• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地震作用下结构面劣化特征及高位危岩体动力失稳机制

    高丙丽 张金厚 张路青

    高丙丽, 张金厚, 张路青, 2022. 地震作用下结构面劣化特征及高位危岩体动力失稳机制. 地球科学, 47(12): 4417-4427. doi: 10.3799/dqkx.2022.352
    引用本文: 高丙丽, 张金厚, 张路青, 2022. 地震作用下结构面劣化特征及高位危岩体动力失稳机制. 地球科学, 47(12): 4417-4427. doi: 10.3799/dqkx.2022.352
    Gao Bingli, Zhang Jinhou, Zhang Luqing, 2022. Deterioration Characteristics of Structural Plane and Dynamic Instability Mechanism of High Dangerous Rock Mass under Earthquake. Earth Science, 47(12): 4417-4427. doi: 10.3799/dqkx.2022.352
    Citation: Gao Bingli, Zhang Jinhou, Zhang Luqing, 2022. Deterioration Characteristics of Structural Plane and Dynamic Instability Mechanism of High Dangerous Rock Mass under Earthquake. Earth Science, 47(12): 4417-4427. doi: 10.3799/dqkx.2022.352

    地震作用下结构面劣化特征及高位危岩体动力失稳机制

    doi: 10.3799/dqkx.2022.352
    基金项目: 

    国家重点研发项目 2019YFC1509703

    陕西省重点研发计划 2021ZDLGY07-08

    详细信息
      作者简介:

      高丙丽(1980-), 女, 副教授, 博士, 主要从事古工程(地下工程、边坡工程)中的工程地质和岩石力学问题等方面的教学和科研.ORCID: 0000-0002-4877-6321.E-mail: gbl8001@xust.edu.cn

    • 中图分类号: P642

    Deterioration Characteristics of Structural Plane and Dynamic Instability Mechanism of High Dangerous Rock Mass under Earthquake

    • 摘要:

      地震是高位危岩体失稳崩塌主要诱因之一,而结构面强度与变形特性对高位危岩体稳定性起关键控制性作用.为研究地震作用下高位危岩体动力失稳机制,基于数值试验研究结构面震动劣化效应,并利用极限平衡法对高位危岩体动力稳定性进行研究.研究结果表明,结构面的峰值抗剪强度随着循环剪切次数的增加而减小,且减小幅度愈来愈小,最终趋于稳定值;随着起伏角度增大而增大,且增大幅度随着循环剪切次数的增加而减小;并在同一起伏角度下,随着循环剪切幅值的增大而减小.最后,基于回归分析法建立结构面震动劣化数学模型,并提出一种考虑结构面震动劣化的高位危岩体动力稳定性分析方法.其研究成果有助于丰富高位危岩体动力稳定性方面的基础理论研究,具有重要的理论意义和工程参考价值.

       

    • 图  1  完整岩石试样模型

      Fig.  1.  Complete rock sample model

      图  2  光滑节理模型示意图

      Fig.  2.  Schematic diagram of the smooth joint model

      图  3  贯通型结构面模型(起伏角度30°)

      Fig.  3.  Through⁃type structural plane model (undulation angle 30°)

      图  4  物理试验与数值试验结果曲线对比(30°+2 MPa)

      Fig.  4.  Comparison of physical and numerical result curves (30°+2 MPa)

      图  5  不同起伏角度下结构面细观劣化情况

      Fig.  5.  Micro⁃deterioration of structural plane under different fluctuation angles

      图  6  4组模型剪应力与循环剪切次数的关系

      Fig.  6.  Relationship between shear stress and cyclic shear times in four models

      图  7  归一化后的抗剪强度

      Fig.  7.  Normalized shear strength

      图  8  收敛值$ \lambda $与循环剪切幅值$ w $关系

      Fig.  8.  The relationship between the convergence value $ \lambda $ and the cyclic shear amplitude $ w $

      图  9  函数$ f\left(\alpha \right) $与初始起伏角度的关系曲线

      Fig.  9.  The relation curve between function $ f\left(\alpha \right) $ and initial undulation angle $ f\left(\alpha \right)=0.48+0.7{\mathrm{e}}^{-0.03\alpha } $.(6)

      图  10  相对运动速度对结构面剪切强度影响

      王思敬和张菊明(1982)王思敬和薛守义(1992)

      Fig.  10.  Influence of relative motion velocity on shear strength of structural plane

      图  11  危岩体平推滑动破坏受力分析模型

      Fig.  11.  Stress analysis model of thrust sliding failure of dangerous rock mass

      图  12  危岩体倾倒极限平衡分析模型

      Fig.  12.  Limit equilibrium analysis model of dangerous rock mass toppling $ b=\mathrm{\Delta }x\mathrm{t}\mathrm{a}\mathrm{n}(\beta -\alpha) $, (16)

      图  13  n块危岩体倾倒及滑动时受力状态

      Fig.  13.  The stress state for dumping and sliding of block n

      表  1  平行粘结模型细观参数

      Table  1.   Parallel bond model meso⁃parameters

      法向接触刚度(N/m) 切向接触刚度(N/m) 平行粘结法向强度(MPa) 平行粘结切向强度(MPa) 摩擦系数
      8.0×109 8.0×109 30 30 0.6
      下载: 导出CSV

      表  2  光滑节理模型细观参数

      Table  2.   Smooth joint model meso⁃parameters

      法向刚度(GPa) 法向与切向刚度比 接触摩擦系数 剪胀角(°) 接触抗拉强度平均值(Pa) 接触黏聚力平均值(Pa)
      1 2 0.3 0 0 0
      下载: 导出CSV
    • [1] Chen, Z.F., Xiang, J., Fan, W.C., 2019. Experimental Study on the Effects of Cyclic Shear Stress on Rock Joint Surface Morphology and Shear Behavior. China Sciencepaper, 14(2): 221-225, 238(in Chinese with English abstract). doi: 10.3969/j.issn.2095-2783.2019.02.018
      [2] Crawford, A.M., Curran, J.H., 1981. The Influence of Shear Velocity on the Frictional Resistance of Rock Discontinuities. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 18(6): 505-515.
      [3] Crawford, A.M., Curran, J.H., 1982. The Influence of Rate-and Displacement-Dependent Shear Resistance on the Response of Rock Slopes to Seismic Loads. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 19(1): 1-8.
      [4] Fathi, A., Moradian, Z., Rivard, P., et al., 2016. Shear Mechanism of Rock Joints under Pre-Peak Cyclic Loading Condition. International Journal of Rock Mechanics and Mining Sciences, 83: 197-210. doi: 10.1016/j.ijrmms.2016.01.009
      [5] Fox, D., KaÑa, D., Hsiung, S., 1998. Influence of Interface Roughness on Dynamic Shear Behavior in Jointed Rock. International Journal of Rock Mechanics and Mining Sciences, 35(7): 923-940. https://doi.org/10.1016/s0148-9062(98)00153-3
      [6] Fu, X., Sheng, Q., Tang, H., et al., 2019. Seismic Stability Analysis of a Rock Block Using the Block Theory and Newmark Method. International Journal for Numerical and Analytical Methods in Geomechanics, 43(7): 1392-1409. https://doi.org/10.1002/nag.2903
      [7] Homand, F., Belem, T., Souley, M., 2001. Friction and Degradation of Rock Joint Surfaces under Shear Loads. International Journal for Numerical and Analytical Methods in Geomechanics, 25(10): 973-999. doi: 10.1002/nag.163
      [8] Hong, H.C., Xu, W.Y., 2005. Review on the Stability of Rock Slopes under Seismic Loading. Chinese Journal of Rock Mechanics and Engineering, 27(Suppl. 1): 4827-4836(in Chinese with English abstract).
      [9] Jafari, M.K., Hosseini, K.A., Pellet, F., et al., 2003. Evaluation of Shear Strength of Rock Joints Subjected to Cyclic Loading. Soil Dynamics and Earthquake Engineering, 23(7): 619-630. https://doi.org/10.1016/s0267-7261(03)00063-0
      [10] Liu, B., Li, H.B., Liu, Y.Q., 2013a. Experimental Study of Deformation Behavior of Rock Joints under Cyclic Shear Loading. Rock and Soil Mechanics, 34(9): 2475-2481, 2488(in Chinese with English abstract).
      [11] Liu, B., Li, H.B., Liu, Y.Q., et al., 2013b. Generalized Damage Model for Asperity and Shear Strength Calculation of Joints under Cyclic Shear Loading. Chinese Journal of Rock Mechanics and Engineering, 32(Suppl. 2): 3000-3008(in Chinese with English abstract).
      [12] Liu, B., Li, H.B., Zhu, X.M., 2011. Experiment Simulation Study of Strength Degradation of Rock Joints under Cyclic Shear Loading. Chinese Journal of Rock Mechanics and Engineering, 30(10): 2033-2039(in Chinese with English abstract).
      [13] Liu, X.F., Zhao, Y.Q., Wang, X.R., et al., 2022. Current Status and Prospects of Research on Fatigue Damage and Failure Precursors of Rocks. Earth Science, 47(6): 2190-2198(in Chinese with English abstract).
      [14] Liu, X.R., Deng, Z.Y., Liu, Y.Q., et al., 2019. Macroscopic and Microscopic Analysis of Particle Flow in Pre-Peak Cyclic Direct Shear Test of Rock Joint. Journal of China Coal Society, 44(7): 2103-2115(in Chinese with English abstract).
      [15] Liu, X.R., Liu, Y.Q., Lu, Y.M., et al., 2020. Experimental and Numerical Study on Pre-Peak Cyclic Shear Mechanism of Artificial Rock Joints. Structural Engineering and Mechanics, 74: 407-423. https://doi.org/10.12989/sem.2020.74.3.407
      [16] Liu, X.R., Xu, B., Zhou, X.H., et al., 2021. Investigation on Macro-Meso Cumulative Damage Mechanism of Weak Layer under Pre-Peak Cyclic Shear Loading. Rock and Soil Mechanics, 42(5): 1291-1303(in Chinese with English abstract).
      [17] Luo, G., Cheng, Q.G., Shen, W.G., et al., 2022. Research Status and Development Trend of the High-Altitude Extremely-Energetic Rockfalls. Earth Science, 47(3): 913-934(in Chinese with English abstract).
      [18] Ni, W.D., Tang, H.M., Liu, X., et al., 2013. Dynamic Stability Analysis of Rock Slope Considering Vibration Deterioration of Structural Planes under Seismic Loading. Chinese Journal of Rock Mechanics and Engineering, 32(3): 492-500(in Chinese with English abstract).
      [19] Patton, F.D., 1966. Multiple Modes of Shear Failure in Rock. 1st ISRM Congress. Lisbon, Portugal.
      [20] Qi, S.W., 2007. Evaluation of the Permanent Displacement of Rock Mass Slope Considering Deterioration of Slide Surface during Earthquake. Chinese Journal of Geotechnical Engineering, 29(3): 452-457(in Chinese with English abstract).
      [21] Ren, L., Zhu, Y., Cui, T.L., 2021. Study on Protection Scheme of Shield Tunnel Passing through Railway Bridge Pile at a Short Distance. Earth Science, 46(6): 2278-2286.
      [22] Tian, Y., Wang, L., Jin, H., et al., 2020. Dynamic Response of Seismic Dangerous Rock Based on PFC and Dynamics. Advances in Civil Engineering, (2): 1-19. https://doi.org/10.1155/2020/8846130
      [23] Tsubota, Y., Kunishi, T., Iwakoke, Y., et al., 2013. Fundamental Studies on Dynamic Properties of Rock Joint under Cyclic Loading Using Mortar and Ryoke Gneiss. Rock Dynamics and Applications. CRC Press, Switzerland. https://doi.org/10.1201/b14916-24
      [24] Wang, S.H., Wang, F.L., Xiu, Z.G., 2019. Dynamic Shear Strength of Rock Joints and Its Influence on Key Blocks. Geofluids. https://doi.org/10.1155/2019/6803512
      [25] Wang, S.J., Xue, S.Y., 1992. Dynamic Analysis of Wedge Sliding on Rock Slopes. Chinese Journal of Geology, 27(2): 177-182(in Chinese with English abstract).
      [26] Wang, S.J., Zhang, J.M., 1982. On the Dynamic Stability of Block Sliding on Rock Slopes. Chinese Journal of Geology, 17(2): 162-170(in Chinese with English abstract).
      [27] Wu, A.Q., 2019. Series Methods of Analyzing Rock Mass Stability Based on Key Block Theory and Their Applications to Three Gorges Project. Journal of Yangtze River Scientific Research Institute, 36(2): 1-7(in Chinese with English abstract).
      [28] Yang, X.G., Li, Y.L., 2019. Comparative Study of Slope Stability Quasi-Static Analysis Methods Based on Chinese and American Codes. Industrial Construction, 49(2): 98-102(in Chinese with English abstract).
      [29] Yang, Z.Y., Di, C., Yen, K., 2001. The Effect of Asperity Order on the Roughness of Rock Joints. International Journal of Rock Mechanics and Mining Sciences, 38: 745-752.
      [30] Zhao, T., Crosta, G., Dattola, G., et al., 2018. Dynamic Fragmentation of Jointed Rock Blocks during Rockslide-Avalanches: Insights from Discrete Element Analyses. Journal of Geophysical Research: Solid Earth, 123: 3250-3269. https://doi.org/10.1002/2017jb015210
      [31] 陈占锋, 向娟, 范文臣, 2019. 循环剪切对岩石节理形貌与力学行为影响实验研究. 中国科技论文, 14(2): 221-225, 238. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX201902018.htm
      [32] 洪海春, 徐卫亚, 2005. 地震作用下岩质边坡稳定性分析综述. 岩石力学与工程学报, 27(增刊1): 4827-4836. https://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZGYJ200508001039.htm
      [33] 刘博, 李海波, 刘亚群, 2013a. 循环剪切荷载作用下岩石节理变形特性试验研究. 岩土力学, 34(9): 2475-2481, 2488. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201309007.htm
      [34] 刘博, 李海波, 刘亚群, 等, 2013b. 循环荷载作用下节理凸起体概化破坏模型及剪切强度计算分析. 岩石力学与工程学报, 32(增刊2): 3000-3008. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2003.htm
      [35] 刘博, 李海波, 朱小明, 2011. 循环剪切荷载作用下岩石节理强度劣化规律试验模拟研究. 岩石力学与工程学报, 30(10): 2033-2039. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201110011.htm
      [36] 刘新锋, 赵英群, 王晓睿, 等, 2022. 岩石疲劳损伤及破坏前兆研究现状与展望. 地球科学, 47(6): 2190-2198. doi: 10.3799/dqkx.2021.186
      [37] 刘新荣, 邓志云, 刘永权, 等, 2019. 岩石节理峰前循环直剪试验颗粒流宏细观分析. 煤炭学报, 44(7): 2103-2115. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201907017.htm
      [38] 刘新荣, 许彬, 周小涵, 等, 2021. 软弱层峰前循环剪切宏细观累积损伤机制研究. 岩土力学, 42(5): 1291-1303. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202105010.htm
      [39] 罗刚, 程谦恭, 沈位刚, 等, 2022. 高位高能岩崩研究现状与发展趋势. 地球科学, 47(3): 913-934. doi: 10.3799/dqkx.2021.133
      [40] 倪卫达, 唐辉明, 刘晓, 等, 2013. 考虑结构面震动劣化的岩质边坡动力稳定分析. 岩石力学与工程学报, 32(3): 492-500. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201303008.htm
      [41] 祁生文, 2007. 考虑结构面退化的岩质边坡地震永久位移研究. 岩土工程学报, 29(3): 452-457. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200703024.htm
      [42] 任磊, 朱颖, 崔天麟, 2021. 盾构超近距离侧穿铁路桥桩保护方案探讨. 地球科学, 46(6): 2278-2286. doi: 10.3799/dqkx.2021.041
      [43] 王思敬, 薛守义, 1992. 岩体边坡楔形体动力学分析. 地质科学, 27(2): 177-182. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX199202008.htm
      [44] 王思敬, 张菊明, 1982. 边坡岩体滑动稳定的动力学分析. 地质科学, 17(2): 162-170. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX198202005.htm
      [45] 邬爱清, 2019. 基于关键块体理论的岩体稳定性分析方法及其在三峡工程中的应用. 长江科学院院报, 36(2): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-CJKB201902004.htm
      [46] 杨昕光, 李永录, 2019. 中美边坡拟静力稳定分析方法的对比研究. 工业建筑, 49(2): 98-102. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201902020.htm
    • 加载中
    图(13) / 表(2)
    计量
    • 文章访问数:  125
    • HTML全文浏览量:  43
    • PDF下载量:  36
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-05-03
    • 网络出版日期:  2023-01-10
    • 刊出日期:  2022-12-25

    目录

      /

      返回文章
      返回