• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    川东南下志留统与Appalachian泥盆系典型常压页岩气藏富集特征对比

    蒋恕 张天宇 郭彤楼 何希鹏 高玉巧 薛冈 张培先 陈国辉

    蒋恕, 张天宇, 郭彤楼, 何希鹏, 高玉巧, 薛冈, 张培先, 陈国辉, 2023. 川东南下志留统与Appalachian泥盆系典型常压页岩气藏富集特征对比. 地球科学, 48(1): 77-91. doi: 10.3799/dqkx.2022.356
    引用本文: 蒋恕, 张天宇, 郭彤楼, 何希鹏, 高玉巧, 薛冈, 张培先, 陈国辉, 2023. 川东南下志留统与Appalachian泥盆系典型常压页岩气藏富集特征对比. 地球科学, 48(1): 77-91. doi: 10.3799/dqkx.2022.356
    Jiang Shu, Zhang Tianyu, Guo Tonglou, He Xipeng, Gao Yuqiao, Xue Gang, Zhang Peixian, Chen Guohui, 2023. Comparison of Enrichment Characteristics of Typical Normally-Pressured Shale Gas Reservoirs in Lower Silurian Shale in Southeastern Sichuan Basin and Devonian Shales in Appalachian Basin. Earth Science, 48(1): 77-91. doi: 10.3799/dqkx.2022.356
    Citation: Jiang Shu, Zhang Tianyu, Guo Tonglou, He Xipeng, Gao Yuqiao, Xue Gang, Zhang Peixian, Chen Guohui, 2023. Comparison of Enrichment Characteristics of Typical Normally-Pressured Shale Gas Reservoirs in Lower Silurian Shale in Southeastern Sichuan Basin and Devonian Shales in Appalachian Basin. Earth Science, 48(1): 77-91. doi: 10.3799/dqkx.2022.356

    川东南下志留统与Appalachian泥盆系典型常压页岩气藏富集特征对比

    doi: 10.3799/dqkx.2022.356
    基金项目: 

    国家自然科学基金重点项目 42130803

    中石化华东分公司项目 34600000-19-ZC0607-0004

    详细信息
      作者简介:

      蒋恕(1976-),男,教授,博士,主要从事常规油气藏勘探开发和非常规油气地质工程一体化研究.ORCID:0000-0002-6272-7649. E-mail:jiangsu@cug.edu.cn

    • 中图分类号: P624

    Comparison of Enrichment Characteristics of Typical Normally-Pressured Shale Gas Reservoirs in Lower Silurian Shale in Southeastern Sichuan Basin and Devonian Shales in Appalachian Basin

    • 摘要: 经各国持续攻关,超压页岩气在大多国家实现了商业化开发,但常压页岩气仅美国实现了商业化开发.为了摆脱我国高天然气对外依存度的现状,应尽快实现常压页岩气的商业化开发,亟需对其富集特征展开研究,期望对勘探开发方案的制定提供指导.从川东南下志留统与Appalachian泥盆系典型常压页岩气储层的构造沉积差异演化开始,分析了储层地球化学与页岩气赋存特征差异,明确中美常压页岩气藏富集的差异性.相较于Appalachian泥盆系Marcellus页岩、Ohio页岩的较简单构造改造、富含Ⅱ-Ⅲ型干酪根、高含气孔隙度以及气藏远出露区,川东南下志留统五峰‒龙马溪组页岩层虽富含高过熟Ⅰ型干酪根,但经历多期复杂构造运动,底板较破碎、地层倾角较大,页岩气易顺层运移至破碎底板处和露头区逸散,其含气性略低于Marcellus页岩.Ohio页岩虽含气性较低、富集程度不高,但由于其埋藏浅、温压低,更易降压解吸形成工业气流.

       

    • 图  1  Appalachian(a)和川东南(b)的构造演化对比

      修改自邱开国(2013)和汪星(2015

      Fig.  1.  Comparison of tectonic evolution between Appalachian Basin (a) and southeastern Sichuan Basin (b)

      图  2  Appalachian泥盆系和川东南下志留统沉积层序对比

      Fig.  2.  Comparison of sedimentary sequence between Devonian strata in Appalachian Basin and Low Silurian strata in southeastern Sichuan Basin

      图  3  Appalachian和川东南沉积模式差异

      Fig.  3.  Differences in depositional models between Appalachian Basin and southeastern Sichuan Basin

      图  4  Appalachian泥盆系页岩和川东南下志留统页岩TOC分布直方图(数据引自Ruppert et al.,2015

      Fig.  4.  Histograms of TOC distribution in Devonian shale in Appalachian Basin and Low Silurian shale in southeastern Sichuan Basin (data from Ruppert et al., 2015)

      图  5  Appalachian泥盆系页岩氢‒氧指数交汇图(数据引自Ruppert et al.,2015

      Fig.  5.  Diagram of the hydrogen-oxygen index of Devonian shale in Appalachian Basin (data from Ruppert et al., 2015)

      图  6  川东南五峰‒龙马溪组干酪根碳同位素剖面图

      Fig.  6.  Kerogen carbon isotope profile of Wufeng-Longmaxi Formation in southeastern Sichuan Basin

      图  7  Appalachian泥盆系页岩和川东南下志留统页岩有机质成熟度(Ro)剖面图

      Marcellus和Ohio页岩数据引自Ruppert et al.2015

      Fig.  7.  Organic maturity (Ro) profiles of Devonian shale in Appalachian Basin and Low Silurian shale in southeastern Sichuan Basin

      图  8  Appalachian泥盆系页岩和川东南下志留统页岩储层温压

      Fig.  8.  Temperature and pressure of Devonian shale in Appalachian Basin and Lower Silurian shale in southeastern Sichuan Basin

      图  9  Appalachian泥盆系页岩和川东南下志留统页岩含气孔隙度

      Marcellus和Ohio页岩数据引自Yost et al.1982)、Nuttall et al.2005)和Song et al.2019

      Fig.  9.  Gas-bearing porosity of Devonian shale in Appalachian Basin and Lower Silurian shale in southeastern Sichuan Basin

      图  10  中美典型常压和超压页岩含气量和有机质关系

      美国部分页岩数据引自Hill and Nelson(2000

      Fig.  10.  Relationship between gas content and organic matter of typical normally-pressure and overpressured shales in China and the United States

      图  11  Appalachian泥盆系页岩和川东南下志留统页岩吸附能力对比

      Fig.  11.  Comparison of adsorption capacity between Devonian shale in Appalachian Basin and Lower Silurian shale in southeastern Sichuan Basin

      图  12  Appalachian泥盆系页岩和川东南下志留统页岩含气性对比

      Fig.  12.  Comparison of gas-bearing properties between Appalachian Devonian shale and Lower Silurian shale in southeastern Sichuan Basin

      图  13  Appalachian泥盆系页岩和川东南下志留统页岩5 MPa加压解吸模拟

      Fig.  13.  5 MPa pressure analytical simulation of Devonian shale in Appalachian Basin and Lower Silurian shale in southeastern Sichuan Basin

      图  14  川东南距露头距离与压力系数之间的关系

      Fig.  14.  The relationship between the distance from the outcrop and the pressure coefficient in southeastern Sichuan Basin

      图  15  地层倾角‒抬升幅度‒顺层渗流能力之间的关系(据姜振学等,2020

      Fig.  15.  Relationship between formation dip angle, uplift amplitude and bedding seepage capacity (from Jiang et al., 2020)

      图  16  页岩气逸散类型

      Fig.  16.  Model of shale gas leakage

      表  1  中美典型常压页岩气藏主要参数特征

      Table  1.   Main parameter characteristics of typical normal pressure shale gas reservoirs in China and the United States

      页岩气藏 盆地 时代 沉积
      背景
      岩相 TOC
      (%)
      成熟度(%) 孔隙度
      (%)
      压力
      系数
      五峰‒龙马溪 扬子地台 早志留 前陆
      陆棚
      硅质 2~8 1.7~3.2 2~5 0.7~1.2
      Barnett Fort Worth 密西
      西比
      前陆
      陆棚
      硅质 4~6 1.0~2.1 4~6 1.0~1.1
      Marcellus Appalachian 中泥盆 前陆
      陆棚
      硅质‒黏土质 2~8 1.3~3.0 2~7 0.7~1.2
      Fayettovi1lo Arkoma 密西
      西比
      前陆
      陆棚
      硅质 2~10 1.5~4.0 4~5 0.8~1.0
      Antrim Michigan 晚泥盆 克拉通 硅质 1 0.4~0.6 9 0.7~0.8
      Ohio Appalachian盆地Big Sandy产区 晚泥盆 前陆
      陆棚
      硅质 2~6 0.6~1.5 2~6 0.5~0.7
      注:据Hill and Nelson(2000)、蒋恕等(2017)和郭彤楼等(2020).
      下载: 导出CSV

      表  2  川东南五峰组底部破碎情况

      Table  2.   Fractured bottom interval of the Wufeng Formation in southeastern Sichuan Basin

      井名 JY10-10 JY194-3 LY1 PY1 SY1
      底部破碎
      下载: 导出CSV

      表  3  Marcellus页岩和川东南LY1井为例的龙马溪页岩构造抬升与页岩气损失量

      Table  3.   Structural uplift and shale gas loss between Marcellus shale and Longmaxi shale exampled by LY1 Well

      Marcellus LY1
      抬升幅度(m) 1 524 3 700
      抬升时间(Ma) 230 95
      抬升速率(m/Ma) 6.63 38.95
      损失量(m3/t) 10.5 42.3
      下载: 导出CSV
    • [1] Blakey, R. C., Fielding, C. R., 2008. Gondwana Palaeogeography from Assembly to Break Up—A 500 M. y. Odyssey. Geological Society of America Special Papers, 441: 1-28. https://doi.org/10.1130/2008.2441(01)
      [2] Castle, J. W., 2001. Appalachian Basin Stratigraphic Response to Convergent-Margin Structural Evolution. Basin Research, 13(4): 397-418. https://doi.org/10.1046/j.0950-091x.2001.00157.x
      [3] Energy Information Administration, 2022. Drilling Productivity Report: For Key Tight Oil and Shale Gas Regions. EIA Independent Statistics & Analysis, Washington.
      [4] Engelder, T., Lash, G. G., Uzcátegui, R. S., 2009. Joint Sets that Enhance Production from Middle and Upper Devonian Gas Shales of the Appalachian Basin. AAPG Bulletin, 93(7): 857-889. https://doi.org/10.1306/03230908032
      [5] Ettensohn, F. R., 2008. The Appalachian Foreland Basin in Eastern United States. Sedimentary Basins of the World, 5: 105-179. https://doi.org/10.1016/S1874-5997(08)00004-X
      [6] Gao, H. Q., Ding, A. X., Chen, Y. Y., 2017. Discussion on the Rules of Gas Desorption and Occurrence Mode in Shales. Geological Journal of China Universities, 23(2): 285-295 (in Chinese with English abstract).
      [7] Guo, T. L., Jiang, S., Zhang, P. X., et al., 2020. Progress and Direction of Exploration and Development of Normally-Pressured Shale Gas from the Periphery of Sichuan Basin. Petroleum Geology & Experiment, 42(5): 837-845 (in Chinese with English abstract).
      [8] Hao, F., Zou, H. Y., Lu, Y. C., 2013. Mechanisms of Shale Gas Storage: Implications for Shale Gas Exploration in China. AAPG Bulletin, 97(8): 1325-1346. https://doi.org/10.1306/02141312091
      [9] He, X. P., Gao, Y. Q., He, G. S., et al., 2021. Geological Characteristics and Key Technologies for Exploration and Development of Nanchuan Shale Gas Field in Southeast Chongqing. Petroleum Reservoir Evaluation and Development, 11(3): 305-316 (in Chinese with English abstract).
      [10] He, X. P., Wang, Y. H., Wang, Y. Q., et al., 2020. Exploration Practices of Normal-Pressure Shale Gas in the Marginal Transition Zone of the Southeast Sichuan Basin. China Petroleum Exploration, 25(1): 126-136 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2020.01.012
      [11] Hill, D. G., Nelson, C. R., 2000. Gas Productive Fractured Shales: An Overview and Update. Gas Tips, 6(2): 4-13.
      [12] Huang, J. Z., 1980. An Attempt to Identify Kerogen Types with Stable Carbon Isotope δC13 Values. Petroleum Geology & Experiment, 2(2): 49-54 (in Chinese).
      [13] Jiang, S., Tang, X. L., Osborne, S., et al., 2017. Enrichment Factors and Current Misunderstanding of Shale Oil and Gas: Case Study of Shales in US, Argentina and China. Earth Science, 42(7): 1083-1091 (in Chinese with English abstract).
      [14] Jiang, T. X., Bian, X. B., Zhang, L. S., et al., 2020. Atmospheric Shale Gas Fracturing Theory and Practice. Science Press, Beijing (in Chinese).
      [15] Jiang, Z. X., Song, Y., Tang, X. L., et al., 2020. Controlling Factors of Marine Shale Gas Differential Enrichment in Southern China. Petroleum Exploration and Development, 47(3): 617-628 (in Chinese with English abstract).
      [16] Liu, C. Q., Jiang, X. F., 2021. 2020 Domestic and Foreign Oil and Gas Industry Development Report. Petroleum Industry Press, Beijing (in Chinese).
      [17] Ma, L., Chen, H. J., Gan, K. W., et al., 2004. Tectonic and Marine Oil and Gas Geology in Southern China. Geological Publishing House, Beijing (in Chinese).
      [18] Mei, L. F., Liu, Z. Q., Tang, J. G., et al., 2010. Mesozoic Intra-Continental Progressive Deformation in Western Hunan-Hubei-Eastern Sichuan Provinces of China: Evidence from Apatite Fission Track and Balanced Cross-Section. Earth Science, 35(2): 161-174 (in Chinese with English abstract).
      [19] Mi, H. Y., Hu, M., Feng, Z. D., et al., 2010. Present Conditions and Exploration Prospects of Shale Gas Resource in China. Complex Hydrocarbon Reservoirs, 3(4): 10-13 (in Chinese with English abstract). doi: 10.3969/j.issn.1674-4667.2010.04.003
      [20] Miall, A. D., Blakey, R. C., 2019. The Phanerozoic Tectonic and Sedimentary Evolution of North America. In: Miall, A. D., ed., The Sedimentary Basins of the United States and Canada. Elsevier, Amsterdam. https://doi.org/10.1016/b978-0-444-63895-3.00001-2
      [21] Nelson, P. H., Gianoutsos, N. J., 2011. Evolution of Overpressured and Underpressured Oil and Gas Reservoirs, Anadarko Basin of Oklahoma, Texas, and Kansas. Open-File Report. U. S. Geological Survey, Denver.
      [22] Nie, H. K., Wang, H., He, Z. L., et al., 2019. Formation Mechanism, Distribution and Exploration Prospect of Normal Pressure Shale Gas Reservoir: A Case Study of Wufeng Formation-Longmaxi Formation in Sichuan Basin and Its Periphery. Acta Petrolei Sinica, 40(2): 131-143, 164 (in Chinese with English abstract).
      [23] Nuttall, B. C., Drahovzal, A. J., Eble, C. F., et al., 2005. CO2 Sequestration in Gas Shales of Kentucky. Search & Discovery, 6: 16-19.
      [24] Qiu, K. G., 2013. Tectonic Evolution and Sedimentary Characteristics of Foreland Basin in North America (Dissertation). China University of Geosciences, Beijing (in Chinese with English abstract).
      [25] Ran, B., Liu, S. G., Jansa, L., et al., 2016. Reservoir Characteristics and Preservation Conditions of Longmaxi Shale in the Upper Yangtze Block, South China. Acta Geologica Sinica (English Edition), 90(6): 2182-2205. https://doi.org/10.1111/1755-6724.13030
      [26] Roen, J. B., 1984. Geology of the Devonian Black Shales of the Appalachian Basin. Organic Geochemistry, 5(4): 241-254. https://doi.org/10.1016/0146-6380(84)90011-1
      [27] Ruppert, L. F., Trippi, M. H., Kinney, S. A., 2015. Coal and Petroleum Resources in the Appalachian Basin—Index Maps of Included Studies. Professional Paper. U. S. Geological Survey, Reston.
      [28] Song, L. S., Martin, K., Carr, T. R., et al., 2019. Porosity and Storage Capacity of Middle Devonian Shale: A Function of Thermal Maturity, Total Organic Carbon, and Clay Content. Fuel, 241: 1036-1044. https://doi.org/10.1016/j.fuel.2018.12.106
      [29] Wang, X., 2015. Structural Characteristics and Shale Gas Preservation Conditions of Lower Paleozoic Shale Series in Southeastern Chongqing (Dissertation). Southwest Petroleum University, Chengdu (in Chinese with English abstract).
      [30] Wang, Y. F., Zhai, G. Y., Liu, G. H., et al., 2021. Geological Characteristics of Shale Gas in Different Strata of Marine Facies in South China. Journal of Earth Science, 32(4): 725-741. https://doi.org/10.1007/s12583-020-1104-5
      [31] Wei, Z. H., 2015. Late Fugitive Emission of Shale Gas from Wufeng-Longmaxi Formation in Sichuan Basin and Its Periphery. Oil & Gas Geology, 36(4): 659-665 (in Chinese with English abstract).
      [32] Wu, Y. Y., Zhang, P. X., He, X. P., et al., 2020. Lithofacies and Shale Gas Enrichment of Wufeng Formation-Longmaxi Formation in Southeastern Chongqing. Marine Origin Petroleum Geology, 25(4): 335-343 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2020.04.006
      [33] Yang, F., Ning, Z. F., Zhang, R., et al., 2015. Investigations on the Methane Sorption Capacity of Marine Shales from Sichuan Basin, China. International Journal of Coal Geology, 146: 104-117. https://doi.org/10.1016/j.coal.2015.05.009
      [34] Yang, Z., Zou, C. N., 2019. "Exploring Petroleum inside Source Kitchen": Connotation and Prospects of Source Rock Oil and Gas. Petroleum Exploration and Development, 46(1): 173-184 (in Chinese with English abstract).
      [35] Yang, Z., Zou, C. N., Wu, S. T., et al., 2021. From Source Control Theory to Source-Reservoir Symbiosis System: On the Theoretical Understanding and Practice of Source Rock Strata Oil and Gas Geology in China. Acta Geologica Sinica, 95(3): 618-631 (in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2021.03.002
      [36] Yang, Z., Zou, C. N., Wu, S. T., et al., 2022. Reservoir Fracturing or Hydrocarbon Generating? —On the Reservoir and Source Rock Properties of Source Rock Strata Oil and Gas. Acta Geologica Sinica, 96(1): 183-194 (in Chinese with English abstract).
      [37] Yost, A. B., Frohne, K. H., Komar, C. A., et al., 1982. Techniques to Determine Natural and Induced Fracture Relationships in Devonian Shale. Journal of Petroleum Technology, 34(6): 1371-1377. https://doi.org/10.2118/9271-pa
      [38] Yu, B. S., 2012. Particularity of Shale Gas Reservoir and Its Evaluation. Earth Science Frontiers, 19(3): 252-258 (in Chinese with English abstract).
      [39] Zagorski, W. A., Wrightstone, G. R., Bowman, D. C., 2012. The Appalachian Basin Marcellus Gas Play: Its History of Development, Geologic Controls on Production, and Future Potential as a World-Class Reservoir. AAPG Memoir, 97: 172-200.
      [40] Zeng, Y., Hou, Y. G., Hu, D. F., et al., 2022. Characteristics of Shale Fracture Veins and Paleo-Pressure Evolution in Normal Pressure Shale Gas Zone, Southeast Margin of Sichuan Basin. Earth Science, 47(5): 1819-1833 (in Chinese with English abstract).
      [41] Zhang, D. W, Li, Y. X, Zhang, J. C., et al., 2012. National Survey and Evaluation of Shale Gas Resource Potential. Geological Publishing House, Beijing (in Chinese).
      [42] Zhang, H. T., Zhang, Y., He, X. P., et al., 2018. The Effect of Tectonism on Shale Gas Formation and Preservation in Wulong Area, Southeastern Chongqing. China Petroleum Exploration, 23(5): 47-56 (in Chinese with English abstract).
      [43] Zou, C. N., Yang, Z., Dong, D. Z., et al., 2022. Formation, Distribution and Prospect of Unconventional Hydrocarbons in Source Rock Strata in China. Earth Science, 47(5): 1517-1533 (in Chinese with English abstract).
      [44] 高和群, 丁安徐, 陈云燕, 2017. 页岩气解吸规律及赋存方式探讨. 高校地质学报, 23(2): 285-295.
      [45] 郭彤楼, 蒋恕, 张培先, 等, 2020. 四川盆地外围常压页岩气勘探开发进展与攻关方向. 石油实验地质, 42(5): 837-845. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD202005021.htm
      [46] 何希鹏, 高玉巧, 何贵松, 等, 2021. 渝东南南川页岩气田地质特征及勘探开发关键技术. 油气藏评价与开发, 11(3): 305-316. https://www.cnki.com.cn/Article/CJFDTOTAL-KTDQ202103005.htm
      [47] 何希鹏, 王运海, 王彦祺, 等, 2020. 渝东南盆缘转换带常压页岩气勘探实践. 中国石油勘探, 25(1): 126-136. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202001012.htm
      [48] 黄籍中, 1980. 用稳定碳同位素δC13值识别干酪根类型的尝试. 石油实验地质, 2(2): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD198002007.htm
      [49] 蒋恕, 唐相路, Osborne, S., 等, 2017. 页岩油气富集的主控因素及误辩: 以美国、阿根廷和中国典型页岩为例. 地球科学, 42(7): 1083-1091. doi: 10.3799/dqkx.2017.087
      [50] 蒋廷学, 卞晓冰, 张龙胜, 等, 2020. 常压页岩气压裂理论与实践. 北京: 科学出版社.
      [51] 姜振学, 宋岩, 唐相路, 等, 2020. 中国南方海相页岩气差异富集的控制因素. 石油勘探与开发, 47(3): 617-628. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202003020.htm
      [52] 刘朝全, 姜学峰, 2021.2020年国内外油气行业发展报告. 北京: 石油工业出版社.
      [53] 马力, 陈焕疆, 甘克文, 等, 2004. 中国南方大地构造和海相油气地质. 北京: 地质出版社.
      [54] 梅廉夫, 刘昭茜, 汤济广, 等, 2010. 湘鄂西‒川东中生代陆内递进扩展变形: 来自裂变径迹和平衡剖面的证据. 地球科学, 35(2): 161-174. doi: 10.3799/dqkx.2010.017
      [55] 米华英, 胡明, 冯振东, 等, 2010. 我国页岩气资源现状及勘探前景. 复杂油气藏, 3(4): 10-13. https://www.cnki.com.cn/Article/CJFDTOTAL-FZYQ201004006.htm
      [56] 聂海宽, 汪虎, 何治亮, 等, 2019. 常压页岩气形成机制、分布规律及勘探前景——以四川盆地及其周缘五峰组‒龙马溪组为例. 石油学报, 40(2): 131-143, 164. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201902001.htm
      [57] 邱开国, 2013. 北美前陆盆地的构造演化与沉积特征(硕士学位论文). 北京: 中国地质大学.
      [58] 汪星, 2015. 渝东南地区下古生界页岩层系构造特征与页岩气保存条件研究(硕士学位论文). 成都: 西南石油大学.
      [59] 魏志红, 2015. 四川盆地及其周缘五峰组‒龙马溪组页岩气的晚期逸散. 石油与天然气地质, 36(4): 659-665. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201504017.htm
      [60] 吴聿元, 张培先, 何希鹏, 等, 2020. 渝东南地区五峰组‒龙马溪组页岩岩石相及与页岩气富集关系. 海相油气地质, 25(4): 335-343. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ202004006.htm
      [61] 杨智, 邹才能, 2019. "进源找油": 源岩油气内涵与前景. 石油勘探与开发, 46(1): 173-184. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201901018.htm
      [62] 杨智, 邹才能, 吴松涛, 等, 2021. 从源控论到源储共生系统——论源岩层系油气地质理论认识及实践. 地质学报, 95(3): 618-631. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202103002.htm
      [63] 杨智, 邹才能, 吴松涛, 等, 2022. 造缝产烃还是改质造烃?——论含油气源岩层系的储集层属性和烃源岩属性. 地质学报, 96(1): 183-194. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202201012.htm
      [64] 于炳松, 2012. 页岩气储层的特殊性及其评价思路和内容. 地学前缘, 19(3): 252-258. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201203027.htm
      [65] 曾宇, 侯宇光, 胡东风, 等, 2022. 川东南盆缘常压区页岩裂缝脉体特征及古压力演化. 地球科学, 47(5): 1819-1833. doi: 10.3799/dqkx.2022.011
      [66] 张大伟, 李玉喜, 张金川, 等, 2012. 全国页岩气资源潜力调查评价. 北京: 地质出版社.
      [67] 张海涛, 张颖, 何希鹏, 等, 2018. 渝东南武隆地区构造作用对页岩气形成与保存的影响. 中国石油勘探, 23(5): 47-56. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201805006.htm
      [68] 邹才能, 杨智, 董大忠, 等, 2022. 非常规源岩层系油气形成分布与前景展望. 地球科学, 47(5): 1517-1533. doi: 10.3799/dqkx.2022.160
    • 加载中
    图(16) / 表(3)
    计量
    • 文章访问数:  118
    • HTML全文浏览量:  42
    • PDF下载量:  41
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-03-23
    • 网络出版日期:  2023-02-01
    • 刊出日期:  2023-01-25

    目录

      /

      返回文章
      返回