Geological Characteristics and Key Scientific and Technological Problems of Gulong Shale Oil in Songliao Basin
-
摘要: 截止目前古龙凹陷页岩油的开发已见成效,总结古龙页岩油富集的地质条件对下一步的勘探开发工作尤为重要.对当前古龙页岩油基础地质特征及勘探成果进行了梳理总结,归纳了规模见产可能面临的科学技术问题,并探讨了下一步科研攻关方向.松辽盆地北部青山口组一段页岩具有机质丰度高(TOC为2.0%~3.0%,平均2.7%)、类型好(以Ⅰ型干酪根为主,生烃母质为层状藻类体)、成熟度高(Ro为1.20%~1.67%)、黏土矿物含量高(大于35%)等典型特征.受益于较高的地温梯度,古龙凹陷青一段有机质达到高成熟阶段,油质轻(地面密度小于0.8 g/cm3)、气油比高(大于50 m3/m3),具备高熟页岩油规模开发潜力.页岩油甜点评价标准的厘定、单井EUR预测存在不确定性及规模效益开发配套技术欠缺是古龙页岩油勘探开发目前面临的主要挑战.黏土矿物对油水赋存状态乃至含油饱和度的影响、复合润湿性对压裂液渗吸置换效率的控制等陆相页岩油特有机理研究的突破,将会推动国家级开发示范区产油目标的快速实现,并有望在轻质油带开发基础上向稀油带扩大古龙页岩油勘探开发成果.Abstract: The development of shale oil in Gulong Sag has achieved promising results. It is particularly important to summarize the geological conditions of Gulong shale oil enrichment for the next stage of exploration. In this paper, it aims to summarize the geological characteristics and exploration results of Gulong shale until now, raise the possible scientific and technological issues faced by production, and point out the direction of scientific research for further study. The shale of the first member of Qingshankou Formation in the north of the Songliao Basin is characterized by high organic matter content (TOC ranges in 2.0%-3.0%, with an average value of 2.7%), oil-prone organic type (mainly type Ⅰ kerogen, and the hydrocarbon generating material is mainly layered algae), high maturity (Ro ranges in 1.20%-1.67%) and high clay mineral content (more than 35%). Benefiting from the high ground temperature gradient, the organic matter of Qingshankou Formation in Gulong Sag is in high maturity stage, with light oil quality (ground density less than 0.8 g/cm3) and high gas oil ratio (more than 50 m3/m3), which shows the potential for large-scale development of high maturity shale oil. The unclear evaluation standards of Gulong shale oil, the uncertainty of single well EUR prediction and the lack of technology for large scale development are the main challenges for Gulong shale oil exploration and development. The breakthrough in the research on the unique mechanism of continental shale oil enrichment, such as the influence of clay minerals on the oil phase, the saturation of oil and water and the control of wettability on the permeability and replacement efficiency of fracturing fluid, will promote the rapid realization of the oil production target of the national development demonstration area, and is expected to expand the exploration and development achievements of Gulong shale oil on the basis of the development of light oil belt.
-
Key words:
- Songliao Basin /
- Qingshankou Formation /
- continental shale oil /
- scale development /
- light oil /
- petroleum geology
-
图 1 松辽盆地区域构造图及地层柱状图(修改自Liu et al., 2019b)
Fig. 1. Regional tectonic map and stratigraphic histogram of the Songliao Basin (modified from Liu et al., 2019b)
表 1 中国典型盆地地温梯度值
Table 1. Geothermal gradient values of typical basins in China
盆地名称 松辽 二连 渤海湾 沁水 鄂尔多斯 花海 酒西 酒东 柴达木 吐哈 准格尔 塔里木 地温梯度(℃/100 m) 4.1 3.5 3.6 2.6 2.8 2.8 2.5 3.0 2.7 2.5 2.1 2.0 大地热流(mW/m2) 70 69 62 61 63 56 50 51 53 44 35 44 -
[1] Awan, R. S., Liu, C. L., Aadil, N., et al., 2021. Organic Geochemical Evaluation of Cretaceous Talhar Shale for Shale Oil and Gas Potential from Lower Indus Basin, Pakistan. Journal of Petroleum Science and Engineering, 200: 108404. https://doi.org/10.1016/j.petrol.2021.108404 [2] Bai, L. H., Liu, B., Chi, Y. A., et al., 2021.2D NMR Studies of Fluids in Organic-Rich Shale from the Qingshankou Formation, Songliao Basin. Oil & Gas Geology, 42(6): 1389-1400 (in Chinese with English abstract). [3] Bai, L. H., Liu, B., Du, Y. J., et al., 2022. Distribution Characteristics and Oil Mobility Thresholds in Lacustrine Shale Reservoir: Insights from N2 Adsorption Experiments on Samples Prior to and Following Hydrocarbon Extraction. Petroleum Science, 19(2): 486-497. https://doi.org/10.1016/j.petsci.2021.10.018 [4] Bai, L. H., Liu, B., Yang, J. G., et al., 2021. Differences in Hydrocarbon Composition of Shale Oils in Different Phase States from the Qingshankou Formation, Songliao Basin, as Determined from Fluorescence Experiments. Frontiers of Earth Science, 15(2): 438-456. https://doi.org/10.1007/s11707-021-0915-8 [5] Chen, Y. K., Zhi, D. M., Qin, J. H., et al., 2022. Experimental Study of Spontaneous Imbibition and CO2 Huff and Puff in Shale Oil Reservoirs with NMR. Journal of Petroleum Science and Engineering, 209: 109883. https://doi.org/10.1016/j.petrol.2021.109883 [6] Feng, Z. H., Liu, B., Shao, H. M., et al., 2020. The Diagenesis Evolution and Accumulating Performance of the Mud Shale in Qingshankou Formation in Gulong Area, Songliao Basin. Petroleum Geology & Oilfield Development in Daqing, 39(3): 72-85 (in Chinese with English abstract). [7] Fu, S. T., Jin, Z. J., Fu, J. H., et al., 2021. Transformation of Understanding from Tight Oil to Shale Oil in the Member 7 of Yanchang Formation in Ordos Basin and Its Significance of Exploration and Development. Acta Petrolei Sinica, 42(5): 561-569 (in Chinese with English abstract). [8] He, W. Y., Meng, Q. A., Zhang, J. Y., 2021. Controlling Factors and Their Classification-Evaluation of Gulong Shale Oil Enrichment in Songliao Basin. Petroleum Geology & Oilfield Development in Daqing, 40(5): 1-12 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-8217.2021.05.001 [9] Jia, C. Z., Zheng, M., Zhang, Y. F., 2012. Unconventional Hydrocarbon Resources in China and the Prospect of Exploration and Development. Petroleum Exploration and Development, 39(2): 139-146. https://doi.org/10.1016/S1876-3804(12)60026-3 [10] Jin, Z. J., Zhu, R. K., Liang, X. P., et al., 2021. Several Issues Worthy of Attention in Current Lacustrine Shale Oil Exploration and Development. Petroleum Exploration and Development, 48(6): 1471-1484. https://doi.org/10.1016/S1876-3804(21)60303-8 [11] Kilian, L., 2016. The Impact of the Shale Oil Revolution on US Oil and Gasoline Prices. Review of Environmental Economics and Policy, 10(2): 185-205. https://doi.org/10.1093/reep/rew001 [12] Li, S. C., Yang, J. G., Liu, B., et al., 2021. Petrology and Lithoficies of Shale from the First Member of Qiangshankou Formation in Sanzhao Sag, Songliao Basin: A Case Study of SYY-3 Well. Geology and Resources, 30(3): 317-324, 295 (in Chinese with English abstract). [13] Liu, B., Bai, L. H., Chi, Y. A., et al., 2019a. Geochemical Characterization and Quantitative Evaluation of Shale Oil Reservoir by Two-Dimensional Nuclear Magnetic Resonance and Quantitative Grain Fluorescence on Extract: A Case Study from the Qingshankou Formation in Southern Songliao Basin, Northeast China. Marine and Petroleum Geology, 109: 561-573. https://doi.org/10.1016/j.marpetgeo.2019.06.046 [14] Liu, B., Wang, H. L., Fu, X. F., et al., 2019b. Lithofacies and Depositional Setting of a Highly Prospective Lacustrine Shale Oil Succession from the Upper Cretaceous Qingshankou Formation in the Gulong Sag, Northern Songliao Basin, Northeast China. AAPG Bulletin, 103(2): 405-432. https://doi.org/10.1306/08031817416 [15] Liu, B., Jiang, X. W., Bai, L. H., et al., 2022. Investigation of Oil and Water Migrations in Lacustrine Oil Shales Using 20 MHz 2D NMR Relaxometry Techniques. Petroleum Science, 19(3): 1007-1018. https://doi.org/10.1016/j.petsci.2021.10.011 [16] Liu, B., Shi, J. X., Fu, X. F., et al., 2018. Petrological Characteristics and Shale Oil Enrichment of Lacustrine Fine-Grained Sedimentary System: A Case Study of Organic-Rich Shale in First Member of Cretaceous Qingshankou Formation in Gulong Sag, Songliao Basin, NE China. Petroleum Exploration and Development, 45(5): 884-894. https://doi.org/10.1016/S1876-3804(18)30091-0 [17] Liu, H. M., Wang, Y., Yang, Y. H., et al., 2020. Sedimentary Environment and Lithofacies of Fine-Grained Hybrid Sedimentary in Dongying Sag: A Case of Fine-Grained Sedimentary System of the Es4. Earth Science, 45(10): 3543-3555 (in Chinese with English abstract). [18] Nie, H. K., Zhang, P. X., Bian, R. K., et al., 2016. Oil Accumulation Characteristics of China Continental Shale. Earth Science Frontiers, 23(2): 55-62 (in Chinese with English abstract). [19] Pan, S. Q., Zou, C. N., Li, Y., et al., 2021. Major Biological Events and Fossil Energy Formation: On the Development of Energy Science under the Earth System Framework. Petroleum Exploration and Development, 48(3): 581-594. https://doi.org/10.1016/S1876-3804(21)60047-2 [20] Ren, Z. L., Liu, C. Y., Zhang, X. H., et al., 2000. Research on the Relations between Geothermal History and Oil-Gas Generation in Jiudong Basin. Acta Sedimentologica Sinica, 18(4): 619-623 (in Chinese with English abstract). [21] Sun, L. D., Feng, Z. H., Jiang, H., et al., 2021a. Responsibilities of Petroleum Prospectors: Discussions on Dual Logic and Development Trend of Hydrocarbon Exploration. Petroleum Exploration and Development, 48(4): 999-1006. https://doi.org/10.1016/S1876-3804(21)60084-8 [22] Sun, L. D., Liu, H., He, W. Y., et al., 2021b. An Analysis of Major Scientific Problems and Research Paths of Gulong Shale Oil in Daqing Oilfield, NE China. Petroleum Exploration and Development, 48(3): 527-540. https://doi.org/10.1016/S1876-3804(21)60043-5 [23] Wang, F. L., Fu, Z. G., Wang, J. K., et al., 2021. Characteristics and Classification Evaluation of Gulong Shale Oil Reservoir in Songliao Basin. Petroleum Geology & Oilfield Development in Daqing, 40(5): 144-156 (in Chinese with English abstract). [24] Wang, P. W., Chen, Z. H., Jin, Z. J., et al., 2019. Optimizing Parameter "Total Organic Carbon Content" for Shale Oil and Gas Resource Assessment: Taking West Canada Sedimentary Basin Devonian Duvernay Shale as an Example. Earth Science, 44(2): 504-512 (in Chinese with English abstract). [25] Wang, T. K., He, W. Y., Yuan, Y. Y., et al., 2017. Latest Development in US Cost-Effective Development of Shale Oil under Background of Low Oil Prices. Oil Forum, 36(2): 60-68 (in Chinese with English abstract). [26] Wang, Y. H., Liang, J. P., Zhang, J. Y., et al., 2020. Resource Potential and Exploration Direction of Gulong Shale Oil in Songliao Basin. Petroleum Geology & Oilfield Development in Daqing, 39(3): 20-34 (in Chinese with English abstract). doi: 10.3969/j.issn.1673-8217.2020.03.004 [27] Xiao, F., Yang, J. G., Li, S. C., et al., 2021. Oil-Bearing Parameter Optimization and Resource Calculation of the Shale Oil in Qijia and Gulong Sags, Songliao Basin. Geology and Resources, 30(3): 395-404, 305 (in Chinese with English abstract). [28] Yang, J. G., Li, S. C., Yao, Y. L., et al., 2020. Significant Breakthrough in the Continental Shale Oil Survey in Northern Songliao Basin. Geology and Resources, 29(3): 300 (in Chinese with English abstract). doi: 10.3969/j.issn.1671-1947.2020.03.015 [29] Yang, X., Liu, B., Zhang, J. C., et al., 2019. Identification of Sedimentary Responses to the Milankovitch Cycles in the K2qn1 Formation, Gulong Depression. Acta Sedimentologica Sinica, 37(4): 661-673 (in Chinese with English abstract). [30] Zhang, A. D., Wang, J. P., Wang, Y. C., et al., 2021. Reservoir Space Types and Oil Occurrence of Gulong Shale in Songliao Basin. Petroleum Geology & Oilfield Development in Daqing, 40(5): 68-77 (in Chinese with English abstract). [31] Zhang, F., Kong, M. H., Wang, X., et al., 2009. Thermal History and Hydrocarbon Generation History in the Northern Songliao Basin. Chinese Journal of Geology (Scientia Geologica Sinica), 44(2): 468-477 (in Chinese with English abstract). [32] Zheng, H., Liao, R. Q., Cheng, N., et al., 2021. Microscopic Mechanism of Fracturing Fluid Imbibition in Stimulated Tight Oil Reservoir. Journal of Petroleum Science and Engineering, 202: 108533. https://doi.org/10.1016/j.petrol.2021.108533 [33] Zhou, L. H., Chen, C. W., Han, G. M., et al., 2021. Difference Characteristics between Continental Shale Oil and Tight Oil and Exploration Practice: A Case from Huanghua Depression, Bohai Bay Basin. Earth Science, 46(2): 555-571 (in Chinese with English abstract). [34] Zou, C. N., Dong, D. Z., Wang, Y. M., et al., 2016. Shale Gas in China: Characteristics, Challenges and Prospects (Ⅱ). Petroleum Exploration and Development, 43(2): 182-196. https://doi.org/10.1016/S1876-3804(16)30022-2 [35] Zou, C. N., He, D. B., Jia, C. Y., et al., 2021. Connotation and Pathway of World Energy Transition and Its Significance for Carbon Neutral. Acta Petrolei Sinica, 42(2): 233-247 (in Chinese with English abstract). [36] Zou, C. N., Zhai, G. M., Zhang, G. Y., et al., 2015. Formation, Distribution, Potential and Prediction of Global Conventional and Unconventional Hydrocarbon Resources. Petroleum Exploration and Development, 42(1): 14-28. https://doi.org/10.1016/S1876-3804(15)60002-7 [37] 白龙辉, 柳波, 迟亚奥, 等, 2021. 二维核磁共振技术表征页岩所含流体特征的应用: 以松辽盆地青山口组富有机质页岩为例. 石油与天然气地质, 42(6): 1389-1400. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT202106013.htm [38] 冯子辉, 柳波, 邵红梅, 等, 2020. 松辽盆地古龙地区青山口组泥页岩成岩演化与储集性能. 大庆石油地质与开发, 39(3): 72-85. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202003007.htm [39] 付锁堂, 金之钧, 付金华, 等, 2021. 鄂尔多斯盆地延长组7段从致密油到页岩油认识的转变及勘探开发意义. 石油学报, 42(5): 561-569. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202105001.htm [40] 何文渊, 蒙启安, 张金友, 2021. 松辽盆地古龙页岩油富集主控因素及分类评价. 大庆石油地质与开发, 40(5): 1-12. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202105001.htm [41] 李士超, 杨建国, 柳波, 等, 2021. 松辽盆地三肇凹陷青山口组一段泥页岩岩石学特征及岩相划分——以松页油3井为例. 地质与资源, 30(3): 317-324, 295. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202103013.htm [42] 刘惠民, 王勇, 杨永红, 等, 2020. 东营凹陷细粒混积岩发育环境及其岩相组合: 以沙四上亚段泥页岩细粒沉积为例. 地球科学, 45(10): 3543-3555. doi: 10.3799/dqkx.2020.156 [43] 聂海宽, 张培先, 边瑞康, 等, 2016. 中国陆相页岩油富集特征. 地学前缘, 23(2): 55-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201602009.htm [44] 任战利, 刘池阳, 张小会, 等, 2000. 酒东盆地热演化史与油气关系研究. 沉积学报, 18(4): 619-623. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200004024.htm [45] 王凤兰, 付志国, 王建凯, 等, 2021. 松辽盆地古龙页岩油储层特征及分类评价. 大庆石油地质与开发, 40(5): 144-156. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202105013.htm [46] 王鹏威, 谌卓恒, 金之钧, 等, 2019. 页岩油气资源评价参数之"总有机碳含量"的优选: 以西加盆地泥盆系Duvernay页岩为例. 地球科学, 44(2): 504-512. doi: 10.3799/dqkx.2018.191 [47] 汪天凯, 何文渊, 袁余洋, 等, 2017. 美国页岩油低油价下效益开发新进展及启示. 石油科技论坛, 36(2): 60-68. https://www.cnki.com.cn/Article/CJFDTOTAL-SYKT201702011.htm [48] 王玉华, 梁江平, 张金友, 等, 2020. 松辽盆地古龙页岩油资源潜力及勘探方向. 大庆石油地质与开发, 39(3): 20-34. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202003003.htm [49] 肖飞, 杨建国, 李士超, 等, 2021. 松辽盆地齐家和古龙凹陷页岩油含油性参数优选与资源量计算. 地质与资源, 30(3): 395-404, 305. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202103022.htm [50] 杨建国, 李士超, 姚玉来, 等, 2020. 松辽盆地北部陆相页岩油调查取得重大突破. 地质与资源, 29(3): 300. https://www.cnki.com.cn/Article/CJFDTOTAL-GJSD202003015.htm [51] 杨雪, 柳波, 张金川, 等, 2019. 古龙凹陷青一段米兰科维奇旋回识别及其沉积响应. 沉积学报, 37(4): 661-673. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201904001.htm [52] 张安达, 王继平, 王永超, 等, 2021. 松辽盆地古龙页岩储集空间类型及油赋存状态. 大庆石油地质与开发, 40(5): 68-77. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK202105006.htm [53] 张帆, 孔明华, 王雪, 等, 2009. 松辽盆地北部热史恢复及烃源岩生烃史. 地质科学, 44(2): 468-477. https://www.cnki.com.cn/Article/CJFDTOTAL-DZKX200902015.htm [54] 周立宏, 陈长伟, 韩国猛, 等, 2021. 陆相致密油与页岩油藏特征差异性及勘探实践意义: 以渤海湾盆地黄骅坳陷为例. 地球科学, 46(2): 555-571. doi: 10.3799/dqkx.2020.081 [55] 邹才能, 何东博, 贾成业, 等, 2021. 世界能源转型内涵、路径及其对碳中和的意义. 石油学报, 42(2): 233-247. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202102008.htm