• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    地震作用下岩质边坡大型振动台试验研究进展

    赵飞 俞松波 李博 石振明

    赵飞, 俞松波, 李博, 石振明, 2022. 地震作用下岩质边坡大型振动台试验研究进展. 地球科学, 47(12): 4498-4512. doi: 10.3799/dqkx.2022.317
    引用本文: 赵飞, 俞松波, 李博, 石振明, 2022. 地震作用下岩质边坡大型振动台试验研究进展. 地球科学, 47(12): 4498-4512. doi: 10.3799/dqkx.2022.317
    Zhao Fei, Yu Songbo, Li Bo, Shi Zhenming, 2022. Research Advances on Large-Scale Shaking Table Test for Rock Slopes under Earthquake. Earth Science, 47(12): 4498-4512. doi: 10.3799/dqkx.2022.317
    Citation: Zhao Fei, Yu Songbo, Li Bo, Shi Zhenming, 2022. Research Advances on Large-Scale Shaking Table Test for Rock Slopes under Earthquake. Earth Science, 47(12): 4498-4512. doi: 10.3799/dqkx.2022.317

    地震作用下岩质边坡大型振动台试验研究进展

    doi: 10.3799/dqkx.2022.317
    基金项目: 

    国家重点研发计划项目 2019YFC1509700

    详细信息
      作者简介:

      赵飞(1994-),男,博士研究生,主要从事地质灾害与防治技术方面研究工作.ORCID:0000-0002-7032-3492.E-mail:zhaofei@tongji.edu.cn

      通讯作者:

      石振明,教授,主要从事地质灾害与防治技术方面研究工作.E-mail:shi_tongji@tongji.edu.cn

    • 中图分类号: P64

    Research Advances on Large-Scale Shaking Table Test for Rock Slopes under Earthquake

    • 摘要:

      大型振动台试验方法可真实有效地模拟地震作用,是近年来研究边坡地震动响应特性的常用方法,被学者们广泛用于模拟研究各类支护结构加固的边坡工程中.通过综述学者们有关边坡大型振动台模型试验的相关文献,对其研究方法、研究对象及主要结论进行了分类评述.最后,通过分析目前岩质边坡大型振动台物理模拟试验研究中存在的问题,指明了今后的研究方向,为深入认识地震作用下岩质边坡的动力响应特性、变形破坏规律及支护结构与岩土体动力耦合作用机理奠定了基础,具有重要的理论意义和工程价值.

       

    • 表  1  岩质边坡大型振动台试验设备主要技术参数

      Table  1.   Main technical parameters of large-scale shaking table test equipment for rock slopes

      试验地点 主要技术参数
      振动模式 台面尺寸(m) 最大负载(kN) 水平位移(mm) 垂直位移(mm) 水平加速度(g) 垂直加速度(g) 频率(Hz)
      大连理工大学(王学伍,2019) 单向 1.5×1.5 100 ±300 - - - 0.1~20
      华中科技大学(吴多华等,2020) 单向 4×4 150 ±100 - ±l.0 - 0.1~38
      武汉大学(冯细霞,2018) 双向 2×2 200 - - ±2.5 ±2.5 0.1~100
      中国地震局兰州地震研究所(王秋懿等,2020) 双向 4×6 250 ±250 ±100 ±1.7 ±1.2 0.1~50
      福州大学(Zhang et al.,2022) 双向 4×4 220 ±250 - ±1.5 - 0~50
      重庆交通科研设计院(Lin et al.,2017) 三向 6×3 350 ±150 ±100 ±l.0 ±l.0 0.1~70
      中南大学(江学良等,2018) 三向 4×4 300 ±250 ±250 ±l.0 ±l.6 0.1~50
      中国水利水电科学研究院(詹志发等,2019) 三向 5×5 200 - - ±l.0 ±0.8 0.1~120
      重庆大学(Long et al.,2020) 三向 6.1×6.1 600 - - - - -
      中国核动力研究设计院(Liu et al.,2021) 三向 6×6 600 ±150 ±100 ±l.0 ±0.8 0.1~80
      中国地震局工程力学所(陶志刚等,2022) 三向 5×5 300 ±80 ±50 ±l.0 ±0.7 0.5~40
      下载: 导出CSV

      表  2  地震作用下不同支护结构加固岩质边坡

      Table  2.   Reinforcement of rock slopes by different support structures under seismic action

      支护结构类型 边坡是否含潜在滑面 主要研究内容 主要研究结果 参考文献
      锚杆/锚索/锚-梁支护结构 普通锚杆 锚杆轴力响应规律 地震强度增大,坡腰锚杆轴力最大转变为坡顶锚杆和坡腰锚杆轴力最大 叶海林等(2011)
      锚杆杆体、砂浆应变响应规律 锚杆:拉压循环、张拉、强烈振荡和残余应变阶段;砂浆:拉压循环、张拉和破坏阶段 言志信等(2020)
      预应力锚索 锚索预应力损失规律 地震强度增大,锚索预应力损失呈先增大再减小最后趋于稳定的趋势 叶海林等(2012a)
      锚索+框架梁 锚索预应力损失规律 锚索预应力损失最先发生在坡顶,后向坡体中下部转移 付晓等(2018)
      锚固界面剪切效应 边坡地震响应越强烈,锚固界面上的剪切效应越显著 Long et al.(2020)
      边坡的破坏模式 滑动体顶部拉伸裂缝和纵向裂缝穿透、边坡上部自由面坍塌空鼓、滑动体整体滑动 Zhang et al.(2022)
      BFRP锚杆 边坡的加速度响应规律 BFRP锚杆对边坡的加速度放大系数具有有效的抑制作用 王秋懿等(2020)
      NPR锚索 NPR锚索固坡效应 NPR锚索通过恒阻变形,能够吸收地震波能,降低坡体破坏程度 陶志刚等(2022)
      抗滑桩支护结构 埋入式抗滑桩 埋入式抗滑桩加固效果 埋入式抗滑桩可阻止贯通裂缝产生,防止坡顶和坡脚部位发生破坏 许江波和郑颖人(2012)
      埋入式抗滑桩加固边坡破坏模式 埋入式抗滑桩加固边坡破坏面首先产生张拉-剪切复合破坏,最终发生跃顶破坏 赖杰等(2013)
      单、双排桩 单、双排抗滑桩加固效果对比 地震作用下双排桩结构较单排桩可有效降低边坡响应和抑制边坡变形 刘昌清等(2013, 2014)、赖杰等(2014)
      多锚点锚索抗滑桩 优化前后的锚索抗滑桩加固效果 优化后的多锚点锚索抗滑桩加固边坡可有效减小抗滑桩桩顶变形 冯帅等(2018)
      组合支护结构 锚杆+抗滑桩 支护结构加固效果 悬臂抗滑桩加坡面锚杆支护结构加固后的边坡坡面累计相对位移较小 叶海林等(2012b)
      锚杆轴力和抗滑桩土压力规律 地震强度增大,同一锚杆抗力由外向内传递,桩前和桩后土压力呈现不同分布形式,滑带处的桩动土压力变化最明显 赖杰等(2015)
      边坡加速度响应规律 抗滑桩和锚杆联合支护可有效减低边坡临空面加速度放大效应 付晓等(2015)
      锚索+框架梁+单排抗滑桩 边坡位移响应规律 边坡位移响应由表及里逐渐减弱,边坡中部位移响应整体性较强 范刚和张建经(2017)
      锚索轴力和抗滑桩变形特征 地震强度增大,锚索轴力峰值增大,桩身弯矩呈非线性增大趋势,软弱结构面处的桩身变形最大 王德华等(2019)
      锚索+框架梁+双排抗滑桩 锚索轴力和抗滑桩土压力规律 锚索:轴力峰值增加比例沿高程呈现空间非一致性,抗滑桩:主动土压力分布呈三角形 付晓等(2017)
      锚索+框架梁+重力式挡土墙 边坡加速度响应规律 不同地震激振作用下,挡墙加固区加速度表现为高程放大效应,锚梁加固区加速度放大效应表现为上下强、中间弱 Lin et al.(2017)
      下载: 导出CSV
    • [1] Bi, P. C., Che, A. L., Yuan, G. L., 2020. Displacement Evolution of Rock Slope under Earthquake Based on Shaking Table Test. The Chinese Journal of Geological Hazard and Control, 31(3): 11-19(in Chinese with English abstract).
      [2] Cao, L. C., Zhang, J. J., Liu, F. C., et al., 2017. Dynamic Response and Failure Mode of the Complex Site with Tilting Strongly Weathered Layer and Local Slopes. Chinese Journal of Rock Mechanics and Engineering, 36(9): 2238-2250(in Chinese with English abstract).
      [3] Cao, L. C., Zhang, J. J., Wang, Z. J., et al., 2019. Dynamic Response and Dynamic Failure Mode of the Slope Subjected to Earthquake and Rainfall. Landslides, 16: 1467-1482. doi: 10.1007/s10346-019-01179-7
      [4] Chen, Z., Che, A. L., Yan, F., et al., 2018. Dynamic Response of the Slope by the Site of Jinsha River Bridge under the Action of Reservoir Water and Seismic Force. Chinese Journal of Rock Mechanics and Engineering, 37(1): 148-155(in Chinese with English abstract).
      [5] Chen, Z. L., Hu, X., Xu, Q., 2016. Experimental Study of Motion Characteristics of Rock Slopes with Weak Intercalation under Seismic Excitation. Journal of Mountain Science, 13(3): 546-556. https://doi.org/10.1007/s11629⁃014⁃3212⁃0
      [6] Dong, J. Y., Yang, G. X., Wu, F. Q., et al., 2011. The Large⁃Scale Shaking Table Test Study of Dynamic Response and Failure Mode of Bedding Rock Slope under Earthquake. Rock and Soil Mechanics, 32(10): 2977-2982, 2988(in Chinese with English abstract). doi: 10.3969/j.issn.1000-7598.2011.10.014
      [7] Dong, J. Y., Yang, J. H., Wu, F. Q., et al., 2013. Large⁃Scale Shaking Table Test Research on Acceleration Response Rules of Bedding Layered Rock Slope and Its Blocking Mechanism of River. Chinese Journal of Rock Mechanics and Engineering, 32(Suppl. 2): 3861-3867(in Chinese with English abstract).
      [8] Fan, G., Zhang, J. J., 2017. Determination of the Seismic Displacement Relaxation Zone in the Reinforced Slope by Composite Retaining Structures. Rock and Soil Mechanics, 38(3): 775-783(in Chinese with English abstract).
      [9] Fan, G., Zhang, J. J., Fu, X., et al., 2015. Large⁃Scale Shaking Table Test on Dynamic Response of Bedding Rock Slopes with Silt Intercalation. Chinese Journal of Rock Mechanics and Engineering, 34(9): 1750-1757(in Chinese with English abstract).
      [10] Fan, G., Zhang, J. J., Fu, X., et al., 2016. Energy Identification Method for Dynamic Failure Mode of Bedding Rock Slope with Soft Strata. Chinese Journal of Geotechnical Engineering, 38(5): 959-966(in Chinese with English abstract).
      [11] Fan, G., Zhang, J. J., Wu, J. B., et al., 2016. Dynamic Response and Dynamic Failure Mode of a Weak Intercalated Rock Slope Using a Shaking Table. Rock Mechanics and Rock Engineering, 49(8): 3243-3256. https://doi.org/10.1007/s00603⁃016⁃0971⁃7
      [12] Feng, S., Wu, H. G., Ai, H., et al., 2018. Seismic Optimum Design and Experimental Research on Anti-Slide Pile with Pre⁃Stressed Anchor Cable. Science Technology and Engineering, 18(12): 248-255(in Chinese with English abstract). doi: 10.3969/j.issn.1671-1815.2018.12.041
      [13] Feng, X. X., 2018. Study on the Dynamic Response and Stability Analysis of Layered Rock Slopes (Dissertation). Wuhan University, Wuhan(in Chinese with English abstract).
      [14] Fu, X., Fan, G., Liu, F. C., et al., 2015. Shaking Table Tests on the Acceleration Response of an Anti⁃Dip Stratified Rock Slope with Composite Retaining Structure. China Earthquake Engineering Journal, 37(3): 823-828(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0844.2015.03.0823
      [15] Fu, X., Ji, W. Y., Zhang, J. J., et al., 2018. Seismic Response for Plane Sliding of Slope Reinforced by Anchor⁃Chain⁃Framed Ground Beams through Shaking Table Test. Rock and Soil Mechanics, 39(5): 1709-1719(in Chinese with English abstract).
      [16] Fu, X., Zhang, J. J., Zhou, L. R., 2017. Shaking Table Test of Seismic Response of Slope Reinforced by Combination of Anti⁃Slide Piles and Multi⁃Frame Foundation Beam with Anchor Cable. Rock and Soil Mechanics, 38(2): 462-470(in Chinese with English abstract).
      [17] Guo, S. F., Qi, S. W., Yang, G. X., et al., 2017. An Analytical Solution for Block Toppling Failure of Rock Slopes during an Earthquake. Applied Sciences, 7(10): 1008. https://doi.org/10.3390/app7101008
      [18] He, C. M., 2018. Mechanical Behavior of Muddy Soft Rock and Dynamic Stability of Soft⁃Hard Interbedded Slopes in Reservoir Area under Cyclic Loading (Dissertation). Chongqing University, Chongqing(in Chinese with English abstract).
      [19] He, M. C., Guo, P. F., 2018. On Problems of Rock Mechanics and Engineering in the Belt and Road and Their Countermeasures. Journal of Shaoxing University (Natural Science), 38(2): 1-9(in Chinese with English abstract).
      [20] Hou, H. J., 2013. The Seismic Dynamic Response Characteristics of the Shaking Table Test on Horizontally Layered Slope. Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      [21] Hou, W. L., 2011. Research on Large⁃Scale Shaking Table Physical Simulation Experiment of Steep⁃Dipping Stratified Rock Slope(Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      [22] Huang, F. M., Ye, Z., Yao, C., et al., 2020. Uncertainties of Landslide Susceptibility Prediction: Different Attribute Interval Divisions of Environmental Factors and Different Data⁃Based Models. Earth Science, 45(12): 4535-4549(in Chinese with English abstract).
      [23] Huang, R. Q., Li, G., Ju, N. P., 2013. Shaking Table Test on Strong Earthquake Response of Stratified Rock Slopes. Chinese Journal of Rock Mechanics and Engineering, 32(5): 865-875(in Chinese with English abstract). doi: 10.3969/j.issn.1000-6915.2013.05.003
      [24] Huang, R. Q., Li, W. L., 2008. Research on Development and Distribution Rules of Geohazards Induced by Wenchuan Earthquake on 12th May, 2008. Chinese Journal of Rock Mechanics and Engineering, 27(12): 2585-2592(in Chinese with English abstract). doi: 10.3321/j.issn:1000-6915.2008.12.028
      [25] Huang, R. Q., Zhao, J. J., Ju, N. P., et al., 2013. Analysis of an Anti⁃Dip Landslide Triggered by the 2008 Wenchuan Earthquake in China. Natural Hazards, 68(2): 1021-1039. https://doi.org/10.1007/s11069⁃013⁃0671⁃5
      [26] Jia, J., 2011. Study on Dynamic Responses and Failure Mechanism of Steep Bedding Rock Slope Triggered by Strong Earthquake—Taking Ganmofang Landslide as an Example (Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      [27] Jiang, X. L., Niu, J. Y., Yang, H., et al., 2018. Large⁃Scale Shaking Table Model Test Study of Seismic Response Characteristics on Layered Rock Slope with Tunnel. Chinese Journal of Applied Mechanics, 35(4): 762-768, 931(in Chinese with English abstract).
      [28] Lai, J., Zheng, Y. R., Liu, Y., et al., 2013. Shaking Table Test for Antiseismic Behavoir of Embedded Anti⁃Slide Pile and Numerical Simulation. Chinese Journal of Rock Mechanics and Engineering, 32(Suppl. 2): 4165-4173(in Chinese with English abstract).
      [29] Lai, J., Zheng, Y. R., Liu, Y., et al., 2014. Shaking Table Tests on Double⁃Row Anti⁃Slide Piles of Slopes under Earthquakes. Chinese Journal of Geotechnical Engineering, 36(4): 680-686(in Chinese with English abstract).
      [30] Lai, J., Zheng, Y. R., Liu, Y., et al., 2015. Shaking Table Text Study on Anti⁃Slide Piles and Anchor Bars of Slope under Earthquake. China Civil Engineering Journal, 48(9): 96-103(in Chinese with English abstract).
      [31] Li, G., 2012. Failure Machanism of Stratiform Rock Slope under Strong Earthquake (Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      [32] Li, L. Q., Ju, N. P., Zhang, S., et al., 2019. Shaking Table Test to Assess Seismic Response Differences between Steep Bedding and Toppling Rock Slopes. Bulletin of Engineering Geology and the Environment, 78(1): 519-531. https://doi.org/10.1007/s10064⁃017⁃1186⁃1
      [33] Li, Y., Li, T. C., Niu, Z. W., 2014. Shaking Table Test Study on Dynamic Responses and Failure Mode of Slope. Water Resources and Power, 32(1): 93-95(in Chinese with English abstract).
      [34] Li, Z. S., Ju, N. P., Hou, W. L., et al., 2012. Large⁃Scale Shaking Table Model Tests for Dynamic Response of Steep Stratified Rock Slopes. Journal of Engineering Geology, 20(2): 242-248(in Chinese with English abstract). doi: 10.3969/j.issn.1004-9665.2012.02.013
      [35] Lin, Y. L., Yang, G. L., Yang, X., et al., 2017. Response of Gravity Retaining Wall with Anchoring Frame Beam Supporting a Steep Rock Slope Subjected to Earthquake Loading. Soil Dynamics and Earthquake Engineering, 92: 633-649. https://doi.org/10.1016/j.soildyn.2016.11.002
      [36] Liu, C. Q., Jiang, C. S., Liang, Y., et al., 2014. Study of Shaking Table Test for High Slope Retaining Structure on Highly Seismic Region. Chinese Journal of Rock Mechanics and Engineering, 33(Suppl. 2): 3798-3802(in Chinese with English abstract).
      [37] Liu, C. Q., Li, X., Zhang, Y. P., 2013. Shaking Table Test and Analysis of Double Row Pile Retaining Structure. China Civil Engineering Journal, 46(Suppl. 2): 190-195(in Chinese with English abstract).
      [38] Liu, H. D., Geng, Z., Wang, Z. F., et al., 2019. Study on the Deformation and Failure Mode of Anti⁃Dip Layered Rock Slope under Earthquake. Water Power, 45(9): 17-21, 38(in Chinese with English abstract). doi: 10.3969/j.issn.0559-9342.2019.09.004
      [39] Liu, H. X., 2011. Large-Scale Shaking Table Test Study on Seismic Response of Combinational Rock Slopes. Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      [40] Liu, H. X., 2014. Seismic Responses of Rock Slopes in a Shaking Table Test (Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      [41] Liu, H. X., Qiu, T., Xu, Q., 2021. Dynamic Acceleration Response of a Rock Slope with a Horizontal Weak Interlayer in Shaking Table Tests. PLoS One, 16(4): e0250418. https://doi.org/10.1371/journal.pone.0250418
      [42] Liu, H. X., Xu, Q., Wang, L., et al., 2014. Effect of Frequency of Seismic Wave on Acceleration Response of Rock Slopes. Chinese Journal of Rock Mechanics and Engineering, 33(1): 125-133(in Chinese with English abstract).
      [43] Liu, H. X., Xu, Q., Zhou, F., et al., 2016. Influence of a Weak Interlayer of Different Thicknesses and Dip Angles on Seisermic Acceleration Responses of a Slope. Journal of China Coal Society, 41(Suppl. 1): 118-124(in Chinese with English abstract).
      [44] Liu, H. X., Xu, Q., Zhou, F., et al., 2015. Shaking Table Test for Seismic Responses of Slopes with a Weak Interlayer. Chinese Journal of Rock Mechanics and Engineering, 34(5): 994-1005(in Chinese with English abstract).
      [45] Liu, H. X., Xu, Q., Zhu, X., 2017. Parametric Analysis of Horizontal Acceleration Response of Rock Slope to Seismic Waves in a Shaking Table Test. International Journal of Georesources and Environment, 3(1): 22-34. doi: 10.15273/ijge.2017.01.004
      [46] Liu, H. X., Xu, Q., Zou, W., et al., 2012. Shaking Table Test for Vertical Dynamic Resonse Behavior of Layered Rock Slopes. Journal of Vibration and Shock, 31(22): 13-19, 28(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3835.2012.22.003
      [47] Liu, S. L., Yang, Z. P., Liu, X. R., et al., 2018. Shaking Table Model Test and Numerical Analysis of the Bedding Rock Slopes under Frequent Micro⁃Seismic Actions. Chinese Journal of Rock Mechanics and Engineering, 37(10): 2264-2276(in Chinese with English abstract).
      [48] Liu, X. R., Deng, Z. Y., Liu, Y. Q., et al., 2019. Study of Cumulative Damage and Failure Mode of Horizontal Layered Rock Slope Subjected to Seismic Loads. Rock and Soil Mechanics, 40(7): 2507-2516(in Chinese with English abstract).
      [49] Liu, X. R., Xu, B., Liu, Y. Q., et al., 2020. Cumulative Damage and Stability Analysis of Bedding Rock Slope under Frequent Microseisms. Chinese Journal of Geotechnical Engineering, 42(4): 632-641(in Chinese with English abstract).
      [50] Liu, Y. P., Huang, R. Q., Deng, H., 2011. Study on Physical Simulation Vibration Test of the Anti⁃Inclined Slab⁃Rent Structure Rock Slope. Journal of Chengdu University of Technology (Science & Technology Edition), 38(4): 413-421(in Chinese with English abstract). doi: 10.3969/j.issn.1671-9727.2011.04.007
      [51] Liu, Y. Q., 2017. Study on Cumulative Damage Evolution Mechanism and Stability of Bedding Rock Slope in Reservoir Area under Frequent Microseismic (Dissertation). Chongqing University, Chongqing(in Chinese with English abstract).
      [52] Long, Z., Yan, Z. X., Liu, C. B., 2020. Shear Effects on the Anchorage Interfaces and Seismic Responses of a Rock Slope Containing a Weak Layer under Seismic Action. Mathematical Problems in Engineering, (2020): 1-11. https://doi.org/10.1155/2020/1424167
      [53] Ni, Z. Q., 2012. Study on Dynamic Response Mechanism of Slope Failure of Non⁃Through Jointed Rock Mass under Earthquake (Dissertation). Chinese Academy of Sciences, Chengdu(in Chinese with English abstract).
      [54] Ning, Y. B., Zhang, G. C., Tang, H. M., et al., 2019. Process Analysis of Toppling Failure on Anti⁃Dip Rock Slopes under Seismic Load in Southwest China. Rock Mechanics and Rock Engineering, 52(11): 4439-4455. https://doi.org/10.1007/s00603⁃019⁃01855⁃z
      [55] Peng, J. B., Cui, P., Zhuang, J. Q., 2020. Challenges to Engineering Geology of Sichuan-Tibet Railway. Chinese Journal of Rock Mechanics and Engineering, 39(12): 2377-2389(in Chinese with English abstract).
      [56] Qiao, J. W., Zheng, J. G., Liu, Z. H., et al., 2019. The Distribution and Major Engineering Problems of Special Soil and Rock along One Belt One Road. Journal of Catastrophology, 34(Suppl. 1): 65-71(in Chinese with English abstract).
      [57] Shi, Z. L., Wang, J., Zhang, X. D., 1995. Zoning Characteristics of Seismicity in China. Acta Seismologica Sinica, 17(1): 20-24(in Chinese).
      [58] Song, D. Q., Che, A. L., Chen, Z., et al., 2018. Seismic Stability of a Rock Slope with Discontinuities under Rapid Water Drawdown and Earthquakes in Large⁃Scale Shaking Table Tests. Engineering Geology, 245: 153-168. https://doi.org/10.1016/j.enggeo.2018.08.011
      [59] Tao, Z. G., Wang, X., Guo, A. P., et al., 2022. Shaking Table Test Study on the Effect of NPR Anchor Cable on Slope Reinforcement under Earthquake. Journal of China Coal Society(in press)(in Chinese with English abstract).
      [60] Wang, B., Che, A. L., Ge, X. R., 2015. Shaking Table Test on Earthquake Response of Discontinuous Medium High and Steep Rock Slope. Journal of Shanghai Jiaotong University, 49(7): 951-956(in Chinese with English abstract).
      [61] Wang, D. H., Wu, Z. J., Zhang, J. J., et al., 2019. Analysis of Antiseismic Effect of Anisotropic High Slopes Reinforced by Multi⁃Frame Retaining Structure. Journal of Vibration Engineering, 32(3): 404-414(in Chinese with English abstract).
      [62] Wang, Q. Y., Wu, H. G., Zhang, J. J., et al., 2020. Response of the Slope Reinforced with BFRP Anchors to Earthquake: A Case Study of the Slope at the Xiangshui River. The Chinese Journal of Geological Hazard and Control, 31(2): 94-101(in Chinese with English abstract).
      [63] Wang, X. W., 2019. Dynamic Response Law and Failure Mechanism of Bedding Rock Slope under Earthquake (Dissertation). Dalian University of Technology, Dalian(in Chinese with English abstract).
      [64] Wu, D. H., Liu, Y. Q., Li, H. B., et al., 2020. Shaking Table Tests on Dynamic Amplification and Failure Mechanism of Layered Rock Slopes under Seismic Actions. Chinese Journal of Rock Mechanics and Engineering, 39(10): 1945-1956(in Chinese with English abstract).
      [65] Xu, G. J., 2015. Study on the Seismic Behavior of High Slope through Shaking Table Test in Southwest Yunnan (Dissertation). Chang'an University, Xi'an(in Chinese with English abstract).
      [66] Xu, J. B., Zheng, Y. R., 2012. Shaking Table Model Tests on Embedded Anti⁃Slide Piles. Chinese Journal of Geotechnical Engineering, 34(10): 1896-1902(in Chinese with English abstract).
      [67] Xu, Q., 2009. Main Types and Characteristics of the Geo⁃Hazards Triggered by the Wenchuan Earthquake. Journal of Geological Hazards and Environment Preservation, 20(2): 86-93(in Chinese with English abstract). doi: 10.3969/j.issn.1006-4362.2009.02.019
      [68] Xu, Q., Liu, H. X., Zou, W., et al., 2010. Large⁃Scale Shaking Table Test Study of Acceleration Dynamic Responses Characteristics of Slopes. Chinese Journal of Rock Mechanics and Engineering, 29(12): 2420-2428(in Chinese with English abstract).
      [69] Yan, Z. X., Liu, C. B., Long, Z., et al., 2020. Experimental Study on Seismic Response of Anchorage of Bedding Rock Slope with Weak Layer. Chinese Journal of Geotechnical Engineering, 42(12): 2180-2188(in Chinese with English abstract).
      [70] Yang, G. X., Qi, S., Wu, F. Q., et al., 2018. Seismic Amplification of the Anti⁃Dip Rock Slope and Deformation Characteristics: A Large⁃Scale Shaking Table Test. Soil Dynamics and Earthquake Engineering, 115: 907-916. doi: 10.1016/j.soildyn.2017.09.010
      [71] Yang, G. X., Wu, F. Q., Dong, J. Y., et al., 2012a. Study of Dynamic Response Characters and Failure Mechanism of Rock Slope under Earthquake. Chinese Journal of Rock Mechanics and Engineering, 31(4): 696-702(in Chinese with English abstract).
      [72] Yang, G. X., Ye, H. L., Wu, F. Q., et al., 2012b. Shaking Table Model Test on Dynamic Response Characteristics and Failure Mechanism of Antidip Layered Rock Slope. Chinese Journal of Rock Mechanics and Engineering, 31(11): 2214-2221(in Chinese with English abstract).
      [73] Yang, Z., 2015. The Large⁃Scale Shaking Table Test Study of Dynamic Deformation Characteristics and Response of Slope with Anti⁃Dip Weak Interlayer (Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      [74] Ye, H. L., Zheng, Y. R., Li, A. H., et al., 2012a. Shaking Table Test Studies of Prestressed Anchor Cable of Slope under Earthquake. Chinese Journal of Rock Mechanics and Engineering, 31(Suppl. 1): 2847-2854(in Chinese with English abstract).
      [75] Ye, H. L., Zheng, Y. R., Li, A. H., et al., 2012b. Shaking Table Tests on Stabilizing Piles of Slopes under Earthquakes. Chinese Journal of Geotechnical Engineering, 34(2): 251-257(in Chinese with English abstract).
      [76] Ye, H. L., Zheng, Y. R., Lu, X., et al., 2011. Shaking Table Test on Anchor Bars of Slope under Earthquake. China Civil Engineering Journal, 44(S1): 152-157, 176(in Chinese with English abstract).
      [77] Zhan, Z. F., Qi, S. W., He, N. W., et al., 2019. Shaking Table Test Study of Homogeneous Rock Slope Model under Strong Earthquake. Journal of Engineering Geology, 27(5): 946-954(in Chinese with English abstract).
      [78] Zhang, J. J., Niu, J. Y., Fu, X., et al., 2022. Failure Modes of Slope Stabilized by Frame Beam with Prestressed Anchors. European Journal of Environmental and Civil Engineering, 26(6): 2120-2142. https://doi.org/10.1080/19648189.2020.1752806
      [79] Zhi, S., Yang, L., 2007. Dynamic Response Differences between Bedding and Counter⁃Tilt Rock Slopes with Intercalated Weak Layers. Journal of Disaster Research, 11: 681-690. https://doi.org/10.20965/jdr.2016.p0681
      [80] Zhou, F., Xu, Q., Liu, H. X., et al., 2016. An Experimental Study of Dynamic Response Characteristics of Slope with Horizontal Weak Interlayer under Earthquake. Rock and Soil Mechanics, 37(1): 133-139(in Chinese with English abstract).
      [81] Zhou, H. F., Fu, W. X., Ye, F., et al., 2021. Study on Sliding⁃Shearing Deformation and Failure Mode of Rock Slope with Steep Weak Structural Plane. Earth Science, 46(4): 1437-1446(in Chinese with English abstract).
      [82] Zou, W., 2011. Large⁃Scale Shaking Table Test on Dynamic Response of Homogenuous Slopes under the Effect of Strong Earthquake (Dissertation). Chengdu University of Technology, Chengdu(in Chinese with English abstract).
      [83] Zou, W., Xu, Q., Liu, H. X., 2011a. Designing the Model for Testing the Dynamic Response of Rock Slopes. Journal of Geological Hazards and Environment Preservation, 22(1): 87-91(in Chinese with English abstract).
      [84] Zou, W., Xu, Q., Liu, H. X., et al., 2011b. Large⁃Scale Shaking Table Model Test Study on Failure of Layered Rocky Slope under Strong Ground Motion. Journal of Earthquake Engineering and Engineering Vibration, 31(4): 143-149(in Chinese with English abstract).
      [85] 毕鹏程, 车爱兰, 袁刚烈, 2020. 基于振动台试验的地震作用下岩质边坡位移演化特征. 中国地质灾害与防治学报, 31(3): 11-19. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202003004.htm
      [86] 曹礼聪, 张建经, 刘飞成, 等, 2017. 含倾斜强风化带及局部边坡复杂场地的动力响应及破坏模式研究. 岩石力学与工程学报, 36(9): 2238-2250. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201709018.htm
      [87] 陈铸, 车爱兰, 严飞, 等, 2018. 库水与地震力共同作用下金沙江特大桥桥址边坡动力响应研究. 岩石力学与工程学报, 37(1): 148-155. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201801015.htm
      [88] 董金玉, 杨国香, 伍法权, 等, 2011. 地震作用下顺层岩质边坡动力响应和破坏模式大型振动台试验研究. 岩土力学, 32(10): 2977-2982, 2988. doi: 10.3969/j.issn.1000-7598.2011.10.014
      [89] 董金玉, 杨继红, 伍法权, 等, 2013. 顺层岩质边坡加速度响应规律和滑动堵江机制大型振动台试验研究. 岩石力学与工程学报, 32(增刊2): 3861-3867. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2110.htm
      [90] 范刚, 张建经, 2017. 组合支挡结构加固边坡地震位移松弛区确定方法研究. 岩土力学, 38(3): 775-783. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201703021.htm
      [91] 范刚, 张建经, 付晓, 等, 2015. 含泥化夹层顺层岩质边坡动力响应大型振动台试验研究. 岩石力学与工程学报, 34(9): 1750-1757. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509004.htm
      [92] 范刚, 张建经, 付晓, 等, 2016. 含软弱夹层顺层岩质边坡动力破坏模式的能量判识方法研究. 岩土工程学报, 38(5): 959-966. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201605024.htm
      [93] 冯帅, 吴红刚, 艾挥, 等, 2018. 预应力锚索抗滑桩抗震优化设计与试验研究. 科学技术与工程, 18(12): 248-255. doi: 10.3969/j.issn.1671-1815.2018.12.041
      [94] 冯细霞, 2018. 层状岩质边坡地震动力响应与稳定性分析(博士学位论文). 武汉: 武汉大学.
      [95] 付晓, 范刚, 刘飞成, 等, 2015. 组合支护结构作用下反倾层状岩质边坡加速度响应振动台试验研究. 地震工程学报, 37(3): 823-828. doi: 10.3969/j.issn.1000-0844.2015.03.0823
      [96] 付晓, 冀文有, 张建经, 等, 2018. 锚索框架梁加固平面滑动型边坡地震动力响应. 岩土力学, 39(5): 1709-1719. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805021.htm
      [97] 付晓, 张建经, 周立荣, 2017. 多级框架锚索和抗滑桩联合作用下边坡抗震性能的振动台试验研究. 岩土力学, 38(2): 462-470. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201702021.htm
      [98] 何春梅, 2018. 循环动载下泥质软岩力学行为及库区软硬互层边坡动力稳定性研究(博士学位论文). 重庆: 重庆大学.
      [99] 何满潮, 郭鹏飞, 2018. "一带一路"中的岩石力学与工程问题及对策探讨. 绍兴文理学院学报(自然科学), 38(2): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-SXWZ201802002.htm
      [100] 侯红娟, 2013. 水平层状斜坡地震动响应特性的振动台试验研究(硕士学位论文). 成都: 成都理工大学.
      [101] 侯伟龙, 2011. 陡倾层状岩质边坡的大型振动台物理模拟试验研究(硕士学位论文). 成都: 成都理工大学.
      [102] 黄发明, 叶舟, 姚池, 等, 2020. 滑坡易发性预测不确定性: 环境因子不同属性区间划分和不同数据驱动模型的影响. 地球科学, 45(12): 4535-4549. doi: 10.3799/dqkx.2020.247
      [103] 黄润秋, 李果, 巨能攀, 2013. 层状岩体斜坡强震动力响应的振动台试验. 岩石力学与工程学报, 32(5): 865-875. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201305003.htm
      [104] 黄润秋, 李为乐, 2008. "5•12"汶川大地震触发地质灾害的发育分布规律研究. 岩石力学与工程学报, 27(12): 2585-2592. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200812032.htm
      [105] 贾俊, 2011. 强震作用下陡倾顺层岩质边坡动力响应分析及失稳机制研究——以干磨滑坡为例(硕士学位论文). 成都: 成都理工大学.
      [106] 江学良, 牛家永, 杨慧, 等, 2018. 下伏隧道层状岩质边坡地震响应特性的大型振动台试验研究. 应用力学学报, 35(4): 762-768, 931. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX201804013.htm
      [107] 赖杰, 郑颖人, 刘云, 等, 2013. 埋入式抗滑桩抗震性能振动台试验与数值分析. 岩石力学与工程学报, 32(增刊2): 4165-4173. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2145.htm
      [108] 赖杰, 郑颖人, 刘云, 等, 2014. 地震作用下双排抗滑桩支护边坡振动台试验研究. 岩土工程学报, 36(4): 680-686. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201404014.htm
      [109] 赖杰, 郑颖人, 刘云, 等, 2015. 抗滑桩和锚杆联合支护下边坡抗震性能振动台试验研究. 土木工程学报, 48(9): 96-103. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201509015.htm
      [110] 李果, 2012. 强震条件下层状岩体斜坡动力失稳机理研究(博士学位论文). 成都: 成都理工大学.
      [111] 李阳, 李同春, 牛志伟, 2014. 边坡动力响应特性及破坏过程的振动台试验研究. 水电能源科学, 32(1): 93-95. https://www.cnki.com.cn/Article/CJFDTOTAL-SDNY201401025.htm
      [112] 李振生, 巨能攀, 侯伟龙, 等, 2012. 陡倾层状岩质边坡动力响应大型振动台模型试验研究. 工程地质学报, 20(2): 242-248. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201202017.htm
      [113] 刘昌清, 蒋楚生, 梁瑶, 等, 2014. 高烈度地震区高边坡支挡结构振动台试验研究. 岩石力学与工程学报, 33(增刊2): 3798-3802. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2051.htm
      [114] 刘昌清, 李想, 张玉萍, 2013. 双排桩支挡结构振动台模型试验与分析. 土木工程学报, 46(增刊2): 190-195. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2013S2032.htm
      [115] 刘汉东, 耿正, 王忠福, 等, 2019. 强震作用下反倾层状岩质边坡变形及破坏模式研究. 水力发电, 45(9): 17-21, 38.
      [116] 刘汉香, 2011. 软硬岩组合型斜坡地震动响应的大型振动台模型试验研究(硕士学位论文). 成都: 成都理工大学.
      [117] 刘汉香, 2014. 基于振动台试验的岩质斜坡地震动力响应规律研究(博士学位论文). 成都: 成都理工大学.
      [118] 刘汉香, 许强, 王龙, 等, 2014. 地震波频率对岩质斜坡加速度动力响应规律的影响. 岩石力学与工程学报, 33(1): 125-133. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201401015.htm
      [119] 刘汉香, 许强, 周飞, 等, 2015. 含软弱夹层斜坡地震动力响应特性的振动台试验研究. 岩石力学与工程学报, 34(5): 994-1005. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201505015.htm
      [120] 刘汉香, 许强, 周飞, 等, 2016. 软弱夹层厚度和倾角对斜坡地震动加速度响应规律的影响. 煤炭学报, 41(增刊1): 118-124.
      [121] 刘汉香, 许强, 邹威, 等, 2012. 层状岩质斜坡竖向动力响应特性的振动台试验研究. 振动与冲击, 31(22): 13-19, 28. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201222004.htm
      [122] 刘树林, 杨忠平, 刘新荣, 等, 2018. 频发微小地震作用下顺层岩质边坡的振动台模型试验与数值分析. 岩石力学与工程学报, 37(10): 2264-2276. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201810007.htm
      [123] 刘新荣, 邓志云, 刘永权, 等, 2019. 地震作用下水平层状岩质边坡累积损伤与破坏模式研究. 岩土力学, 40(7): 2507-2516. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201907005.htm
      [124] 刘新荣, 许彬, 刘永权, 等, 2020. 频发微小地震下顺层岩质边坡累积损伤及稳定性分析. 岩土工程学报, 42(4): 632-641. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202004008.htm
      [125] 刘永权, 2017. 频发微震下库区顺层岩质边坡累积损伤演化机理及稳定性研究(博士学位论文). 重庆: 重庆大学.
      [126] 刘云鹏, 黄润秋, 邓辉, 2011. 反倾板裂岩体边坡振动物理模拟试验研究. 成都理工大学学报(自然科学版), 38(4): 413-421. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG201104006.htm
      [127] 倪振强, 2012. 地震作用下非贯通节理岩体斜坡破坏的动力响应机理研究(博士学位论文). 成都: 中国科学院.
      [128] 彭建兵, 崔鹏, 庄建琦, 2020. 川藏铁路对工程地质提出的挑战. 岩石力学与工程学报, 39(12): 2377-2389. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202012001.htm
      [129] 乔建伟, 郑建国, 刘争宏, 等, 2019. "一带一路"沿线特殊岩土分布与主要工程问题. 灾害学, 34(增刊1): 65-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHXU2019S1012.htm
      [130] 时振梁, 王健, 张晓东, 1995. 中国地震活动性分区特征. 地震学报, 17(1): 20-24. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXB501.002.htm
      [131] 陶志刚, 王璇, 郭爱鹏, 等, 2022. 地震作用下NPR锚索固坡效应振动台试验研究. 煤炭学报(待刊).
      [132] 王斌, 车爱兰, 葛修润, 2015. 岩质高陡边坡动力响应及失稳机制大型振动台模型试验研究. 上海交通大学学报, 49(7): 951-956. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201507006.htm
      [133] 王德华, 吴祚菊, 张建经, 等, 2019. 多级组合支护结构对非均质高边坡抗震性能影响分析. 振动工程学报, 32(3): 404-414. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDGC201903004.htm
      [134] 王秋懿, 吴红刚, 张金江, 等, 2020. BFRP锚杆加固斜坡对地震动的响应特征——以功东高速响水河边坡为例. 中国地质灾害与防治学报, 31(2): 94-101. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDH202002016.htm
      [135] 王学伍, 2019. 地震作用下顺层岩质边坡动力响应规律及其破坏机制(硕士学位论文). 大连: 大连理工大学.
      [136] 吴多华, 刘亚群, 李海波, 等, 2020. 地震荷载作用下顺层岩体边坡动力放大效应和破坏机制的振动台试验研究. 岩石力学与工程学报, 39(10): 1945-1956. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202010001.htm
      [137] 徐冠军, 2015. 滇西南地区高边坡抗震性能振动台模拟试验研究(硕士学位论文). 西安: 长安大学
      [138] 许江波, 郑颖人, 2012. 埋入式抗滑桩振动台模型试验分析. 岩土工程学报, 34(10): 1896-1902. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201210019.htm
      [139] 许强, 2009. 汶川大地震诱发地质灾害主要类型与特征研究. 地质灾害与环境保护, 20(2): 86-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB200902020.htm
      [140] 许强, 刘汉香, 邹威, 等, 2010. 斜坡加速度动力响应特性的大型振动台试验研究. 岩石力学与工程学报, 29(12): 2420-2428. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201012009.htm
      [141] 言志信, 刘春波, 龙哲, 等, 2020. 含软弱层顺倾岩体边坡锚固地震响应试验研究. 岩土工程学报, 42(12): 2180-2188. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012004.htm
      [142] 杨国香, 伍法权, 董金玉, 等, 2012a. 地震作用下岩质边坡动力响应特性及变形破坏机制研究. 岩石力学与工程学报, 31(4): 696-702. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201204008.htm
      [143] 杨国香, 叶海林, 伍法权, 等, 2012b. 反倾层状结构岩质边坡动力响应特性及破坏机制振动台模型试验研究. 岩石力学与工程学报, 31(11): 2214-2221. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201211008.htm
      [144] 杨峥, 2015. 含反倾软弱夹层斜坡动力变形破坏特征及响应规律的大型振动台试验研究(硕士学位论文). 成都: 成都理工大学.
      [145] 叶海林, 郑颖人, 李安洪, 等, 2012a. 地震作用下边坡预应力锚索振动台试验研究. 岩石力学与工程学报, 31(增刊1): 2847-2854. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1031.htm
      [146] 叶海林, 郑颖人, 李安洪, 等, 2012b. 地震作用下边坡抗滑桩振动台试验研究. 岩土工程学报, 34(2): 251-257. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201202013.htm
      [147] 叶海林, 郑颖人, 陆新, 等, 2011. 边坡锚杆地震动特性的振动台试验研究. 土木工程学报, 44(S1): 152-157, 176. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2011S1025.htm
      [148] 詹志发, 祁生文, 何乃武, 等, 2019. 强震作用下均质岩质边坡动力响应的振动台模型试验研究. 工程地质学报, 27(5): 946-954. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201905002.htm
      [149] 周飞, 许强, 刘汉香, 等, 2016. 地震作用下含水平软弱夹层斜坡动力响应特性研究. 岩土力学, 37(1): 133-139. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201601017.htm
      [150] 周洪福, 符文熹, 叶飞, 等, 2021. 陡倾坡外弱面控制的斜坡滑移-剪损变形破坏模式. 地球科学, 46(4): 1437-1446. doi: 10.3799/dqkx.2020.097
      [151] 邹威, 2011. 强震作用下均质斜坡动力响应的大型振动台试验研究(硕士学位论文). 成都: 成都理工大学.
      [152] 邹威, 许强, 刘汉香, 2011a. 强震作用下岩质斜坡动力响应特性的大型振动台试验方案设计. 地质灾害与环境保护, 22(1): 87-91. https://www.cnki.com.cn/Article/CJFDTOTAL-DZHB201101020.htm
      [153] 邹威, 许强, 刘汉香, 等, 2011b. 强震作用下层状岩质斜坡破坏的大型振动台试验研究. 地震工程与工程振动, 31(4): 143-149. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201104021.htm
    • 加载中
    表(2)
    计量
    • 文章访问数:  115
    • HTML全文浏览量:  41
    • PDF下载量:  21
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-30
    • 网络出版日期:  2023-01-10
    • 刊出日期:  2022-12-25

    目录

      /

      返回文章
      返回