• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    一种改进的光滑粒子动力学法在地震条件下岩质边坡中的验证与应用

    夏成志 石振明 李博 郑鸿超 刘毛毛

    夏成志, 石振明, 李博, 郑鸿超, 刘毛毛, 2022. 一种改进的光滑粒子动力学法在地震条件下岩质边坡中的验证与应用. 地球科学, 47(12): 4469-4483. doi: 10.3799/dqkx.2022.318
    引用本文: 夏成志, 石振明, 李博, 郑鸿超, 刘毛毛, 2022. 一种改进的光滑粒子动力学法在地震条件下岩质边坡中的验证与应用. 地球科学, 47(12): 4469-4483. doi: 10.3799/dqkx.2022.318
    Xia Chengzhi, Shi Zhenming, Li Bo, Zheng Hongchao, Liu Maomao, 2022. Verification and Application of an Improved Smooth Particle Hydrodynamics Method for a Rock Slope under Seismic Conditions. Earth Science, 47(12): 4469-4483. doi: 10.3799/dqkx.2022.318
    Citation: Xia Chengzhi, Shi Zhenming, Li Bo, Zheng Hongchao, Liu Maomao, 2022. Verification and Application of an Improved Smooth Particle Hydrodynamics Method for a Rock Slope under Seismic Conditions. Earth Science, 47(12): 4469-4483. doi: 10.3799/dqkx.2022.318

    一种改进的光滑粒子动力学法在地震条件下岩质边坡中的验证与应用

    doi: 10.3799/dqkx.2022.318
    基金项目: 

    国家重点研发计划项目 2019YFC1509702

    国家自然科学基金面上项目 41977227

    详细信息
      作者简介:

      夏成志(1996-),男,博士研究生,主要研究方向为地质工程.ORCID:0000-0001-5286-7464.E-mail:2110409@tongji.edu.cn

      通讯作者:

      李博,教授,从事地质工程方向研究.E-mail: libotj@tongji.edu.cn

    • 中图分类号: P642

    Verification and Application of an Improved Smooth Particle Hydrodynamics Method for a Rock Slope under Seismic Conditions

    • 摘要:

      开发一种改进损伤框架的粒子流算法,被称为核断裂的光滑粒子流法(kernel⁃broken smoothed particle hydrodynamics,KBSPH),用于模拟地震条件下岩质边坡的裂纹扩展和变形破坏过程.在KBSPH中,提出一种改进的损伤框架,通过引入断裂标志来改进损伤粒子的核函数,使损伤粒子的虚拟应力键直接断裂,裂纹在断裂的应力键间生成,从而模拟岩石的裂纹扩展过程.在地震边界上采用了双层边界,将动力输入边界与黏滞边界分离.首先通过薄板振动实验验证KBSPH的动力特性.其次以单裂隙岩体单轴压缩试验验证KBSPH的断裂力学特性.最后模拟地震条件下多节理岩质边坡中裂纹扩展过程和动力响应.薄板振动实验验证了KBSPH的动力特性的准确性.单裂隙岩体单轴压缩试验,证明了KBSPH可以正确模拟预制裂隙尖端的翼型裂纹.通过对比以往数值模拟方法和现场案例,表明KBSPH正确揭示了加速度放大效应以及地震条件下岩质边坡的裂纹扩展过程.KBSPH避免了传统算法的网格畸变,损伤粒子应力分量重新分配的问题,降低了编程难度,提高了运行速率,可为SPH在地震条件下岩石力学中的应用和理解岩石断裂机理提供一定的参考.

       

    • 图  1  离散方法和核函数原理示意

      Fig.  1.  Schematic illustration of the SPH discrete methods and kernel function

      图  2  KBSPH损伤框架原理

      Fig.  2.  Schematic illustration of the KBSPH damage framework

      图  3  KBSPH模拟流程图

      Fig.  3.  Program flow of a KBSPH simulation

      图  4  薄板模型

      Fig.  4.  Model of the thin plate

      图  5  薄板动态位移过程

      a.KBSPH模型;b.SPH模型(据Bao et al.,2020

      Fig.  5.  Dynamic deformation process of the oscillating plate

      图  6  自由端竖向位移的时程曲线

      Fig.  6.  Time history of vertical displacement for a point on the end of the oscillating plate

      图  7  单预制裂隙岩样的模型尺寸和粒子分布

      Fig.  7.  Model size and base particle distribution of rock cell with a single prefabricated crack

      图  8  KBSPH岩样结果及以往试验(Yang and Jing, 2011)对比

      Fig.  8.  KBSPH result and comparison with experiment result (Yang and Jing, 2011)

      图  9  KBSPH边坡模型动力边界以及监测点(a)和粒子分布及岩桥特征(b)

      Fig.  9.  KBSPH slope model dynamic boundary and monitoring points (a), particle distribution and rock bridge characteristics (b)

      图  10  初始应力平衡

      Fig.  10.  Initial stress balance

      图  11  裂隙岩体中坡顶与坡底的水平加速度、速度和位移时程曲线

      Fig.  11.  Time curves of horizontal acceleration, velocity, and displacements in fractured rock slope

      图  12  岩桥水平应力时程曲线(未施加地震水平加速度)

      Fig.  12.  Time curves of horizontal stress of rock bridge without horizontal seismic acceleration applied

      图  13  裂隙岩体的裂纹扩展以及位移云图(未施加地震水平加速度)

      Fig.  13.  Crack propagation and displacement cloud map of fractured rock mass without horizontal seismic acceleration applied

      图  14  岩桥水平应力时程曲线(施加水平地震加速度)

      Fig.  14.  Time curves of horizontal stress of rock bridge with horizontal seismic acceleration applied

      图  15  地震条件下裂隙岩体的裂纹扩展以及位移云图

      c.对比IFDEM结果(Sun et al.,2022);d.现场结果(Huang et al.,2015

      Fig.  15.  Crack propagation and displacement cloud diagram of fractured rock mass under seismic conditions

      表  1  数值模型与解析解的周期、最大振幅比较

      Table  1.   Comparison of analytic solution and SPH numerical simulation

      周期(Tc0/L) 周期误差 最大振幅(A/L) 振幅误差
      解析解 72.39 - 0.115 -
      本文结果(分辨率为5.0 mm) 72.12 0.4% 0.109 4.8%
      本文结果(分辨率2.5 mm) 72.40 0.01% 0.111 3.6%
      Gray et al. (2001) 82 13.3% 0.125 8.7%
      Antoci et al. (2007) 81.5 12.6% 0.124 7.8%
      Bao et al. (2020) 76 5% 0.119 3.6%
      下载: 导出CSV

      表  2  KBSPH岩坡模型的参数

      Table  2.   Parameters for KBSPH rock slope model

      密度(kg/m3) 弹性模量(GPa) 泊松比 黏聚力(MPa) 内摩擦角(°) 抗拉强度(MPa)
      基岩 2 700 10 0.25 1.0 38 0.8
      节理 2 300 1 0.35 0.2 24 0.1
      下载: 导出CSV
    • [1] Abdelrazek, A. M., Kimura, I., Shimizu, Y., 2016. Simulation of the Erosion and Seepage Failure around Sheet Pile Using Two⁃Phase WC⁃SPH Method. Journal of Japan Society of Civil Engineers, Ser. A2 (Applied Mechanics (AM)), 72(2): I_495-I_504. https://doi.org/10.2208/jscejam.72.i_495
      [2] Al⁃Mukhtar, A. M., Merkel, B., 2015. Simulation of the Crack Propagation in Rocks Using Fracture Mechanics Approach. Journal of Failure Analysis and Prevention, 15(1): 90-100. https://doi.org/10.1007/s11668⁃014⁃9907⁃2
      [3] Antoci, C., Gallati, M., Sibilla, S., 2007. Numerical Simulation of Fluid⁃Structure Interaction by SPH. Computers & Structures, 85(11-14): 879-890. https://doi.org/10.1016/j.compstruc.2007.01.002
      [4] Bao, Y. J., Huang, Y., Liu, G. R., et al., 2020. SPH Simulation of High⁃Volume Rapid Landslides Triggered by Earthquakes Based on a Unified Constitutive Model. Part I: Initiation Process and Slope Failure. International Journal of Computational Methods, 17(4): 1850150. https://doi.org/10.1142/s0219876218501505
      [5] Behnia, M., Goshtasbi, K., Marji, M. F., et al., 2014. Numerical Simulation of Crack Propagation in Layered Formations. Arabian Journal of Geosciences, 7: 2729-2737. https://doi.org/10.1007/s12517⁃013⁃0885⁃6
      [6] Benz, W., Asphaug, E., 1994. Impact Simulations with Fracture. I. Method and Tests. Icarus, 107(1): 98-116. https://doi.org/10.1006/icar.1994.1009
      [7] Bi, J., Zhou, X. P., 2015. Numerical Simulation of Zonal Disintegration of the Surrounding Rock Masses around a Deep Circular Tunnel under Dynamic Unloading. International Journal of Computational Methods, 12(3): 1550020. https://doi.org/10.1142/s0219876215500206
      [8] Cao, P., Li, Y. S., Li, Z. L., et al., 2021. Geological Structure Characteristics and Genetic Mechanism of Baige Landslide Slope in Changdu, Tibet. Earth Science, 46(9): 3397-3409(in Chinese with English abstract).
      [9] Che, A. L., Yang, H. K., Wang, B., et al., 2016. Wave Propagations through Jointed Rock Masses and Their Effects on the Stability of Slopes. Engineering Geology, 201: 45-56. https://doi.org/10.1016/j.enggeo.2015.12.018
      [10] Crouch, S. L., 1976. Solution of Plane Elasticity Problems by the Displacement Discontinuity Method. I. Infinite Body Solution. International Journal for Numerical Methods in Engineering, 10(2): 301-343. https://doi.org/10.1002/nme.1620100206
      [11] Cundall, P. A., Strack, O. D. L., 1979. A Discrete Numerical Model for Granular Assemblies. Géotechnique, 29(1): 47-65. https://doi.org/10.1680/geot.1979.29.1.47
      [12] Fan, H., Huang, D. R., Wang, G., 2021. A Four⁃Way Enhanced Numerical Manifold Method for Crack Propagation and Failure Analysis of Rock Slopes. Applied Mathematical Modelling, 95: 623-643. https://doi.org/10.1016/j.apm.2021.02.025
      [13] Fortsakis, P., Nikas, K., Marinos, V., et al., 2012. Anisotropic Behaviour of Stratified Rock Masses in Tunnelling. Engineering Geology, 141-142: 74-83. https://doi.org/10.1016/j.enggeo.2012.05.001
      [14] Gingold, R. A., Monaghan, J. J., 1977. Smoothed Particle Hydrodynamics: Theory and Application to Non⁃Spherical Stars. Monthly Notices of the Royal Astronomical Society, 181(3): 375-389. https://doi.org/10.1093/mnras/181.3.375
      [15] Gray, J. P., Monaghan, J. J., Swift, R. P., 2001. SPH Elastic Dynamics. Computer Methods in Applied Mechanics and Engineering, 190(49-50): 6641-6662. https://doi.org/10.1016/s0045⁃7825(01)00254⁃7
      [16] He, C., Tang, H. M., Shen, P. W., et al., 2021. Progressive Failure Mode and Stability Reliability of Strain⁃Softening Slope. Earth Science, 46(2): 697-707(in Chinese with English abstract).
      [17] Hiraoka, N., Oya, A., Bui, H. H., et al., 2013. Seismic Slope Failure Modelling Using the Mesh⁃Free SPH Method. International Journal of Geomate, 5(1): 660-665. https://doi.org/10.21660/2013.9.3318
      [18] Huang, D., Cen, D. F., Ma, G. W., et al., 2015. Step⁃Path Failure of Rock Slopes with Intermittent Joints. Landslides, 12(5): 911-926. https://doi.org/10.1007/s10346⁃014⁃0517⁃6
      [19] Jaeger, J. C., 1971. Friction of Rocks and Stability of Rock Slopes. Géotechnique, 21(2): 97-134. https://doi.org/10.1680/geot.1971.21.2.97
      [20] Kang, J. T., Wu, Q., Tang, H. M., et al., 2019. Strength Degradation Mechanism of Soft and Hard Interbedded Rock Masses of Badong Formation Caused by Rock/Discontinuity Degradation. Earth Science, 44(11): 3950-3960 (in Chinese with English abstract).
      [21] Li, Z. S., Ju, N. P., Hou, W. L., et al., 2012. Large⁃Scale Shaking Table Model Tests for Dynamic Response of Steep Stratified Rock Slopes. Journal of Engineering Geology, 20(2): 242-248(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2012.02.013
      [22] Liao, Z. Y., Ren, M., Tang, C. N., et al., 2020. A Three⁃Dimensional Damage⁃Based Contact Element Model for Simulating the Interfacial Behaviors of Rocks and Its Validation and Applications. Geomechanics and Geophysics for GeoEnergy and GeoResources, 6(3): 1-21. https://doi.org/10.1007/s40948⁃020⁃00171⁃z
      [23] Libersky, L. D., Petschek, A. G., 2008. Smooth Particle Hydrodynamics with Strength of Materials. In: Trease, H. E., Fritts, M. F., Crowley, W. P., eds., Advances in the Free⁃Lagrange Method Including Contributions on Adaptive Gridding and the Smooth Particle Hydrodynamics Method. Lecture Notes in Physics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3⁃540⁃54960⁃9_58
      [24] Libersky, L. D., Petschek, A. G., Carney, T. C., et al., 1993. High Strain Lagrangian Hydrodynamics. Journal of Computational Physics, 109(1): 67-75. https://doi.org/10.1006/jcph.1993.1199
      [25] Liu, G. R., Liu, M. B., Li, S. F., 2004. Smoothed Particle Hydrodynamics: A Meshfree Method. Computational Mechanics, 33(6): 491. https://doi.org/10.1007/s00466⁃004⁃0573⁃1
      [26] Ma, G. W., Wang, X. J., Ren, F., 2011. Numerical Simulation of Compressive Failure of Heterogeneous Rock⁃Like Materials Using SPH Method. International Journal of Rock Mechanics and Mining Sciences, 48(3): 353-363. https://doi.org/10.1016/j.ijrmms.2011.02.001
      [27] Małkowski, P., 2015. The Impact of the Physical Model Selection and Rock Mass Stratification on the Results of Numerical Calculations of the State of Rock Mass Deformation around the Roadways. Tunnelling and Underground Space Technology, 50: 365-375. https://doi.org/10.1016/j.tust.2015.08.004
      [28] Monaghan, J. J., 1994. Simulating Free Surface Flows with SPH. Journal of Computational Physics, 110(2): 399-406. https://doi.org//10.1006/jcph.1994.1034
      [29] Monaghan, J. J., 2005. Smoothed Particle Hydrodynamics. Reports on Progress in Physics, 68(8): 1703-1759. https://doi.org/10.1088/0034⁃4885/68/8/R01
      [30] Shi, G. H., 1991. Manifold Method of Material Analysis. In: Transcations of the 9th Army Confernece on Applied Mathematics and Computing Minneapolis. U. S. Army Research Office, Minnesota, 57-76.
      [31] Shi, G. H., Goodman, R. E., 1989. Generalization of Two⁃Dimensional Discontinuous Deformation Analysis for Forward Modelling. International Journal for Numerical and Analytical Methods in Geomechanics, 13(4): 359-380. https://doi.org/10.1002/nag.1610130403
      [32] Sun, L., Grasselli, G., Liu, Q. S., et al., 2022. The Role of Discontinuities in Rock Slope Stability: Insights from a Combined Finite⁃Discrete Element Simulation. Computers and Geotechnics, 147: 104788. https://doi.org/10.1016/j.compgeo.2022.104788
      [33] VonNeumann, J., Richtmyer, R. D., 1950. A Method for the Numerical Calculation of Hydrodynamic Shocks. Journal of Applied Physics, 21(3): 232-237. https://doi.org/10.1063/1.1699639
      [34] Wang, J., Zhang, Y., Chen, Y., et al., 2021. Back-Analysis of Donghekou Landslide Using Improved DDA Considering Joint Roughness Degradation. Landslides; 18(5): 1925-1935. doi: 10.1007/s10346-020-01586-1
      [35] Wu, H., Atangana Njock, P. G., Chen, J. J., et al., 2019. Numerical Simulation of Spudcan⁃Soil Interaction Using an Improved Smoothed Particle Hydrodynamics (SPH) Method. Marine Structures, 66: 213-226. https://doi.org/10.1016/j.marstruc.2019.04.007
      [36] Xu, G. X., Yao, L. K., Li, Z. H., et al., 2008. Dynamic Response of Slopes under Earthquakes and Influence of Ground Motion Parameters. Chinese Journal of Geotechnical Engineering, 30(6): 918-923(in Chinese with English abstract). doi: 10.3321/j.issn:1000-4548.2008.06.022
      [37] Yadav, P., Sharan, S., 2019. Numerical Investigation of Squeezing in Underground Hard Rock Mines. Rock Mechanics and Rock Engineering, 52(4): 1211-1229. https://doi.org/10.1007/s00603⁃018⁃1632⁃9
      [38] Yang, S. Q., Jing, H. W., 2011. Strength Failure and Crack Coalescence Behavior of Brittle Sandstone Samples Containing a Single Fissure under Uniaxial Compression. International Journal of Fracture, 168(2): 227-250. https://doi.org/10.1007/s10704⁃010⁃9576⁃4
      [39] Yu, S., Ren, X., Zhang, J., et al., 2021a. An Improved Form of Smoothed Particle Hydrodynamics Method for Crack Propagation Simulation Applied in Rock Mechanics. International Journal of Mining Science and Technology, 31(3): 421-428. https://dio.org/10.1016/j.ijmst.2021.01.009 doi: 10.1016/j.ijmst.2021.01.009
      [40] Yu, S. Y., Ren, X. H., Zhang, J. X., et al., 2021b. An Improved Smoothed Particle Hydrodynamics Method and Its Application in Rock Hydraulic Fracture Modelling. Rock Mechanics and Rock Engineering, 54(12): 6039-6055. https://doi.org/10.1007/s00603⁃021⁃02594⁃w
      [41] Yu, S. Y., Ren, X. H., Zhang, J. X., et al., 2021c. Numerical Simulation on the Stability of Rock Slope Based on an Improved SPH Method. Journal of Mountain Science, 18 (7): 1937-1950. https://dio.org/10.1007/s11629⁃021⁃6739⁃x doi: 10.1007/s11629-021-6739-x
      [42] Zhou, X. P., Wang, Y. T., 2016. Numerical Simulation of Crack Propagation and Coalescence in Pre-Cracked Rock-Like Brazilian Disks Using the Non-Ordinary State-Based Peridynamics. International Journal of Rock Mechanics and Mining Sciences, 89: 235-249. https://doi.org/10.1016/j.ijrmms.2016.09.010
      [43] Zhou, X. P., Wang, Y. T., Qian, Q. H., 2016. Numerical Simulation of Crack Curving and Branching in Brittle Materials under Dynamic Loads Using the Extended Non⁃Ordinary State⁃Based Peridynamics. European Journal of Mechanics: A, 60: 277-299. https://doi.org/10.1016/j.euromechsol.2016.08.009
      [44] Zhou, X. P., Wang, Y. T., Shou, Y. D., et al., 2018. A Novel Conjugated Bond Linear Elastic Model in Bond⁃Based Peridynamics for Fracture Problems under Dynamic Loads. Engineering Fracture Mechanics, 188: 151-183. https://doi.org/10.1016/j.engfracmech.2017.07.031
      [45] Zhou, X. P., Zhao, Y., Qian, Q. H., 2015. A Novel Meshless Numerical Method for Modeling Progressive Failure Processes of Slopes. Engineering Geology, 192: 139-153. https://doi: 10.1016/j.enggeo.2015.04.005
      [46] 曹鹏, 黎应书, 李宗亮, 等, 2021. 西藏昌都白格滑坡斜坡地质结构特征及成因机制. 地球科学, 46(9): 3397-3409. doi: 10.3799/dqkx.2020.333
      [47] 何成, 唐辉明, 申培武, 等, 2021. 应变软化边坡渐进破坏模式及稳定性可靠度. 地球科学, 46(2): 697-707. doi: 10.3799/dqkx.2020.058
      [48] 亢金涛, 吴琼, 唐辉明, 等, 2019. 岩石/结构面劣化导致巴东组软硬互层岩体强度劣化的作用机制. 地球科学, 44(11): 3950-3960. doi: 10.3799/dqkx.2019.110
      [49] 李振生, 巨能攀, 侯伟龙, 等, 2012. 陡倾层状岩质边坡动力响应大型振动台模型试验研究. 工程地质学报, 20(2): 242-248. doi: 10.3969/j.issn.1004-9665.2012.02.013
      [50] 徐光兴, 姚令侃, 李朝红, 等, 2008. 边坡地震动力响应规律及地震动参数影响研究. 岩土工程学报, 30(6): 918-923. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200806022.htm
    • 加载中
    图(15) / 表(2)
    计量
    • 文章访问数:  96
    • HTML全文浏览量:  32
    • PDF下载量:  19
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-29
    • 网络出版日期:  2023-01-10
    • 刊出日期:  2022-12-25

    目录

      /

      返回文章
      返回