarizes the important progress of LA-ICP-MS U-Th-Pb dating technique in elemental fractionation correction, non-matrix matched analysis, reference material development, common lead correction, high spatial resolution and high efficiency analysis. Looking into the future, further investigations on the mechanism of elemental fractionation and matrix effect, characterization of more kinds of high-quality reference materials, and development of more accurate, more precise, and more efficient LA-ICP-MS U-Th-Pb dating methods with higher spatial resolution are needed. These new established methods and techniques will help the geoscientists investigate the geological problems from a more microscopic and delicate perspective, and those will continue to provide critical supports for the advances and innovations in earth and planetary science research.-
Key words:
- LA-ICP-MS /
- U-Th-Pb geochronology /
- elemental fractionation /
- matrix effect /
- reference material /
- common-Pb correction /
- chronology
-
图 2 LA-ICP-MS分析过程中元素分馏及基体效应示意图(a)和193 nm准分子激光ns-LA-ICP-MS分析不同副矿物时Pb/U比值瞬时信号图(b)
Fig. 2. Schematic diagram of elemental fractionation and matrix effect in LA-ICP-MS analysis (a) and time- resolved Pb/U ratio of different accessory minerals analyzed with 193 nm excimer ns-LA-ICP-MS (b)
-
[1] Aleinikoff, J. N., Schenck, W. S., Plank, M. O., et al., 2006. Deciphering Igneous and Metamorphic Events in High-Grade Rocks of the Wilmington Complex, Delaware: Morphology, Cathodoluminescence and Backscattered Electron Zoning, and SHRIMP U-Pb Geochronology of Zircon and Monazite. GSA Bulletin, 118(1-2): 39-64. https://doi.org/10.1130/B25659.1 [2] Alexandre, P., Kyser, K., Thomas, D., et al., 2007. Geochronology of Unconformity-Related Uranium Deposits in the Athabasca Basin, Saskatchewan, Canada and Their Integration in the Evolution of the Basin. Mineralium Deposita, 44(1): 41-59. https://doi.org/10.1007/s00126-007-0153-3 [3] Allen, C. M., Campbell, I. H., 2012. Identification and Elimination of a Matrix-Induced Systematic Error in LA-ICP-MS 206Pb/238U Dating of Zircon. Chemical Geology, 332-333: 157-165. https://doi.org/10.1016/j.chemgeo.2012.09.038 [4] Amelin, Y., Back, M., 2006. Opal as a U-Pb Geochronometer: Search for a Standard. Chemical Geology, 232(1-2): 67-86. https://doi.org/10.1016/j.chemgeo.2006.02.018 [5] Amelin, Y., Zaitsev, A. N., 2002. Precise Geochronology of Phoscorites and Carbonatites: The Critical Role of U- Series Disequilibrium in Age Interpretations. Geochimica et Cosmochimica Acta, 66(13): 2399-2419. https://doi.org/10.1016/S0016-7037(02)00831-1 [6] Andersen, T., 2002. Correction of Common Lead in U-Pb Analyses That do not Report 204Pb. Chemical Geology, 192(1-2): 59-79. https://doi.org/10.1016/S0009-2541(02)00195-X [7] Apen, F. E., Wall, C. J., Cottle, J. M., et al., 2022. Apatites for Destruction: Reference Apatites from Morocco and Brazil for U-Pb Petrochronology and Nd and Sr Isotope Geochemistry. Chemical Geology, 590: 120689. https://doi.org/10.1016/j.chemgeo.2021.120689 [8] Axelsson, E., Pape, J., Berndt, J., et al., 2018. Rutile R632-A New Natural Reference Material for U-Pb and Zr Determination. Geostandards and Geoanalytical Research, 42(3): 319-338. https://doi.org/10.1111/ggr.12213 [9] Bao, Z. A., Yuan, H. L., Zong, C. L., et al., 2016. Simultaneous Determination of Trace Elements and Lead Isotopes in Fused Silicate Rock Powders Using a Boron Nitride Vessel and fsLA-(MC)-ICP-MS. Journal of Analytical Atomic Spectrometry, 31(4): 1012-1022. https://doi.org/10.1039/C5JA00410A [10] Barth, S., Oberli, F., Meier, M., 1994. Th-Pb versus U-Pb Isotope Systematics in Allanite from Co-Genetic Rhyolite and Granodiorite: Implications for Geochronology. Earth and Planetary Science Letters, 124(1-4): 149-159. https://doi.org/10.1016/0012-821X(94)00073-5 [11] Bayanova, T., 2006. Baddeleyite: A Promising Geochronometer for Alkaline and Basic Magmatism. Petrology, 14(2): 187-200. https://doi.org/10.1134/S0869591106020032 [12] Black, L. P., Kamo, S. L., Allen, C. M., et al., 2003a. TEMORA 1: A New Zircon Standard for Phanerozoic U-Pb Geochronology. Chemical Geology, 200(1-2): 155-170. https://doi.org/10.1016/S0009-2541(03)00165-7 [13] Black, L. P., Kamo, S. L., Williams, I. S., et al., 2003b. The Application of SHRIMP to Phanerozoic Geochronology: A Critical Appraisal of Four Zircon Standards. Chemical Geology, 200(1-2): 171-188. https://doi.org/10.1016/S0009-2541(03)00166-9 [14] Black, L. P., Kamo, S. L., Allen, C. M., et al., 2004. Improved 206Pb/238U Microprobe Geochronology by the Monitoring of a Trace-Element-Related Matrix Effect; SHRIMP, ID-TIMS, ELA-ICP-MS and Oxygen Isotope Documentation for a Series of Zircon Standards. Chemical Geology, 205(1-2): 115-140. https://doi.org/10.1016/j.chemgeo.2004.01.003 [15] Bracciali, L., Parrish, R. R., Horstwood, M. S., et al., 2013. U-Pb LA-(MC)-ICP-MS Dating of Rutile: New Reference Materials and Applications to Sedimentary Provenance. Chemical Geology, 347: 82-101. https://doi.org/10.1016/j.chemgeo.2013.03.013 [16] Budzyń, B., Sláma, J., Corfu, F., et al., 2021. TS-Mnz-A New Monazite Age Reference Material for U-Th-Pb Microanalysis. Chemical Geology, 572: 120195. https://doi.org/10.1016/j.chemgeo.2021.120195 [17] Burisch, M., Gerdes, A., Walter, B. F., et al., 2017. Methane and the Origin of Five-Element Veins: Mineralogy, Age, Fluid Inclusion Chemistry and Ore Forming Processes in the Odenwald, SW Germany. Ore Geology Reviews, 81: 42-61. https://doi.org/10.1016/j.oregeorev.2016.10.033 [18] Burn, M., Lanari, P., Pettke, T., et al., 2017. Non-Matrix-Matched Standardisation in LA-ICP-MS Analysis: General Approach, and Application to Allanite Th-U-Pb Dating. Journal of Analytical Atomic Spectrometry, 32(7): 1359-1377. https://doi.org/10.1039/C7JA00095B [19] Carr, P. A., Mercadier, J., Harlaux, M., et al., 2021. U/Pb Geochronology of Wolframite by LA-ICP-MS: Mineralogical Constraints, Analytical Procedures, Data Interpretation, and Comparison with ID-TIMS. Chemical Geology, 584: 120511. https://doi.org/10.1016/j.chemgeo.2021.120511 [20] Chang, Z. S., Vervoort, J. D., McClelland, W. C., et al., 2006. U-Pb Dating of Zircon by LA-ICP-MS. Geochemistry, Geophysics, Geosystems, 7(5): Q05009. https://doi.org/10.1029/2005GC001100 [21] Che, X., Nemchin, A., Liu, D., et al., 2021. Age and Composition of Young Basalts on the Moon, Measured from Samples Returned by Chang'e-5. Science, 374(6569): 887-890. https://doi.org/10.1126/science.abl7957 [22] Che, X. D., Wu, F. Y., Wang, R. C., et al., 2015. In Situ U-Pb Isotopic Dating of Columbite-Tantalite by LA- ICP-MS. Ore Geology Reviews, 65: 979-989. https://doi.org/10.1016/j.oregeorev.2014.07.008 [23] Chen, Y., Hu, Z. C., Jia, L. H., et al., 2021. Progress of Microbeam Analytical Technologies in the Past Decade (2011-2020) and Prospect. Bulletin of Mineralogy, Petrology and Geochemistry, 40(1): 1-35 (in Chinese with English abstract). [24] Cheng, T., Zhao, J. X., Feng, Y. X., et al., 2020. In-Situ LA-MC-ICPMS U-Pb Dating Method for Low-Uranium Carbonate Minerals. Chinese Science Bulletin, 65 (2-3): 150-154. https://doi.org/10.1360/TB-2019-0355 [25] Cheong, A. C. S., Jeong, Y. J., Lee, S., et al., 2019. LKZ-1: A New Zircon Working Standard for the In Situ Determination of U-Pb Age, O-Hf Isotopes, and Trace Element Composition. Minerals, 9(5): 325. https://doi.org/10.3390/min9050325 [26] Chew, D., Drost, K., Petrus, J. A., 2019. Ultrafast, > 50 Hz LA-ICP-MS Spot Analysis Applied to U-Pb Dating of Zircon and Other U-Bearing Minerals. Geostandards and Geoanalytical Research, 43(1): 39-60. https://doi.org/10.1111/ggr.12257 [27] Chew, D. M., Sylvester, P. J., Tubrett, M. N., 2011. U-Pb and Th-Pb Dating of Apatite by LA-ICPMS. Chemical Geology, 280(1): 200-216. https://doi.org/10.1016/j.chemgeo.2010.11.010 [28] Claoué-Long, J. C., Compston, W., Roberts, J., et al., 1995. Two Carboniferous Ages: A Comparison of SHRIMP Zircon Dating with Conventional Zircon Ages and 40Ar/39Ar Analysis. Special Publications of SEPM, 54: 3-21. https://doi.org/10.1016/j.chemgeo.2010.11.010 [29] Claverie, F., Hubert, A., Berail, S., et al., 2016. Improving Precision and Accuracy of Isotope Ratios from Short Transient Laser Ablation-Multicollector-Inductively Coupled Plasma Mass Spectrometry Signals: Application to Micrometer-Size Uranium Particles. Analytical Chemistry, 88(8): 4375-4382. https://doi.org/10.1021/acs.analchem.5b04802 [30] Condon, D. J., Schoene, B., McLean, N. M., et al., 2015. Metrology and Traceability of U-Pb Isotope Dilution Geochronology (EARTHTIME Tracer Calibration Part I). Geochimica et Cosmochimica Acta, 164: 464-480. https://doi.org/10.1016/j.gca.2015.05.026 [31] Condon, D. J., Whitehouse, M. J., Horstwood, M. S., 2021. U-Th-Pb Geochronology. In: Selley, R. C., Cocks, I. R. M., Plimer, I. R., eds., Encyclopedia of Geology (2nd Edition). Elsevier, Amsterdam, 26-49. https://doi.org/10.1016/B978-0-08-102908-4.00166-1 [32] Corbett, E. P., Simonetti, A., Shaw, P., et al., 2020. Shallow Sampling by Multi-Shot Laser Ablation and Its Application within U-Pb Zircon Geochronology. Chemical Geology, 544: 119568. https://doi.org/10.1016/j.chemgeo.2020.119568 [33] Cottle, J., Horstwood, M., Parrish, R. R., 2009. A New Approach to Single Shot Laser Ablation Analysis and Its Application to In Situ Pb/U Geochronology. Journal of Analytical Atomic Spectrometry, 24(10): 1355-1363. https://doi.org/10.1039/B821899D [34] Cottle, J. M., Kylander-Clark, A. R., Vrijmoed, J. C., 2012. U-Th/Pb Geochronology of Detrital Zircon and Monazite by Single Shot Laser Ablation Inductively Coupled Plasma Mass Spectrometry (SS-LA-ICPMS). Chemical Geology, 332: 136-147. https://doi.org/10.1016/j.chemgeo.2012.09.035 [35] Coulson, I. M., Villeneuve, M. E., Dipple, G. M., et al., 2002. Time-Scales of Assembly and Thermal History of a Composite Felsic Pluton: Constraints from the Emerald Lake Area, Northern Canadian Cordillera, Yukon. Journal of Volcanology and Geothermal Research, 114(3-4): 331-356. https://doi.org/10.1016/S0377-0273(01)00294-3 [36] Courtney-Davies, L., Zhu, Z. Y., Ciobanu, C. L., et al., 2016. Matrix-Matched Iron-Oxide Laser Ablation ICP-MS U-Pb Geochronology Using Mixed Solution Standards. Minerals, 6(3): 85. https://doi.org/10.3390/min6030085 [37] Cox, R. A., Wilton, D. H. C., 2006. U-Pb Dating of Perovskite by LA-ICP-MS: An Example from the Oka Carbonatite, Quebec, Canada. Chemical Geology, 235(1-2): 21-32. https://doi.org/10.1016/j.chemgeo.2006.06.002 [38] Craig, G., Horstwood, M. S., Reid, H. J., et al., 2020. 'Blind Time'-Current Limitations on Laser Ablation Multi-Collector Inductively Coupled Plasma Mass Spectrometry (LA-MC-ICP-MS) for Ultra-Transient Signal Isotope Ratio Analysis and Application to Individual Sub-Micron Sized Uranium Particles. Journal of Analytical Atomic Spectrometry, 35(5): 1011-1021. https://doi.org/10.1039/D0JA00066C [39] Crowley, Q. G., Heron, K., Riggs, N., et al., 2014. Chemical Abrasion Applied to LA-ICP-MS U-Pb Zircon Geochronology. Minerals, 4(2): 503-518. https://doi.org/10.3390/min4020503 [40] Cui, Y. R., Tu, J. R., Chen, F., et al., 2017. The Reseach Advances in LA-(MC)-ICP-MS U-Pb Dating of Cassiterite. Acta Geologica Sinica, 91(6): 1386-1399 (in Chinese with English abstract). [41] Davis, D. W., Rochín-Bañaga, H., 2021. A New Bayesian Approach toward Improved Regression of Low-Count U-Pb Geochronology Data Generated by LA-ICPMS. Chemical Geology, 582: 120454. https://doi.org/10.1016/j.chemgeo.2021.120454 [42] Deng, X. D., Li, J. W., Luo, T., et al., 2017. Dating Magmatic and Hydrothermal Processes Using Andradite-Rich Garnet U-Pb Geochronometry. Contributions to Mineralogy and Petrology, 172(9): 1-11. https://doi.org/10.1007/s00410-017-1389-2 [43] Drost, K., Chew, D., Petrus, J. A., et al., 2018. An Image Mapping Approach to U-Pb LA-ICP-MS Carbonate Dating and Applications to Direct Dating of Carbonate Sedimentation. Geochemistry, Geophysics, Geosystems, 19(12): 4631-4648. https://doi.org/10.1029/2018GC007850 [44] Eddy, M. P., Ibañez-Mejia, M., Burgess, S. D., et al., 2019. GHR 1 Zircon-A New Eocene Natural Reference Material for Microbeam U-Pb Geochronology and Hf Isotopic Analysis of Zircon. Geostandards and Geoanalytical Research, 43(1): 113-132. https://doi.org/10.1111/ggr.12246 [45] Eggins, S. M., Kinsley, L. P. J., Shelley, J. M. G., 1998. Deposition and Element Fractionation Processes during Atmospheric Pressure Laser Sampling for Analysis by ICP-MS. Applied Surface Science, 127-129: 278-286. https://doi.org/10.1016/S0169-4332(97)00643-0 [46] El Korh, A., 2013. Ablation Behavior and Constraints on the U-Pb and Th-Pb Geochronometers in Titanite Analyzed by Quadrupole Inductively Coupled Plasma Mass Spectrometry Coupled to a 193 nm Excimer Laser. Spectrochimica Acta Part B: Atomic Spectroscopy, 86: 75-87. https://doi.org/10.1016/j.sab.2013.04.009 [47] El Korh, A., 2014. Ablation Behaviour of Allanites during U-Th-Pb Dating Using a Quadrupole ICP-MS Coupled to a 193 nm Excimer Laser. Chemical Geology, 371: 46-59. https://doi.org/10.1016/j.chemgeo.2014.01.021 [48] Fanka, A., Kasiban, C., Tsunogae, T., et al., 2021. Petrochemistry and Zircon U-Pb Geochronology of Felsic Xenoliths in Late Cenozoic Gem-Related Basalt from Bo Phloi Gem Field, Kanchanaburi, Western Thailand. Journal of Earth Science, 32(4): 1035-1052. https://doi.org/10.1007/s12583-020-1347-1 [49] Feng, R., Machado, N., Ludden, J., 1993. Lead Geochronology of Zircon by Laser Probe-Inductively Coupled Plasma Mass Spectrometry (LP-ICPMS). Geochimica et Cosmochimica Acta, 57(14): 3479-3486. https://doi.org/10.1016/0016-7037(93)90553-9 [50] Feng, Y. T., Zhang, W., Hu, Z. C., et al., 2022. A New Analytical Mode and Application of the Laser Ablation Inductively Coupled Plasma Mass Spectrometer in the Earth Sciences. Science China Earth Sciences, 65(1): 182-196. https://doi.org/10.1007/s11430-021-9827-2 [51] Fernández, B., Claverie, F., Pécheyran, C., et al., 2007. Direct Analysis of Solid Samples by fs-LA-ICP-MS. TrAC Trends in Analytical Chemistry, 26(10): 951-966. https://doi.org/10.1016/j.trac.2007.08.008 [52] Fietzke, J., Liebetrau, V., Günther, D., et al., 2008. An Alternative Data Acquisition and Evaluation Strategy for Improved Isotope Ratio Precision Using LA-MC-ICP-MS Applied to Stable and Radiogenic Strontium Isotopes in Carbonates. Journal of Analytical Atomic Spectrometry, 23(7): 955-961. https://doi.org/10.1039/B717706B [53] Fisher, C. M., Bauer, A. M., Luo, Y., et al., 2020. Laser Ablation Split-Stream Analysis of the Sm-Nd and U-Pb Isotope Compositions of Monazite, Titanite, and Apatite-Improvements, Potential Reference Materials, and Application to the Archean Saglek Block Gneisses. Chemical Geology, 539: 119493. https://doi.org/10.1016/j.chemgeo.2020.119493 [54] Fletcher, I. R., McNaughton, N. J., Aleinikoff, J. A., et al., 2004. Improved Calibration Procedures and New Standards for U-Pb and Th-Pb Dating of Phanerozoic Xenotime by Ion Microprobe. Chemical Geology, 209(3-4): 295-314. https://doi.org/10.1016/j.chemgeo.2004.06.015 [55] Fryer, B. J., Jackson, S. E., Longerich, H. P., 1993. The Application of Laser Ablation Microprobe-Inductively Coupled Plasma-Mass Spectrometry (LAM-ICP-MS) to In Situ U-Pb Geochronology. Chemical Geology, 109(1): 1-8. https://doi.org/10.1016/0009-2541(93)90058-Q [56] Gain, S. E., Gréau, Y., Henry, H., et al., 2019. Mud Tank Zircon: Long-Term Evaluation of a Reference Material for U-Pb Dating, Hf-Isotope Analysis and Trace Element Analysis. Geostandards and Geoanalytical Research, 43(3): 339-354. https://doi.org/10.1111/ggr.12265 [57] Gehrels, G. E., Valencia, V. A., Ruiz, J., 2008. Enhanced Precision, Accuracy, Efficiency, and Spatial Resolution of U-Pb Ages by Laser Ablation-Multicollector- Inductively Coupled Plasma-Mass Spectrometry. Geochemistry, Geophysics, Geosystems, 9(3): Q03017. https://doi.org/10.1029/2007GC001805 [58] Gilbert, S. E., Glorie, S., 2020. Removal of Hg Interferences for Common Pb Correction When Dating Apatite and Titanite by LA-ICP-MS/MS. Journal of Analytical Atomic Spectrometry, 35(7): 1472-1481. https://doi.org/10.1039/D0JA00224K [59] Gonçalves, G. O., Lana, C., Scholz, R., et al., 2018. The Diamantina Monazite: A New Low-Th Reference Material for Microanalysis. Geostandards and Geoanalytical Research, 42(1): 25-47. https://doi.org/10.1111/ggr.12192 [60] Goudie, D. J., Fisher, C. M., Hanchar, J. M., et al., 2014. Simultaneous In Situ Determination of U-Pb and Sm-Nd Isotopes in Monazite by Laser Ablation ICP-MS. Geochemistry, Geophysics, Geosystems, 15(6): 2575-2600. https://doi.org/10.1002/2014GC005431 [61] Gregory, C. J., Rubatto, D., Allen, C. M., et al., 2007. Allanite Micro-Geochronology: A LA-ICP-MS and SHRIMP U-Th-Pb Study. Chemical Geology, 245(3-4): 162-182. doi: 10.1016/j.chemgeo.2007.07.029 [62] Guillong, M., Wotzlaw, J. F., Looser, N., et al., 2020. Evaluating the Reliability of U-Pb Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) Carbonate Geochronology: Matrix Issues and a Potential Calcite Validation Reference Material. Geochronology, 2(1): 155-167. https://doi.org/10.5194/gchron-2-155-2020 [63] Günther, D., Hattendorf, B., 2005. Solid Sample Analysis Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry. TrAC Trends in Analytical Chemistry, 24(3): 255-265. https://doi.org/10.1016/j.trac.2004.11.017 [64] Hattori, K., Sakata, S., Tanaka, M., et al., 2017. U-Pb Age Determination for Zircons Using Laser Ablation-ICP-Mass Spectrometry Equipped with Six Multiple-Ion Counting Detectors. Journal of Analytical Atomic Spectrometry, 32(1): 88-95. https://doi.org/10.1039/C6JA00311G [65] Heaman, L. M., 2009. The Application of U-Pb Geochronology to Mafic, Ultramafic and Alkaline Rocks: An Evaluation of Three Mineral Standards. Chemical Geology, 261(1-2): 43-52. https://doi.org/10.1016/j.chemgeo.2008.10.021 [66] Hergenröder, R., Samek, O., Hommes, V., 2006. Femtosecond Laser Ablation Elemental Mass Spectrometry. Mass Spectrometry Reviews, 25(4): 551-572. https://doi.org/10.1002/mas.20077 [67] Hill, C. A., Polyak, V. J., Asmerom, Y., et al., 2016. Constraints on a Late Cretaceous Uplift, Denudation, and Incision of the Grand Canyon Region, Southwestern Colorado Plateau, USA, from U-Pb Dating of Lacustrine Limestone. Tectonics, 35(4): 896-906. https://doi.org/10.1002/2016TC004166 [68] Hirata, T., 1997. Ablation Technique for Laser Ablation- Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 12(11): 1337-1342. https://doi.org/10.1039/A704169A [69] Hirata, T., Iizuka, T., Orihashi, Y., 2005. Reduction of Mercury Background on ICP-Mass Spectrometry for In Situ U-Pb Age Determinations of Zircon Samples. Journal of Analytical Atomic Spectrometry, 20(8): 696-701. https://doi.org/10.1039/B504153H [70] Hirata, T., Nesbitt, R. W., 1995. U-Pb Isotope Geochronology of Zircon: Evaluation of the Laser Probe-Inductively Coupled Plasma Mass Spectrometry Technique. Geochimica et Cosmochimica Acta, 59(12): 2491-2500. https://doi.org/10.1016/0016-7037(95)00144-1 [71] Hoareau, G., Claverie, F., Pecheyran, C., et al., 2021. Direct U-Pb Dating of Carbonates from Micron-Scale Femtosecond Laser Ablation Inductively Coupled Plasma Mass Spectrometry Images Using Robust Regression. Geochronology, 3(1): 67-87. https://doi.org/10.5194/gchron-3-67-2021 [72] Horn, I., Rudnick, R. L., McDonough, W. F., 2000. Precise Elemental and Isotope Ratio Determination by Simultaneous Solution Nebulization and Laser Ablation-ICP-MS: Application to U-Pb Geochronology. Chemical Geology, 164(3): 281-301. https://doi.org/10.5194/gchron-3-67-2021 [73] Horstwood, M. S., Foster, G. L., Parrish, R. R., et al., 2003. Common-Pb Corrected In Situ U-Pb Accessory Mineral Geochronology by LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 18(8): 837-846. https://doi.org/10.1039/B304365G [74] Horstwood, M. S. A., Košler, J., Gehrels, G., et al., 2016. Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology-Uncertainty Propagation, Age Interpretation and Data Reporting. Geostandards and Geoanalytical Research, 40(3): 311-332. https://doi.org/10.1111/j.1751-908X.2016.00379.x [75] Hou, Z. H., Xiao, Y. L., Shen, J., et al., 2020. In Situ Rutile U-Pb Dating Based on Zircon Calibration Using LA-ICP-MS, Geological Applications in the Dabie Orogen, China. Journal of Asian Earth Sciences, 192: 104261. https://doi.org/10.1016/j.jseaes.2020.104261 [76] Hu, Z., Zhang, W., Liu, Y., et al., 2015. "Wave" Signal-Smoothing and Mercury-Removing Device for Laser Ablation Quadrupole and Multiple Collector ICPMS Analysis: Application to Lead Isotope Analysis. Anal. Chem., 87(2): 1152-1157. https://doi.org/10.1021/ac503749k [77] Hu, Z. C., Li, X. H., Luo, T., et al., 2021. Tanz Zircon Megacrysts: A New Zircon Reference Material for the Microbeam Determination of U-Pb Ages and Zr-O Isotopes. Journal of Analytical Atomic Spectrometry, 36(12): 2715-2734. https://doi.org/10.1039/D1JA00311A [78] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2008. A Local Aerosol Extraction Strategy for the Determination of the Aerosol Composition in Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 23(9): 1192-1203. https://doi.org/10.1039/B803934H [79] Hu, Z. C., Liu, Y. S., Gao, S., et al., 2012. A "Wire" Signal Smoothing Device for Laser Ablation Inductively Coupled Plasma Mass Spectrometry Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy, 78: 50-57. https://doi.org/10.1016/j.sab.2012.09.007 [80] Huang, C., Wang, H., Yang, J. H., et al., 2020. SA01-A Proposed Zircon Reference Material for Microbeam U-Pb Age and Hf-O Isotopic Determination. Geostandards and Geoanalytical Research, 44(1): 103-123. https://doi.org/10.1111/ggr.12307 [81] Huang, C., Wang, H., Yang, J. H., et al., 2021. Characterization of the Potential Reference Material SA02 for Micro-Beam U-Pb Geochronology and Hf-O Isotopic Composition Analysis of Zircon. Journal of Analytical Atomic Spectrometry, 36(2): 368-374. https://doi.org/10.1039/D0JA00409J [82] Huang, C., Yang, Y. H., Yang, J. H., et al., 2015. In Situ Simultaneous Measurement of Rb-Sr/Sm-Nd or Sm-Nd/Lu-Hf Isotopes in Natural Minerals Using Laser Ablation Multi-Collector ICP-MS. Journal of Analytical Atomic Spectrometry, 30(4): 994-1000. https://doi.org/10.1039/C4JA00449C [83] Ibanez-Mejia, M., Gehrels, G. E., Ruiz, J., et al., 2014. Small-Volume Baddeleyite (ZrO2) U-Pb Geochronology and Lu-Hf Isotope Geochemistry by LA-ICP-MS. Techniques and Applications. Chemical Geology, 384: 149-167. https://doi.org/10.1016/j.chemgeo.2014.07.011 [84] Iwano, H., Hirata, T., Hosoi, J., et al., 2021. Single-Pulse Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry U-Pb Dating of Thin Zircon Rims: An Application to Metamorphic Rocks from Mount Everest, Eastern Nepal. Chemical Geology, 559: 119903. https://doi.org/10.1016/j.chemgeo.2020.119903 [85] Jackson, S. E., Pearson, N. J., Griffin, W. L., et al., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to In Situ U-Pb Zircon Geochronology. Chemical Geology, 211(1): 47-69. https://doi.org/10.1016/j.chemgeo.2004.06.017 [86] Jeon, H., Whitehouse, M. J., 2015. A Critical Eevaluation of U-Pb Calibration Schemes Used in SIMS Zircon Geochronology. Geostandards and Geoanalytical Research, 39: 443-452. https://doi.org/10.1111/j.1751-908X.2014.00325.x [87] Johnston, S., Gehrels, G., Valencia, V., et al., 2009. Small-Volume U-Pb Zircon Geochronology by Laser Ablation-Multicollector-ICP-MS. Chemical Geology, 259(3-4): 218-229. https://doi.org/10.1016/j.chemgeo.2008.11.004 [88] Kahou, Z. S., Brichau, S., Poujol, M., et al., 2021. First U-Pb LA-ICP-MS In Situ Dating of Supergene Copper Mineralization: Case Study in the Chuquicamata Mining District, Atacama Desert, Chile. Mineralium Deposita, 56(2): 239-252. https://doi.org/10.1007/s00126-020-00960-2 [89] Kelly, C. J., McFarlane, C. R., Schneider, D. A., et al., 2014. Dating Micrometre-Thin Rims Using a LA-ICP-MS Depth Profiling Technique on Zircon from an Archaean Metasediment: Comparison with the SIMS Depth Profiling Method. Geostandards and Geoanalytical Research, 38(4): 389-407. https://doi.org/10.1111/j.1751-908X.2014.00314.x [90] Kennedy, A. K., Kamo, S. L., Nasdala, L., et al., 2010. Grenville Skarn Titanite: Potential Reference Material for SIMS U-Th-Pb Analysis. The Canadian Mineralogist, 48(6): 1423-1443. https://doi.org/10.3749/canmin.48.5.1423 [91] Kennedy, A. K., Wotzlaw, J. F., Schaltegger, U., et al., 2014. Eocene Zircon Reference Material for Microanalysis of U-Th-Pb Isotopes and Trace Elements. The Canadian Mineralogist, 52(3): 409-421. https://doi.org/10.3749/canmin.52.3.409 [92] Klötzli, E., Klötzli, U., Kosler, J., 2007. A Possible Laser Ablation Xenotime U-Pb Age Standard: Reproducibility and Accuracy. Geochimica et Cosmochimica Acta, 71(15S): A495. [93] Klötzli, U., Klötzli, E., Günes, Z., et al., 2009. Accuracy of Laser Ablation U-Pb Zircon Dating: Results from a Test Using Five Different Reference Zircons. Geostandards and Geoanalytical Research, 33(1): 5-15. https://doi.org/10.1111/j.1751-908X.2009.00921.x [94] Koch, J., Feldmann, I., Jakubowski, N., et al., 2002. Elemental Composition of Laser Ablation Aerosol Particles Deposited in the Transport Tube to an ICP. Spectrochimica Acta Part B: Atomic Spectroscopy, 57(5): 975-985. https://doi.org/10.1016/S0584-8547(02)00021-6 [95] Koch, J., Lindner, H., von Bohlen, A., et al., 2005. Elemental Fractionation of Dielectric Aerosols Produced by Near-Infrared Femtosecond Laser Ablation of Silicate Glasses. Journal of Analytical Atomic Spectrometry, 20(9): 901-906. https://doi.org/10.1039/B503137K [96] Koch, J., von Bohlen, A., Hergenröder, R., et al., 2004. Particle Size Distributions and Compositions of Aerosols Produced by Near-IR Femto- and Nanosecond Laser Ablation of Brass. Journal of Analytical Atomic Spectrometry, 19(2): 267-272. https://doi.org/10.1039/B310512A [97] Kooijman, E., Berndt, J., Mezger, K., 2012. U-Pb Dating of Zircon by Laser Ablation ICP-MS: Recent Improvements and New Insights. European Journal of Mineralogy, 24(1): 5-21. https://doi.org/10.1127/0935-1221/2012/0024-2170 [98] Košler, J., Fonneland, H., Sylvester, P., et al., 2002. U-Pb Dating of Detrital Zircons for Sediment Provenance Studies-A Comparison of Laser Ablation ICPMS and SIMS Techniques. Chemical Geology, 182(2-4): 605-618. https://doi.org/10.1016/S0009-2541(01)00341-2 [99] Košler, J., Sláma, J., Belousova, E., et al., 2013. U-Pb Detrital Zircon Analysis-Results of an Inter-Laboratory Comparison. Geostandards and Geoanalytical Research, 37(3): 243-259. https://doi.org/10.1111/j.1751-908X.2013.00245.x [100] Košler, J., Sylvester, P. J., 2003. Present Trends and the Future of Zircon in Geochronology: Laser Ablation ICPMS. Reviews in Mineralogy, 53(1): 243-275. https://doi.org/10.2113/0530243 [101] Košler, J., Tubrett, M. N., Sylvester, P. J., 2001. Application of Laser Ablation ICP-MS to U-Th-Pb Dating of Monazite. Geostandards and Geoanalytical Research, 25(2-3): 375-386. https://doi.org/10.1111/j.1751-908X.2001.tb00612.x [102] Košler, J., Wiedenbeck, M., Wirth, R., et al., 2005. Chemical and Phase Composition of Particles Produced by Laser Ablation of Silicate Glass and Zircon—Implications for Elemental Fractionation during ICP-MS Analysis. Journal of Analytical Atomic Spectrometry, 20(5): 402-409. https://doi.org/10.1039/B416269B [103] Krestianinov, E., Amelin, Y., Neymark, L. A., et al., 2021. U-Pb Systematics of Uranium-Rich Apatite from Adirondacks: Inferences about Regional Geological and Geochemical Evolution, and Evaluation of Apatite Reference Materials for In Situ Dating. Chemical Geology, 581: 120417. https://doi.org/10.1016/j.chemgeo.2021.120417 [104] Kuhn, B. K., Birbaum, K., Luo, Y., et al., 2010. Fundamental Studies on the Ablation Behaviour of Pb/U in NIST 610 and Zircon 91500 Using Laser Ablation Inductively Coupled Plasma Mass Spectrometry with Respect to Geochronology. Journal of Analytical Atomic Spectrometry, 25(1): 21-27. https://doi.org/10.1039/B917261K [105] Kuhn, H. R., Guillong, M., Günther, D., 2004. Size- Related Vaporisation and Ionisation of Laser-Induced Glass Particles in the Inductively Coupled Plasma. Analytical and Bioanalytical Chemistry, 378(4): 1069-1074. https://doi.org/10.1007/s00216-003-2346-7 [106] Lenoir, L., Blaise, T., Somogyi, A., et al., 2021. Uranium Incorporation in Fluorite and Exploration of U-Pb Dating. Geochronology, 3(1): 199-227. https://doi.org/10.5194/gchron-3-199-2021 [107] Li, D. F., Fu, Y., Hollings, P., et al., 2022. PL57 Garnet as a New Natural Reference Material for In Situ U-Pb Isotope Analysis and Its Perspective for Geological Applications. Contributions to Mineralogy and Petrology, 177(2): 1-18. https://doi.org/10.1007/s00410-021-01884-4 [108] Li, H. K., Geng, J. Z., Hao, S., et al., 2009. Determination of U-Pb Ages of Zircon by LA-MC-ICPMS. Acta Mineralogica Sinica, 29(S1): 600-601 (in Chinese). [109] Li, Q. L., Huyskens, M. H., Yang, Y. H., et al., 2020. Bastnaesite K-9: A Homogenous Natural Reference Material for In-Situ U-Pb and Th-Pb Dating. Atomic Spectroscopy, 41: 218-222. https://doi.org/10.46770/AS.2020.06.001 [110] Li, Q. L., Li, X. H., Wu, F. Y., et al., 2012. In-Situ SIMS U-Pb Dating of Phanerozoic Apatite with Low U and High Common Pb. Gondwana Research, 21(4): 745-756. https://doi.org/10.1016/j.gr.2011.07.008 [111] Li, Q. L., Parrish, R., Horstwood, M., et al., 2014. U-Pb Dating of Cements in Mesozoic Ammonites. Chemical Geology, 376: 76-83. https://doi.org/10.1016/j.chemgeo.2014.03.020 [112] Li, Q. L., Zhou, Q., Liu, Y., et al., 2021. Two-Billion-Year-Old Volcanism on the Moon from Chang'e-5 Basalts. Nature, 600(7887): 54-58. https://doi.org/10.1038/s41586-021-04100-2 [113] Li, X. H., Li, Y., Li, Q. L., et al., 2022. Progress and Prospects of Radiometric Geochronology. Acta Geologica Sinica, 96(1): 104-122 (in Chinese with English abstract). [114] Li, X. H., Liang, X. R., Sun, M., et al., 2000. Geochronology and Geochemistry of Single-Grain Zircons: Simultaneous In-Situ Analysis of U-Pb Age and Trace Elements by LAM-ICP-MS. European Journal of Mineralogy, 12(5): 1015-1024. https://doi.org/10.1127/0935-1221/2000/0012-1015 [115] Li, X. H., Liang, X. R., Sun, M., et al., 2001. Precise 206Pb/238U Age Determination on Zircons by Laser Ablation Microprobe-Inductively Coupled Plasma-Mass Spectrometry Using Continuous Linear Ablation. Chemical Geology, 175(3-4): 209-219. https://doi.org/10.1016/S0009-2541(00)00394-6 [116] Li, X. H., Liu, X. M., Liu, Y. S., et al., 2015a. Accuracy of LA-ICPMS Zircon U-Pb Age Determination: An Inter-Laboratory Comparison. Science China Earth Sciences, 58(10): 1722-1730. https://doi.org/10.1007/s11430-015-5110-x [117] Li, Z., Hu, Z. C., Liu, Y. S., et al., 2015b. Accurate Determination of Elements in Silicate Glass by Nanosecond and Femtosecond Laser Ablation ICP-MS at High Spatial Resolution. Chemical Geology, 400: 11-23. https://doi.org/10.1016/j.chemgeo.2015.02.004 [118] Li, X. H., Liu, Y., Li, Q. L., et al., 2009. Precise Determination of Phanerozoic Zircon Pb/Pb Age by Multicollector SIMS without External Standardization. Geochemistry, Geophysics, Geosystems, 10(4): Q04010. https://doi.org/10.1029/2009GC002400 [119] Li, X. H., Long, W. G., Li, Q. L., et al., 2010. Penglai Zircon Megacrysts: A Potential New Working Reference Material for Microbeam Determination of Hf-O Isotopes and U-Pb Age. Geostandards and Geoanalytical Research, 34(2): 117-134. https://doi.org/10.1111/j.1751-908X.2010.00036.x [120] Li, X. H., Tang, G. Q., Gong, B., et al., 2013. Qinghu Zircon: A Working Reference for Microbeam Analysis of U-Pb Age and Hf and O Isotopes. Chinese Science Bulletin, 58(36): 4647-4654. https://doi.org/10.1007/s11434-013-5932-x [121] Li, Y. G., Wang, S. S., Liu, M. W., et al., 2015. U-Pb Dating Study of Baddeleyite by LA-ICP-MS: Technique and Application. Acta Geologica Sinica, 89(12): 2400-2418 (in Chinese with English abstract). [122] Liang, X. R., Li, X. H., Sun, M., et al., 1999. Simultaneously In-Situ Analysis of Trace Elements and U-Pb and Pb-Pb Ages for Single Zircons by Laser Ablation Microprobe-Inductively Coupled Plasma Mass Spectrometry. Chemistry Letters, 28(7): 639-640. https://doi.org/10.1246/cl.1999.639 [123] Lin, M., Zhang, G. B., Li, N., et al., 2021. An Improved In Situ Zircon U-Pb Dating Method at High Spatial Resolution (≤ 10 μm Spot) by LA-MC-ICP-MS and Its Application. Geostandards and Geoanalytical Research, 45(2): 265-285. https://doi.org/10.1111/ggr.12374 [124] Ling, X. X., Huyskens, M. H., Li, Q. L., et al., 2017. Monazite RW-1: A Homogenous Natural Reference Material for SIMS U-Pb and Th-Pb Isotopic Analysis. Mineralogy and Petrology, 111(2): 163-172. https://doi.org/10.1007/s00710-016-0478-7 [125] Ling, X. X., Li, Q. L., Huyskens, M. H., et al., 2022a. Matrix Effects and Improved Calibration Procedures for SIMS Titanite U-Pb Dating. Chemical Geology, 593: 120755. https://doi.org/10.1016/j.chemgeo.2022.120755 [126] Ling, X. X., Li, Q. L., Yang, C., et al., 2022b. Zircon ZS-A Homogenous Natural Reference Material for U-Pb Age and O-Hf Isotope Microanalyses. Atomic Spectroscopy, 43(2): 134-144. https://doi.org/10.46770/AS.2022.033 [127] Liu, X. M., Gao, S., Yuan, H. L., et al., 2007. Simultaneous Determination of U-Pb Ages and Trace Elements at a Spot Size of 20 μm by LA-ICP-MS. Chinese Science Bulletin, 52(2): 228-235 (in Chinese). doi: 10.1360/csb2007-52-2-228 [128] Liu, Y., Li, X. H., Li, Q. L., et al., 2011a. Precise U-Pb Zircon Dating at a Scale of < 5 Micron by the CAMECA 1280 SIMS Using a Gaussian Illumination Probe. Journal of Analytical Atomic Spectrometry, 26(4): 845-851. https://doi.org/10.1039/C0JA00113A [129] Liu, Z. C., Wu, F. Y., Guo, C. L., et al., 2011b. In Situ U-Pb Dating of Xenotime by Laser Ablation (LA)-ICP-MS. Chinese Science Bulletin, 56(27): 2948-2956. https://doi.org/10.1007/s11434-011-4657-y [130] Liu, Y., Li, X. H., Li, Q. L., et al., 2020. Breakthrough of 2- to 3-μm Scale U-Pb Zircon Dating Using Cameca IMS-1280HR SIMS. Surface and Interface Analysis, 52(5): 214-223. https://doi.org/10.1002/sia.6752 [131] Liu, Y. S., Hu, Z. C., Li, M., et al., 2013. Applications of LA-ICP-MS in the Elemental Analyses of Geological Samples. Chinese Science Bulletin, 58(36): 3753-3769 (in Chinese). doi: 10.1360/csb2013-58-36-3753 [132] Liu, Y. S., Hu, Z. C., Zong, K. Q., et al., 2010. Reappraisement and Refinement of Zircon U-Pb Isotope and Trace Element Analyses by LA-ICP-MS. Chinese Science Bulletin, 55(15): 1535-1546. https://doi.org/10.1007/s11434-010-3052-4 [133] Liu, Y. S., Qu, W. J., Qi, L., et al., 2021. Advances and Perspectives of Researches on Rock and Mineral Analyses in China (2011-2020). Bulletin of Mineralogy, Petrology and Geochemistry, 40(3): 515-539 (in Chinese with English abstract). [134] Liu, Z. C., Wu, F. Y., Yang, Y. H., et al., 2012. Neodymium Isotopic Compositions of the Standard Monazites Used in U-Th-Pb Geochronology. Chemical Geology, 334: 221-239. https://doi.org/10.1016/j.chemgeo.2012.09.034 [135] Luo, T., 2018. Further Investigation of Elemental Fractionation in LA-ICP-MS: Implications for Non-Matrix-Matched Analysis of the In Situ U-Pb Dating of Accessory Minerals (Dissertation). China University of Geosciences, Wuhan (in Chinese with English abstract). [136] Luo, T., Deng, X. D., Li, J. W., et al., 2019. U-Pb Geochronology of Wolframite by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 34(7): 1439-1446. https://doi.org/10.1039/C9JA00139E [137] Luo, T., Hu, Z. C., Zhang, W., et al., 2018a. Reassessment of the Influence of Carrier Gases He and Ar on Signal Intensities in 193 nm Excimer LA-ICP-MS Analysis. Journal of Analytical Atomic Spectrometry, 33(10): 1655-1663. https://doi.org/10.1039/C8JA00163D [138] Luo, T., Hu, Z., Zhang, W., et al., 2018b. Water Vapor-Assisted "Universal" Nonmatrix-Matched Analytical Method for the In Situ U-Pb Dating of Zircon, Monazite, Titanite, and Xenotime by Laser Ablation- Inductively Coupled Plasma Mass Spectrometry. Analytical Chemistry, 90(15): 9016-9024. https://doi.org/10.1021/acs.analchem.8b01231 [139] Luo, T., Li, Q. L., Ling, X. X., et al., 2021a. Jilin Zircon-A New Natural Reference Material for Microbeam U-Pb Geochronology and Hf-O Isotopic Analysis. Journal of Analytical Atomic Spectrometry, 36(10): 2216-2226. https://doi.org/10.1039/D1JA00258A [140] Luo, T., Zhao, H., Zhang, W., et al., 2021b. Non- Matrix-Matched Analysis of U-Th-Pb Geochronology of Bastnäsite by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Science China Earth Sciences, 64(4): 667-676. https://doi.org/10.1007/s11430-020-9715-1 [141] Luo, T., Wang, Y., Hu, Z. C., et al., 2015. Further Investigation into ICP-Induced Elemental Fractionation in LA-ICP-MS Using a Local Aerosol Extraction Strategy. Journal of Analytical Atomic Spectrometry, 30(4): 941-949. https://doi.org/10.1039/C4JA00483C [142] Luo, T., Zhao, H., Li, Q. L., et al., 2020. Non-Matrix-Matched Determination of Th-Pb Ages in Zircon, Monazite and Xenotime by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 44(4): 653-668. https://doi.org/10.1111/ggr.12356 [143] Luvizotto, G., Zack, T., Meyer, H., et al., 2009. Rutile Crystals as Potential Trace Element and Isotope Mineral Standards for Microanalysis. Chemical Geology, 261(3-4): 346-369. https://doi.org/10.1016/j.chemgeo.2008.04.012 [144] Lv, N., Chen, K. Y., Bao, Z. A., et al., 2021. Non-Matrix-Matched 9 μm U-Pb Dating of Zircon Using Excimer Laser Ablation ICP-MS. Atomic Spectroscopy, 42(2): 51-61. https://doi.org/10.46770/AS.2021.010 [145] Ma, Q., Evans, N. J., Ling, X. X., et al., 2019. Natural Titanite Reference Materials for In Situ U-Pb and Sm-Nd Isotopic Measurements by LA-(MC)-ICP-MS. Geostandards and Geoanalytical Research, 43(3): 355-384. https://doi.org/10.1111/ggr.12264 [146] Mai, Y. J., Zhu, L. D., Yang, W. G., et al., 2021. Zircon U-Pb and Hf Isotopic Composition of Permian Felsic Tuffs in Southeastern Margin of Lhasa, Tibet. Earth Science, 46(11): 3880-3891 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2020.397 [147] Mank, A. G., Mason, P. D., 1999. A Critical Assessment of Laser Ablation ICP-MS as an Analytical Tool for Depth Analysis in Silica-Based Glass Samples. Journal of Analytical Atomic Spectrometry, 14(8): 1143-1153. https://doi.org/10.1039/A903304A [148] Marillo-Sialer, E., Woodhead, J., Hanchar, J. M., et al., 2016. An Investigation of the Laser-Induced Zircon 'Matrix Effect'. Chemical Geology, 438: 11-24. https://doi.org/10.1016/j.chemgeo.2016.05.014 [149] Marillo-Sialer, E., Woodhead, J., Hergt, J., et al., 2014. The Zircon 'Matrix Effect': Evidence for an Ablation Rate Control on the Accuracy of U-Pb Age Determinations by LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 29(6): 981-989. https://doi.org/10.1039/C4JA00008K [150] Mazoz, A., Gonçalves, G. O., Lana, C., et al., 2022. Khan River and Bear Lake: Two Natural Titanite Reference Materials for High-Spatial Resolution U-Pb Microanalysis. Geostandards and Geoanalytical Research. https://doi.org/10.1111/ggr.12444 [151] Mcfarlane, C. R. M., 2016. Allanite U-Pb Geochronology by 193 nm LA ICP-MS Using NIST610 Glass for External Calibration. Chemical Geology, 438: 91-102. https://doi.org/10.1016/j.chemgeo.2016.05.026 [152] McLean, N. M., Condon, D. J., Schoene, B., et al., 2015. Evaluating Uncertainties in the Calibration of Isotopic Reference Materials and Multi-Element Isotopic Tracers (EARTHTIME Tracer Calibration Part II). Geochimica et Cosmochimica Acta, 164: 481-501. https://doi.org/10.1016/j.gca.2015.02.040 [153] Mukherjee, P. K., Souders, A. K., Sylvester, P. J., 2019. Accuracy and Precision of U-Pb Zircon Geochronology at High Spatial Resolution (7-20 μm Spots) by Laser Ablation-ICP-Single-Collector-Sector-Field-Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 34(1): 180-192. https://doi.org/10.1039/C8JA00321A [154] Nasdala, L., Corfu, F., Schoene, B., et al., 2018. GZ7 and GZ8-Two Zircon Reference Materials for SIMS U-Pb Geochronology. International Journal of Pediatrics & Adolescent Medicine, 42(4): 431-457. https://doi.org/10.1111/ggr.12239 [155] Nasdala, L., Corfu, F., Valley, J. W., et al., 2016. Zircon M127-A Homogeneous Reference Material for SIMS U-Pb Geochronology Combined with Hafnium, Oxygen and, Potentially, Lithium Isotope Analysis. Geostandards Geoanalytical Research, 40(4): 457-475. https://doi.org/10.1111/ggr.12123 [156] Nasdala, L., Hofmeister, W., Norberg, N., et al., 2008. Zircon M257-A Homogeneous Natural Reference Material for the Ion Microprobe U-Pb Analysis of Zircon. Geostandards and Geoanalytical Research, 32(3): 247-265. https://doi.org/10.1111/j.1751-908X.2008.00914.x [157] Nasdala, L., Reiners, P. W., Garver, J. I., et al., 2004. Incomplete Retention of Radiation Damage in Zircon from Sri Lanka. American Mineralogist, 89(1): 219-231. https://doi.org/10.2138/am-2004-0126 [158] Nuriel, P., Wotzlaw, J. F., Ovtcharova, M., et al., 2021. The Use of ASH-15 Flowstone as a Matrix-Matched Reference Material for Laser-Ablation U-Pb Geochronology of Calcite. Geochronology, 3(1): 35-47. https://doi.org/10.5194/gchron-3-35-2021 [159] Paces, J. B., Miller Jr, J. D., 1993. Precise U-Pb Ages of Duluth Complex and Related Mafic Intrusions, Northeastern Minnesota: Geochronological Insights to Physical, Petrogenetic, Paleomagnetic, and Tectonomagmatic Processes Associated with the 1.1 Ga Midcontinent Rift System. Journal of Geophysical Research: Solid Earth, 98(B8): 13997-14013. https://doi.org/10.1029/93JB01159 [160] Paquette, J. L., Tiepolo, M., 2007. High Resolution (5 μm) U-Th-Pb Isotope Dating of Monazite with Excimer Laser Ablation (ELA)-ICPMS. Chemical Geology, 240(3-4): 222-237. https://doi.org/10.1016/j.chemgeo.2007.02.014 [161] Paton, C., Woodhead, J. D., Hellstrom, J. C., et al., 2010. Improved Laser Ablation U-Pb Zircon Geochronology through Robust Downhole Fractionation Correction. Geochemistry, Geophysics, Geosystems, 11(3): Q0AA06. https://doi.org/10.1029/2009GC002618 [162] Pettit, B. S., Blum, M., Pecha, M., et al., 2019. Detrital-Zircon U-Pb Paleodrainage Reconstruction and Geochronology of the Campanian Blackhawk-Castlegate Succession, Wasatch Plateau and Book Cliffs, Utah, USA. Journal of Sedimentary Research, 89(4): 273-292. https://doi.org/10.2110/jsr.2019.18 [163] Peverelli, V., Ewing, T., Rubatto, D., et al., 2021. U-Pb Geochronology of Epidote by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) as a Tool for Dating Hydrothermal-Vein Formation. Geochronology, 3(1): 123-147. https://doi.org/10.5194/gchron-3-123-2021 [164] Roberts, N. M., Rasbury, E. T., Parrish, R. R., et al., 2017. A Calcite Reference Material for LA-ICP-MS U-Pb Geochronology. Geochemistry, Geophysics, Geosystems, 18(7): 2807-2814. https://doi.org/10.1002/2016GC006784 [165] Rochín-Bañaga, H., Davis, D. W., Schwennicke, T., 2021. First U-Pb Dating of Fossilized Soft Tissue Using a New Approach to Paleontological Chronometry. Geology, 49(9): 1027-1031. https://doi.org/10.1130/G48386.1 [166] Rubatto, D., Putlitz, B., Gauthiez-Putallaz, L., et al., 2014. Measurement of In-Situ Oxygen Isotope Ratios in Monazite by SHRIMP Ion Microprobe: Standards, Protocols and Implications. Chemical Geology, 380: 84-96. https://doi.org/10.1016/j.chemgeo.2014.04.029 [167] Santos, M. M., Lana, C., Scholz, R., et al., 2017. A New Appraisal of Sri Lankan BB Zircon as a Reference Material for LA-ICP-MS U-Pb Geochronology and Lu-Hf Isotope Tracing. Geostandards and Geoanalytical Research, 41(3): 335-358. https://doi.org/10.1111/ggr.12167 [168] Schaltegger, U., Schmitt, A., Horstwood, M., 2015. U-Th-Pb Zircon Geochronology by ID-TIMS, SIMS, and Laser Ablation ICP-MS: Recipes, Interpretations, and Opportunities. Chemical Geology, 402: 89-110. https://doi.org/10.1016/j.chemgeo.2015.02.028 [169] Schmitz, M. D., Bowring, S. A., 2001. U-Pb Zircon and Itanite Systematics of the Fish Canyon Tuff: An Assessment of High-Precision U-Pb Geochronology and Its Application to Young Volcanic Rocks. Geochimica et Cosmochimica Acta, 65(15): 2571-2587. https://doi.org/10.1016/S0016-7037(01)00616-0 [170] Schoene, B., 2014. 4.10-U-Th-Pb Geochronology. Treatise on Geochemistry (2nd Edition), 4: 341-378. https://doi.org/10.1016/B978-0-08-095975-7.00310-7 [171] Schoene, B., Crowley, J. L., Condon, D. J., et al., 2006. Reassessing the Uranium Decay Constants for Geochronology Using ID-TIMS U-Pb data. Geochimica et Cosmochimica Acta, 70(2): 426-445. https://doi.org/10.1016/j.gca.2005.09.007 [172] Seman, S., Stockli, D., McLean, N., 2017. U-Pb Geochronology of Grossular-Andradite Garnet. Chemical Geology, 460: 106-116. https://doi.org/10.1016/j.chemgeo.2017.04.020 [173] Sláma, J., Košler, J., Condon, D. J., et al., 2008. Plešovice Zircon-A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology, 249(1-2): 1-35. https://doi.org/10.1016/j.chemgeo.2007.11.005 [174] Sliwinski, J. T., Guillong, M., Liebske, C., et al., 2017. Improved Accuracy of LA-ICP-MS U-Pb Ages of Cenozoic Zircons by Alpha Dose Correction. Chemical Geology, 472: 8-21. https://doi.org/10.1016/j.chemgeo.2017.09.014 [175] Smye, A. J., Roberts, N. M., Condon, D. J., et al., 2014. Characterising the U-Th-Pb Systematics of Allanite by ID and LA-ICPMS: Implications for Geochronology. Geochimica et Cosmochimica Acta, 135: 1-28. https://doi.org/10.1016/j.gca.2014.03.021 [176] Söderlund, U., Patchett, P. J., Vervoort, J. D., et al., 2004. The 176Lu Decay Constant Determined by Lu-Hf and U-Pb Isotope Systematics of Precambrian Mafic Intrusions. Earth and Planetary Science Letters, 219(3-4): 311-324. https://doi.org/10.1016/S0012-821X(04)00012-3 [177] Spandler, C., Hammerli, J., Sha, P., et al., 2016. MKED1: A New Titanite Standard for In Situ Analysis of Sm-Nd Isotopes and U-Pb Geochronology. Chemical Geology, 425: 110-126. https://doi.org/10.1016/j.chemgeo.2016.01.002 [178] Stacey, J., Kramers, J., 1975. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth and Planetary Science Letters, 26(2): 207-221. https://doi.org/10.1016/0012-821X(75)90088-6 [179] Stearns, M., Cottle, J., Hacker, B., et al., 2016. Extracting Thermal Histories from the Near-Rim Zoning in Titanite Using Coupled U-Pb and Trace-Element Depth Profiles by Single-Shot Laser-Ablation Split Stream (SS-LASS) ICP-MS. Chemical Geology, 422: 13-24. https://doi.org/10.1016/j.chemgeo.2015.12.011 [180] Steely, A. N., Hourigan, J. K., Juel, E., 2014. Discrete Multi-Pulse Laser Ablation Depth Profiling with a Single-Collector ICP-MS: Sub-Micron U-Pb Geochronology of Zircon and the Effect of Radiation Damage on Depth- Dependent Fractionation. Chemical Geology, 372: 92-108. https://doi.org/10.1016/j.chemgeo.2014.02.021 [181] Stern, R. A., Bodorkos, S., Kamo, S. L., et al., 2009. Measurement of SIMS Instrumental Mass Fractionation of Pb Isotopes during Zircon Dating. Geostandards and Geoanalytical Research, 33(2): 145-168. https://doi.org/10.1111/j.1751-908X.2009.00023.x [182] Storey, C. D., Jeffries, T. E., Smith, M., 2006. Common Lead-Corrected Laser Ablation ICP-MS U-Pb Systematics and Geochronology of Titanite. Chemical Geology, 227(1): 37-52. https://doi.org/10.1016/j.chemgeo.2005.09.003 [183] Storey, C. D., Smith, M. P., Jeffries, T. E., 2007. In Situ LA-ICP-MS U-Pb Dating of Metavolcanics of Norrbotten, Sweden: Records of Extended Geological Histories in Complex Titanite Grains. Chemical Geology, 240(1-2): 163-181. https://doi.org/10.1016/j.chemgeo.2007.02.004 [184] Sun, J. F., Yang, J. H., Wu, F. Y., et al., 2012. In Situ U-Pb Dating of Titanite by LA-ICPMS. Chinese Science Bulletin, 57(20): 2506-2516. https://doi.org/10.1007/s11434-012-5177-0 [185] Sundell, K. E., Gehrels, G. E., Pecha, M. E., 2021. Rapid U-Pb Geochronology by Laser Ablation Multi-Collector ICP-MS. Geostandards and Geoanalytical Research, 45(1): 37-57. https://doi.org/10.1111/ggr.12355 [186] Sylvester, P. J., Souders, A. K., Liu, R., 2022. Significance of U-Pb Detrital Zircon Geochronology for Mudstone Provenance. Geology, 50(6): 670-675. https://doi.org/10.1130/G49684.1 [187] Tang, Y. W., Cui, K., Zheng, Z., et al., 2020. LA-ICP-MS U-Pb Geochronology of Wolframite by Combining NIST Series and Common Lead-Bearing MTM as the Primary Reference Material: Implications for Metallogenesis of South China. Gondwana Research, 83: 217-231. https://doi.org/10.1016/j.gr.2020.02.006 [188] Tang, Y. W., Han, J., Lan, T., et al., 2022. Two Reliable Calibration Methods for Accurate In Situ U-Pb Dating of Scheelite. Journal of Analytical Atomic Spectrometry, 37(2): 358-368. https://doi.org/10.1039/D1JA00387A [189] Thomson, S. N., Gehrels, G. E., Ruiz, J., et al., 2012. Routine Low-Damage Apatite U-Pb Dating Using Laser Ablation-Multicollector-ICPMS. Geochemistry, Geophysics, Geosystems, 13(2): Q0AA21. https://doi.org/10.1029/2011GC003928 [190] Thompson, J., Meffre, S., Maas, R., et al., 2016. Matrix Effects in Pb/U Measurements during LA-ICP-MS Analysis of the Mineral Apatite. Journal of Analytical Atomic Spectrometry, 31(6): 1206-1215. https://doi.org/10.1039/C6JA00048G [191] Tomascak, P. B., Krogstad, E. J., Walker, R. J., 1998. Sm-Nd Isotope Systematics and the Derivation of Granite Pegmatites in Southwestern Maine. Canadian Mineralogist, 36(2): 327-337. [192] Tu, C., Zhang, S. B., Su, K., et al., 2021. Zircon U-Pb Dating and Lu-Hf Isotope Results for Feidong Complex: Implications for Coherent Basement of the Yangtze Craton. Earth Science, 46(5): 1630-1643 (in Chinese with English abstract). https://doi.org/10.3799/dqkx.2020.169 [193] Vasconcelos, A., Goncalves, G. O., Lana, C., et al., 2018. Characterization of Xenotime from Datas (Brazil) as a Potential Reference Material for In Situ U-Pb Geochronology. Geochemistry, Geophysics, Geosystems, 19(7): 2262-2282. https://doi.org/10.1029/2017GC007412 [194] Ver Hoeve, T. J., Scoates, J. S., Wall, C. J., et al., 2018. Evaluating Downhole Fractionation Corrections in LA-ICP-MS U-Pb Zircon Geochronology. Chemical Geology, 483: 201-217. https://doi.org/10.1016/j.chemgeo.2017.12.014 [195] Viete, D. R., Kylander-Clark, A. R., Hacker, B. R., 2015. Single-Shot Laser Ablation Split Stream (SS-LASS) Petrochronology Deciphers Multiple, Short-Duration Metamorphic Events. Chemical Geology, 415: 70-86. https://doi.org/10.1016/j.chemgeo.2015.09.013 [196] von Blackenburg, F., 1992. Combined High-Precision Chronometry and Geochemical Tracing Using Accessory Minerals: Applied to the Central-Alpine Bergell Intrusion (Central Europe). Chemical Geology, 100(1-2): 19-40. https://doi.org/10.1016/0009-2541(92)90100-J [197] von Quadt, A., Gallhofer, D., Guillong, M., et al., 2014. U-Pb Dating of CA/Non-CA Treated Zircons Obtained by LA-ICP-MS and CA-TIMS Techniques: Impact for Their Geological Interpretation. Journal of Analytical Atomic Spectrometry, 29(9): 1618-1629. https://doi.org/10.1039/C4JA00102H [198] Wang, Q., Hou, K. J., 2015. Determination of U-Pb Ages of Monazite by LA-ICP-MS. Acta Geologica Sinica, 89(1310): 41-43 (in Chinese with English abstract). [199] Wei, Q. D., Wang, H., Yang, Y. H., et al., 2020. KV01 Zircon-A Potential New Archean Reference Material for Microbeam U-Pb Age and Hf-O Isotope Determinations. Science China Earth Sciences, 63(11): 1780-1790. https://doi.org/10.1007/s11430-019-9638-y [200] Wei, Q. D., Yang, M., Romer, R. L., et al., 2022. In Situ U-Pb Geochronology of Vesuvianite by LA-SF-ICP-MS. Journal of Analytical Atomic Spectrometry, 37(1): 69-81. https://doi.org/10.1039/D1JA00303H [201] Wiedenbeck, M., AllÉ, P., Corfu, F., et al., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analysis. Geostandards Newsletter, 19(1): 1-23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x [202] Wohlgemuth-Ueberwasser, C. C., Schuessler, J. A., von Blanckenburg, F., et al., 2018. Matrix Dependency of Baddeleyite U-Pb Geochronology by Femtosecond-LA-ICP-MS and Comparison with Nanosecond-LA-ICP-MS. Journal of Analytical Atomic Spectrometry, 33: 967-974. https://doi.org/10.1039/C7JA00403F [203] Wu, F. Y., Yang, Y. H., Marks, M. A., et al., 2010. In Situ U-Pb, Sr, Nd and Hf Isotopic Analysis of Eudialyte by LA-(MC)-ICP-MS. Chemical Geology, 273(1-2): 8-34. https://doi.org/10.1016/j.chemgeo.2010.02.007 [204] Wu, S. T., Yang, M., Yang, Y. H., et al., 2020. Improved In Situ Zircon U-Pb Dating at High Spatial Resolution (5-16 μm) by Laser Ablation-Single Collector-Sector field-ICP-MS Using Jet Sample and X Skimmer Cones. International Journal of Mass Spectrometry, 456: 116394. https://doi.org/10.1016/j.ijms.2020.116394 [205] Wu, S. T., Yang, Y. H., Roberts, N. M. W., et al., 2022. In Situ Calcite U-Pb Geochronology by High-Sensitivity Single-Collector LA-SF-ICP-MS. Science China Earth Sciences, 65(6): 1146-1160. https://doi.org/10.1007/s11430-021-9907-1 [206] Xiang, D., Zhang, Z., Zack, T., et al., 2021. Apatite U-Pb Dating with Common Pb Correction Using LA-ICP-MS/MS. Geostandards and Geoanalytical Research, 45(4): 621-642. https://doi.org/10.1111/ggr.12404 [207] Xie, L. W., Yang, J. H., Yin, Q. Z., et al., 2017. High Spatial Resolution In Situ U-Pb Dating Using Laser Ablation Multiple Ion Counting Inductively Coupled Plasma Mass Spectrometry (LA-MIC-ICP-MS). Journal of Analytical Atomic Spectrometry. 32(5): 975-986. https://doi.org/10.1039/C6JA00387G [208] Xie, L. W., Zhang, Y. B., Zhang, H. H., et al., 2008. In Situ Simultaneous Determination of Trace Elements, U-Pb and Lu-Hf Isotopes in Zircon and Baddeleyite. Chinese Science Bulletin, 53(10): 1565-1573. https://doi.org/10.1007/s11434-008-0086-y [209] Yang, M., Romer, R. L., Yang, Y. H., et al., 2022a. U-Pb Isotopic Dating of Cassiterite: Development of Reference Materials and In Situ Applications by LA-SF-ICP-MS. Chemical Geology, 593: 120754. https://doi.org/10.1016/j.chemgeo.2022.120754 [210] Yang, M., Yang, Y. H., Kamo, S. L., et al., 2022b. Natural Allanite Reference Materials for In Situ U-Th-Pb and Sm-Nd Isotopic Measurements by LA-(MC)-ICP-MS. Geostandards and Geoanalytical Research. 145: 104893. https://doi.org/10.1111/ggr.12417 [211] Yang, M., Yang, Y. H., Wu, S. T., et al., 2020. Accurate and Precise In Situ U-Pb Isotope Dating of Wolframite Series Minerals via LA-SF-ICP-MS. Journal of Analytical Atomic Spectrometry. 35(10): 2191-2203. https://doi.org/10.1039/D0JA00248H [212] Yang, Y. H., Wu, F. Y., Li, Y., et al., 2014a. In Situ U-Pb Dating of Bastnaesite by LA-ICP-MS. Journal of Analytical Atomic Spectrometry. 29(6): 1017-1023. https://doi.org/10.1039/C4JA00001C [213] Yang, Y. H., Wu, F. Y., Yang, J. H., et al., 2014b. Sr and Nd Isotopic Compositions of Apatite Reference Materials Used in U-Th-Pb Geochronology. Chemical Geology, 385: 35-55. https://doi.org/10.1016/j.chemgeo.2014.07.012 [214] Yang, Y. H., Wu, F. Y., Yang, J. H., et al., 2018. U-Pb Age Determination of Schorlomite Garnet by Laser Ablation Inductively Coupled Plasma Mass Spectrometry. Journal of Analytical Atomic Spectrometry, 33(2): 231-239. https://doi.org/10.1039/C7JA00315C [215] Yang, Y. H., Yang, M., Wang, H., et al., 2021. Methodology for In Situ Wolframite U-Pb Dating and Its Application. Science in China (Series D: Earth Sciences), 51(1): 171-174 (in Chinese). [216] Yuan, H. L., Gao, S., Dai, M. N., et al., 2008. Simultaneous Determinations of U-Pb Age, Hf Isotopes and Trace Element Compositions of Zircon by Excimer Laser- Ablation Quadrupole and Multiple-Collector ICP-MS. Chemical Geology, 247(1-2): 100-118. https://doi.org/10.1016/j.chemgeo.2007.10.003 [217] Yuan, H. L., Gao, S., Liu, X. M., et al., 2004. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28(3): 353-370. https://doi.org/10.1111/j.1751-908X.2004.tb00755.x [218] Yuan, S. D., Peng, J., Hao, S., et al., 2011. In Situ LA-MC-ICP-MS and ID-TIMS U-Pb Geochronology of Cassiterite in the Giant Furong Tin Deposit, Hunan Province, South China: New Constraints on the Timing of Tin-Polymetallic Mineralization. Ore Geology Reviews, 43(1): 235-242. https://doi.org/10.1016/j.oregeorev.2011.08.002 [219] Zack, T., Stockli, D. F., Luvizotto, G. L., et al., 2011. In Situ U-Pb Rutile Dating by LA-ICP-MS: 208Pb Correction and Prospects for Geological Applications. Contributions to Mineralogy and Petrology, 162(3): 515-530. https://doi.org/10.1007/s00410-011-0609-4 [220] Zhang, L., Qian, S. P., Li, N., et al., 2021a. Simultaneous In Situ Determination of Pb Isotope Ratios and Trace Element Concentrations in Melt Inclusions by LASS-ICP-MS. Geochemistry, Geophysics, Geosystems, 22(1): 2020GC009451. https://doi.org/10.1029/2020GC009451 [221] Zhang, L. L., Zhu, D. C., Yang, Y. H., et al., 2021b. U-Pb Geochronology of Carbonate by Laser Ablation MC-ICP-MS: Method Improvements and Geological Applications. Atomic Spectroscopy, 42: 335-348. https://doi.org/10.46770/AS.2021.803 [222] Zhang, L., Wu, J. L., Tu, J. R., et al., 2019. RMJG Rutile: A New Natural Reference Material for Microbeam U-Pb Dating and Hf Isotopic Analysis. Geostandards Geoanalytical Research, 44(1): 133-145. https://doi.org/10.1111/ggr.12304 [223] Zhang, Y. G., Yao, X. Z., Wang, J., et al., 2022. U-Pb Ages and Europium Anomalies of Detrital Zircons from Sediments in the West Kunlun Orogenic Belt: Implications for the Proto-Tethys Ocean Evolution. Journal of Earth Science. https://doi.org/10.1007/s12583-022-1671-8 [224] Zhao, L. H., Zeng, L. S., Zhan, X. C., et al., 2020. In Situ U-Pb Dating of Titanite by LA-SF-ICP-MS and Insights into Titanite Crystallization and Closure Temperature. Acta Petrologica Sinica, 36(10): 2983-2994 (in Chinese with English abstract). doi: 10.18654/1000-0569/2020.10.04 [225] Zhao, W. H., Li, Q. L., Liu, Y., et al., 2022. Long-Term Reproducibility of SIMS Zircon U-Pb Geochronology. Journal of Earth Science, 33(1): 17-24. https://doi.org/10.1007/s12583-021-1549-1 [226] Zhou, H. Y., Geng, J. Z., Cui, Y. R., et al., 2012. In Situ U-Pb Dating of Apatite Using LA-MC-ICP-MS. Acta Geoscientica Sinica, 33(6): 857-864 (in Chinese with English abstract). [227] Zhou, H. Y., Tu, J. R., Li, G. Z., et al., 2018. Research on the Current Status and Future of U-Pb Chronology Study of Uranium Minerals from the Sandstone-Type Uranium Deposits. Earth Science Frontiers, 25(6): 290-295 (in Chinese with English abstract). [228] Zong, K. Q., Chen, J. Y., Hu, Z. C., et al., 2015. In-Situ U-Pb Dating of Uraninite by Fs-LA-ICP-MS. Science China Earth Sciences, 58(10): 1731-1740. https://doi.org/10.1007/s11430-015-5154-y [229] 陈意, 胡兆初, 贾丽辉, 等, 2021. 微束分析测试技术十年(2011—2020)进展与展望. 矿物岩石地球化学通报, 40(1): 1-35. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202101004.htm [230] 崔玉荣, 涂家润, 陈枫, 等, 2017. LA-(MC)-ICP-MS锡石U-Pb定年研究进展. 地质学报, 91(6): 1386-1399. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201706017.htm [231] 李怀坤, 耿建珍, 郝爽, 等, 2009. 用激光烧蚀多接收器等离子体质谱仪(LA-MC-ICPMS)测定锆石U-Pb同位素年龄的研究. 矿物学报, 29(S1): 600-601. https://www.cnki.com.cn/Article/CJFDTOTAL-KWXB2009S1311.htm [232] 李献华, 李扬, 李秋立, 等, 2022. 同位素地质年代学新进展与发展趋势. 地质学报, 96(1): 104-122. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202201007.htm [233] 李艳广, 汪双双, 刘民武, 等, 2015. 斜锆石LA-ICP-MS U-Pb定年方法及应用. 地质学报, 89(12): 2400-2418. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201512015.htm [234] 柳小明, 高山, 袁洪林, 等, 2007. 单颗粒锆石的20 μm小斑束原位微区LA-ICP-MS U-Pb年龄和微量元素的同时测定. 科学通报, 52(2): 228-235. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB200702017.htm [235] 刘勇胜, 胡兆初, 李明, 等, 2013. LA-ICP-MS在地质样品元素分析中的应用. 科学通报, 58(36): 3753-3769. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201336003.htm [236] 刘勇胜, 屈文俊, 漆亮, 等, 2021. 中国岩矿分析测试研究进展与展望(2011—2020). 矿物岩石地球化学通报, 40(3): 515-539. https://www.cnki.com.cn/Article/CJFDTOTAL-KYDH202103001.htm [237] 罗涛, 2018. LA-ICP-MS分析过程中元素分馏效应机理及其在副矿物U-Pb年代学中的应用研究(博士学位论文). 武汉: 中国地质大学. [238] 麦源君, 朱利东, 杨文光, 等, 2021. 西藏东南缘早二叠世长英质凝灰岩锆石U-Pb年龄和Hf同位素特征. 地球科学, 46(11): 3880-3891. doi: 10.3799/dqkx.2020.397 [239] 涂城, 张少兵, 苏克, 等, 2021. 肥东杂岩锆石U-Pb年龄和Lu-Hf同位素: 对扬子克拉通统一结晶基底的限制. 地球科学, 46(5): 1630-1643. doi: 10.3799/dqkx.2020.169 [240] 王倩, 侯可军, 2015. 独居石LA-ICP-MS微区原位U-Pb同位素年龄测定. 地质学报, 89(B10): 41-43. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE2015S1018.htm [241] 杨岳衡, 杨明, 王浩, 等, 2021. 黑钨矿微区原位U-Pb年代学方法及应用. 中国科学(D辑: 地球科学), 51(1): 171-174. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202101015.htm [242] 赵令浩, 曾令森, 詹秀春, 等, 2020. 榍石LA-SF-ICP-MS U-Pb定年及对结晶和封闭温度的指示. 岩石学报, 36(10): 2983-2994. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202010004.htm [243] 周红英, 耿建珍, 崔玉荣, 等, 2012. 磷灰石微区原位LA-MC-ICP-MS U-Pb同位素定年. 地球学报, 33(6): 857-864 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201705012.htm [244] 周红英, 涂家润, 李国占, 等, 2018. 砂岩型铀矿中铀矿物U-Pb年代学研究现状及研究方向. 地学前缘, 25(6): 290-295. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201806028.htm