Organic Carbon Distribution Characteristics of Qingshankou Shale in Songliao Basin, China
-
摘要: 总有机碳(TOC)含量是页岩油气资源量评价的关键参数之一.为定量分析松辽盆地青山口组页岩TOC含量分布特征,预测有利勘探区,以测井资料为基础,首先建立研究区构造模型,应用恢复古埋深法计算镜质体反射率(Ro),通过∆logR方法预测研究区TOC含量,最后利用地质统计学方法建立了研究区页岩TOC三维量化模型.结果表明,纵向上,青一段页岩TOC含量整体分布在0%~4%范围,青二段和青三段TOC含量明显低于青一段.平面上,青一段TOC含量在三肇凹陷南部及朝阳沟阶地中部最高,青二段TOC含量整体低于2%,其在古龙凹陷北部最高,青三段TOC含量普遍低于1.4%.研究成果为松辽盆地页岩油勘探开发有利区选取提供了重要指导和参考.Abstract: Total organic carbon (TOC) content is one of the key parameters to evaluate shale oil and gas resources. In order to quantitatively evaluate the TOC distribution characteristics and predict the sweet spots of shale of Qingshankou Formation in Songliao basin, the three-dimensional (3D) structural model of the Qingshankou shale reservoir was firstly constructed based on the logging data. Then, vitrinite reflectance (Ro) was calculated by restoring the ancient burial depth of reservoir rocks, and the TOC content of the Qingshankou Formation was predicted using the ∆logR method. Finally, the 3D model of TOC content in Qingshankou Formation was built using the geostatistical method. The results show that, vertically, the TOC content of Qing 1 Member is in the range of 0%-4%. However, the TOC content of Qing 2 Member and Qing 3 Member is significantly lower than that of Qing 1 Member. Horizontally, the TOC content of Qing 1 Member in the south of Sanzhao sag and the middle of Chaoyanggou terrace is the highest. The TOC content of Qing 2 Member is lower than 2%, and that in the north part of Gulong sag is the highest. The TOC content of Qing 3 Member is generally lower than 1.4%. This work provides important guidance and reference for selecting favorable shale oil exploration and development areas in Songliao basin.
-
Key words:
- Songliao basin /
- Qingshankou Formation /
- shale oil /
- total organic carbon /
- 3D geological modeling /
- petroleum geology
-
图 1 松辽盆地平面图(a)与地层层序图(b)
a.红色线区域为主要研究区;b.青山口组为主要研究层位;据高翔等,2017;李敏等,2019;蒙启安等,2021;Ye et al.,2022修改
Fig. 1. Map (a) and stratigraphic sequence (b) of Songliao basin
图 4 镜质体反射率Ro与有机质成熟度LOM关系图(据Crain, 2010改)
Fig. 4. Relationship between vitrinite reflectance (Ro) and level of maturity (LOM)
-
[1] Chen, F. J., Wang, X. W., Zhang, G. Y., et al., 1992. Structure and Geodynamic Setting of Oil and Gas Basin in the People's Republic of China. Geoscience, 6(3): 317-327 (in Chinese with English abstract). [2] Chi, Y. L., Yun, J. B., Meng, Q. A., et al., 2002. The Deep Structure and Dynamics and Oil Accumulation in Songliao Basin. Petroleum Industry Press, Beijing, 138-142 (in Chinese). [3] Crain, E. R., 2010. Unicorns in the Garden of Good and Evil: Part 1-Total Organic Carbon (TOC). CSPG Reservoir, 10: 31-34. [4] Feng, Q. H., Xu, S. Q., Xing, X. D., et al., 2020. Advances and Challenges in Shale Oil Development: A Critical Review. Advances in Geo⁃Energy Research, 4(4): 406-418. https://doi.org/10.46690/ager.2020.04.06 [5] Fu, J. H., Li, S. X., Niu, X. B., et al., 2020. Geological Characteristics and Exploration of Shale Oil in Chang 7 Member of Triassic Yanchang Formation, Ordos Basin, NW China. Petroleum Exploration and Development, 47(5): 870-883 (in Chinese with English abstract). [6] Gao, X., Liu, Z. H., Nie, Z. Y., et al., 2017. Determination of Timing and Its Geological Significance of Daqing Placanticline in Songliao Basin. Journal of Jilin University (Earth Science Edition), 47(1): 74-83 (in Chinese with English abstract). [7] Handhal, A. M., Al⁃Abadi, A. M., Chafeet, H. E., et al., 2020. Prediction of Total Organic Carbon at Rumaila Oil Field, Southern Iraq Using Conventional Well Logs and Machine Learning Algorithms. Marine and Petroleum Geology, 116: 104347. https://doi.org/10.1016/j.marpetgeo.2020.104347 [8] Hou, H. X., Ouyang, Y. L., Zeng, Q. C., et al., 2016. Seismic Quantitative Prediction Technique for Shale TOC in the Changning, Sichuan. Journal of Northeast Petroleum University, 40(5): 18-27, 5 (in Chinese with English abstract). [9] Huang, W. B., Cheng, J., Shao, M. L., et al., 2021. Discussion on Organic Matter Abundance Evaluation Criteria of Source Rocks in Deep Middle⁃High Thermal Evolution Stage in South Songliao Basin. Unconventional Oil & Gas, 8(2): 13-23 (in Chinese with English abstract). [10] Lei, Z. Y., Xie, X. N., Meng, Y. L., et al., 2012. Effecting of Overpressures on Diagensis in the Qijiagulong⁃ Sanzhao Depression of Songliao Basin. Earth Science, 37(4): 833-842 (in Chinese with English abstract). [11] Li, J. J., Shi, Y. L., Zhang, X. W., et al., 2014. Control Factors of Enrichment and Producibility of Shale Oil: A Case Study of Biyang Depression. Earth Science, 39(7): 848-857 (in Chinese with English abstract). [12] Li, M., Chen, B., Ruan, J. F., et al., 2019. Spatial Distribution Patterns of Single Framework Sand Bodies of a Shallow⁃Water Delta in the Cretaceous Quantou Formation of Xinmin Oilfield, Songliao Basin. Marine Geology & Quaternary Geology, 39(4): 46-55 (in Chinese with English abstract). [13] Li, S. C., Zhang, J. Y., Gong, F. H., et al., 2017. The Characteristics of Mudstones of Upper Cretaceous Qingshankou Formation and Favorable Area Optimization of Shale Oil in the North of Songliao Basin. Geological Bulletin of China, 36(4): 654-663 (in Chinese with English abstract). [14] Li, S. L., Ma, Y. Z., Gomez, E., 2021. Importance of Modeling Heterogeneities and Correlation in Reservoir Properties in Unconventional Formations: Examples of Tight Gas Reservoirs. Journal of Earth Science, 32(4): 809-817. https://doi.org/10.1007/s12583⁃021⁃1430⁃2 [15] Li, Z. L., Chen, Z. J., Bai, X. Y., et al., 2021. Application of Logging Prediction TOC Method in the Evaluation of Source Rocks in Hari Sag. Petrochemical Industry Application, 40(10): 77-81 (in Chinese with English abstract). [16] Liu, B., Shi, J. X., Fu, X. F., et al., 2018. Petrological Characteristics and Shale Oil Enrichment of Lacustrine Fine⁃Grained Sedimentary System: A Case Study of Organic⁃Rich Shale in First Member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China. Petroleum Exploration and Development, 45(5): 828-838 (in Chinese with English abstract). [17] Liu, B., Wang, H., Fu, X., et al., 2019. Lithofacies and Depositional Setting of a Highly Prospective Lacustrine Shale Oil Succession from the Upper Cretaceous Qingshankou Formation in the Gulong Sag, Northern Songliao Basin, Northeast China. AAPG Bulletin, 103(2): 405-432. https://doi.org/10.1306/08031817416 [18] Liu, Z. X., Yan, D. T., Niu, X., 2020. Insights into Pore Structure and Fractal Characteristics of the Lower Cambrian Niutitang Formation Shale on the Yangtze Platform, South China. Journal of Earth Science, 31(1): 169-180. https://doi.org/10.1007/s12583⁃020⁃1259⁃0 [19] Mahmoud, A. A., Gamal, H., Elkatatny, S., et al., 2021. Estimating the Total Organic Carbon for Unconventional Shale Resources during the Drilling Process: A Machine Learning Approach. Journal of Energy Resources Technology, 144(4): 1-26. https://doi.org/10.1115/1.4051737 [20] Meng, Q. A., Li, C. B., Bai, X. F., et al., 2021. Petroleum Exploration History and Enlightenment in the Northern Songliao Basin. Xinjiang Petroleum Geology, 42(3): 264-271 (in Chinese with English abstract). [21] Passey, Q. R., Creaney, S., Kulla, J. B., et al., 1990. A Practical Model for Organic Richness from Porosity and Resistivity Logs. AAPG Bulletin, 74(12): 1777-1794. https://doi.org/10.1306/0C9B25C9⁃1710⁃11D7⁃8645000102C1865D [22] Tourtelot, H. A., 1964. Minor⁃Element Composition and Organic Carbon Content of Marine and Nonmarine Shales of Late Cretaceous Age in the Western Interior of the United States. Geochimica et Cosmochimica Acta, 28(10): 1579-1604. https://doi.org/10.1016/0016⁃7037(64)90008⁃0 [23] Wang, G. W., Zhu, Z. Y., Zhu, G. Y., 2002. Logging Identification and Evaluation of Cambrian⁃Ordovician Source Rocks in Syneclise of Tarim Basin. Petroleum Exploration and Development, 29(4): 50-52 (in Chinese with English abstract). [24] Wang, X., Ma, J. F., Wand, D. Y., et al., 2020. Prediction of Total Organic Carbon Content by a Generalized ΔlogR Method Considering Density Factors: Illustrated by the Example of Deep Continental Source Rocks in the Southwestern Part of the Bozhong Sag. Oil Geophysical Prospecting, 55(6): 1330-1342, 1165-1166 (in Chinese with English abstract). [25] Wang, Y., Rong, H., Jiao, Y. Q., et al., 2021. Effects of Basic Intrusions on Shale Mineralogy: A Case Study from Nenjiang Formation in Songliao Basin. Earth Science, 46(6): 2188-2203 (in Chinese with English abstract). [26] Wang, Y. H., Liang, J. P., Zhang, J. Y., et al., 2020. Resource Potential and Exploration Direction of Gulong Shale Oil in Songliao Basin. Petroleum Geology & Oilfield Development in Daqing, 39(3): 20-34 (in Chinese with English abstract). [27] Xu, S. H., Zhu, Y. Q., 2010. Well Logs Response and Prediction Model of Organic Carbon Content in Source Rocks-A Case Study from the Source Rock of Wenchang Formation in the Pearl Mouth Basin. Petroleum Geology & Experiment, 32(3): 290-295, 300 (in Chinese with English abstract). [28] Ye, Y. Q., Xi, D. P., Sun, L. X., et al., 2022. Ostracoda from the Santonian⁃Campanian (Upper Cretaceous) Nenjiang and Sifangtai Formations, Songliao Basin, Northeastern China. Journal of Paleontology, 96(1): 174-195. https://doi.org/10.1017/jpa.2021.70 [29] Zeng, W. Z., Song, Z. G., Zhou, G. Y., 2021. Pore Structure of Qingshankou Formation Shales in Songliao Basin and Its Geological Significance. Journal of China University of Petroleum (Edition of Natural Science), 45(6): 35-41 (in Chinese with English abstract). [30] Zhao, Z. H., Bai, J. P., Lai, T. G., 2018. Reversal Structure and Its Relation to Metallization of Sandstone Type Uranium Deposit in Northern Songliao Basin. Uranium Geology, 34(5): 274-279 (in Chinese with English abstract). [31] Zhou, L. H., Chen, C. W., Han, G. M., et al., 2021. Difference Characteristics between Continental Shale Oil and Tight Oil and Exploration Practice: A Case from Huanghua Depression, Bohai Bay Basin. Earth Science, 46(2): 555-571 (in Chinese with English abstract). [32] Zhu, G. Y., Jin, Q., Zhang, L. Y., 2003. Using Log Information to Analyse the Geochemical Characteristics of Source Rocks in Jiyang Depression. Well Logging Technology, (2): 104-109, 146 (in Chinese with English abstract). [33] Zou, C. C., Zhang, X. H., Zhao, J. H., et al., 2018. Scientific Results of Geophysical Logging in the Upper Cretaceous Strata, CCSD SK⁃2 East Borehole in the Songliao Basin of Northeast China. Acta Geoscientica Sinica, 39(6): 679-690 (in Chinese with English abstract). [34] Zou, C. N., Dong, D. Z., Yang, H., et al., 2011. Conditions of Shale Gas Accumulation and Exploration Practices in China. Natural Gas Industry, 31(12): 26-39, 125 (in Chinese with English abstract). [35] Zou, C. N., Yang, Z., Dong, D. Z., et al., 2022. Formation, Distribution and Prospect of Unconventional Hydrocarbons in Source Rock Strata in China. Earth Science, 47(5): 1517-1533 (in Chinese with English abstract). [36] Zou, C. N., Zhao, Q., Zhang, G. S., et al., 2016. Energy Revolution: From a Fossil Energy Era to a New Energy Era. Natural Gas Industry, 36(1): 1-10 (in Chinese with English abstract). [37] 陈发景, 汪新文, 张光亚, 等, 1992. 中国中、新生代含油气盆地构造和动力学背景. 现代地质, 6(3): 317-327. https://www.cnki.com.cn/Article/CJFDTOTAL-XDDZ199203009.htm [38] 迟元林, 云金表, 蒙白安, 等, 2002. 松辽盆地深部结构及成盆动力学与油气聚集. 北京: 石油工业出版社, 138-142. [39] 付金华, 李士祥, 牛小兵, 等, 2020. 鄂尔多斯盆地三叠系长7段页岩油地质特征与勘探实践. 石油勘探与开发, 47(5): 870-883. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202005005.htm [40] 高翔, 刘志宏, 聂志阳, 等, 2017. 松辽盆地大庆长垣形成时间的厘定及其地质意义. 吉林大学学报(地球科学版), 47(1): 74-83. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201701007.htm [41] 侯华星, 欧阳永林, 曾庆才, 等, 2016. 四川长宁页岩总有机碳地震定量预测方法. 东北石油大学学报, 40(5): 18-27, 5. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201605003.htm [42] 黄文彪, 程杰, 邵明礼, 等, 2021. 松辽盆地南部深层中‒高演化阶段烃源岩品质评价标准探讨. 非常规油气, 8(2): 13-23. https://www.cnki.com.cn/Article/CJFDTOTAL-FCYQ202102004.htm [43] 雷振宇, 解习农, 孟元林, 等, 2012. 松辽盆地齐家古龙‒三肇凹陷超压对成岩作用的影响. 地球科学, 37(4): 833-842. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201204023.htm [44] 李吉君, 史颖琳, 章新文, 等, 2014. 页岩油富集可采主控因素分析: 以泌阳凹陷为例. 地球科学, 39(7): 848-857. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201407007.htm [45] 李敏, 陈博, 阮金凤, 等, 2019. 松辽盆地新民油田下白垩统泉四段浅水三角洲骨架单砂体空间发育特征. 海洋地质与第四纪地质, 39(4): 46-55. https://www.cnki.com.cn/Article/CJFDTOTAL-HYDZ201904005.htm [46] 李士超, 张金友, 公繁浩, 等, 2017. 松辽盆地北部上白垩统青山口组泥岩特征及页岩油有利区优选. 地质通报, 36(4): 654-663. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201704020.htm [47] 李子梁, 陈治军, 白晓寅, 等, 2021. 测井预测TOC方法在哈日凹陷烃源岩评价中的应用. 石油化工应用, 40(10): 77-81. https://www.cnki.com.cn/Article/CJFDTOTAL-NXSH202110016.htm [48] 柳波, 石佳欣, 付晓飞, 等, 2018. 陆相泥页岩层系岩相特征与页岩油富集条件: 以松辽盆地古龙凹陷白垩系青山口组一段富有机质泥页岩为例. 石油勘探与开发, 45(5): 828-838. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201805009.htm [49] 蒙启安, 李春柏, 白雪峰, 等, 2021. 松辽盆地北部油气勘探历程与启示. 新疆石油地质, 42(3): 264-271. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202103003.htm [50] 王贵文, 朱振宇, 朱广宇, 2002. 烃源岩测井识别与评价方法研究. 石油勘探与开发, 29(4): 50-52. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200204015.htm [51] 王祥, 马劲风, 王德英, 等, 2020. 渤中凹陷西南部烃源岩TOC含量预测. 石油地球物理勘探, 55(6): 1330-1342, 1165-1166. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202006018.htm [52] 王岩, 荣辉, 焦养泉, 等, 2021. 基性岩侵入对页岩矿物学特征的影响: 以松辽盆地嫩江组为例. 地球科学, 46(6): 2188-2203. doi: 10.3799/dqkx.2020.177 [53] 王玉华, 梁江平, 张金友, 等, 2020. 松辽盆地古龙页岩油资源潜力及勘探方向. 大庆石油地质与开发, 39(3): 20-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202003003.htm [54] 徐思煌, 朱义清, 2010. 烃源岩有机碳含量的测井响应特征与定量预测模型: 以珠江口盆地文昌组烃源岩为例. 石油实验地质, 32(3): 290-295, 300. https://www.cnki.com.cn/Article/CJFDTOTAL-SYSD201003019.htm [55] 曾维主, 宋之光, 周国议, 2021. 松辽盆地青山口组页岩的压汞孔隙结构及其地质意义. 中国石油大学学报(自然科学版), 45(6): 35-41. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDX202106004.htm [56] 赵忠华, 白景萍, 赖天功, 2018. 松辽盆地北部反转构造与砂岩型铀矿成矿作用. 铀矿地质, 34(5): 274-279. [57] 周立宏, 陈长伟, 韩国猛, 等, 2021. 陆相致密油与页岩油藏特征差异性及勘探实践意义: 以渤海湾盆地黄骅坳陷为例. 地球科学, 46(2): 555-571. doi: 10.3799/dqkx.2020.081 [58] 朱光有, 金强, 张林晔, 2003. 用测井信息获取烃源岩的地球化学参数研究. 测井技术, (2): 104-109, 146. https://www.cnki.com.cn/Article/CJFDTOTAL-CJJS200302003.htm [59] 邹长春, 张小环, 赵金环, 等, 2018. 松辽盆地科学钻探工程松科二井东孔上白垩统地球物理测井科学成果. 地球学报, 39(6): 679-690. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201806005.htm [60] 邹才能, 董大忠, 杨桦, 等, 2011. 中国页岩气形成条件及勘探实践. 天然气工业, 31(12): 26-39, 125. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201112007.htm [61] 邹才能, 杨智, 董大忠, 等, 2022. 非常规源岩层系油气形成分布与前景展望. 地球科学, 47(5): 1517-1533. doi: 10.3799/dqkx.2022.160 [62] 邹才能, 赵群, 张国生, 等, 2016. 能源革命: 从化石能源到新能源. 天然气工业, 36(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-TRQG201601002.htm