• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    热液矿床超大比例尺构造-蚀变-矿化填图:基本原理与注意事项

    郑义

    郑义, 2022. 热液矿床超大比例尺构造-蚀变-矿化填图:基本原理与注意事项. 地球科学, 47(10): 3603-3615. doi: 10.3799/dqkx.2022.295
    引用本文: 郑义, 2022. 热液矿床超大比例尺构造-蚀变-矿化填图:基本原理与注意事项. 地球科学, 47(10): 3603-3615. doi: 10.3799/dqkx.2022.295
    Zheng Yi, 2022. Large-Scaled Structure-Alteration-Mineralization Mapping of the Hydrothermal Deposits: Basic Principle and Precautions. Earth Science, 47(10): 3603-3615. doi: 10.3799/dqkx.2022.295
    Citation: Zheng Yi, 2022. Large-Scaled Structure-Alteration-Mineralization Mapping of the Hydrothermal Deposits: Basic Principle and Precautions. Earth Science, 47(10): 3603-3615. doi: 10.3799/dqkx.2022.295

    热液矿床超大比例尺构造-蚀变-矿化填图:基本原理与注意事项

    doi: 10.3799/dqkx.2022.295
    基金项目: 

    国家重点研发计划青年科学家项目 2021YFC2900300

    国家自然科学基金委优秀青年基金项目 42022020

    详细信息
      作者简介:

      郑义(1984-),男,教授,博导,主要从事成矿与资源勘查研究.ORCID:0000-0002-7570-0146. E-mail:zhengy43@mail.sysu.edu.cn

    • 中图分类号: P613

    Large-Scaled Structure-Alteration-Mineralization Mapping of the Hydrothermal Deposits: Basic Principle and Precautions

    • 摘要: 热液矿床超大比例尺填图是指1∶1 000以及更大比例尺的填图,主要用来记录矿区内露头、平硐、钻孔和手标本上等肉眼可直接观察到的各类地质现象.热液矿床超大比例尺填图的目的是查明成矿作用的地质特征、空间分布和时间演化,对于准确判断热液矿床的成因类型和成矿过程,以及圈定矿体和布置勘探工程等实践活动具有重要意义.在实际工作中,初学者由于对热液矿床的复杂现象不知如何下手,对于“填什么”和“如何填”等问题不甚清楚.鉴于此,(1)从基本原理出发,重点阐述了热液矿床构造、流体、蚀变和矿化形成过程,提出“成矿流体+新鲜围岩→围岩蚀变+矿石”这一热液矿床形成的通用性公式,并提出“构造→骨骼”和“蚀变→血肉”的类比;(2)重点介绍了热液矿床超大比例尺填图过程中一些长期被忽略的问题,如,成矿环境判别、成矿流体通道与圈闭、热液充填与交代成矿作用以及脉体穿插与成矿期次判别等.同时,对这些地质现象背后隐藏的成因启示做了重点阐释.

       

    • 图  1  热液矿床研究中的空间尺度问题

      Fig.  1.  Spatial scales in the research of hydrothermal deposits

      图  2  热液矿床形成的基本原理(A+B→C+D)

      Fig.  2.  Basic principle for formation of the hydrothermal deposits(A+B→C+D)

      图  3  热液矿床形成的构造条件

      a~c. 3种拉开成矿空间的构造,分别是伸展、水平剪切和垂向剪切;d. 同一应力场形成的挤压和伸展构造;e.断层脉;f.伸展脉

      Fig.  3.  Structural condition for formation of the hydrothermal deposits

      图  4  热液矿床常见的围岩蚀变组合及指示的成矿条件(据Corbett and Leach, 1998修改)

      Fig.  4.  Mineral assemblages and their forming condition of alteration in the hydrothermal deposits (modified after Corbett and Leach, 1998)

      图  5  热液矿床主要矿物沉淀的控制因素

      a.脉石矿物石英溶解度与深度和温度的相图(据Barnes,2015修改);b.不同pH和Eh条件下,热液中硫的稳定区间(据Barnes,2015修改);c.铜、金和锌的溶解度与温度的关系(据Corbett and Leach, 1998修改);d.铜、金和锌的溶解度与酸碱度的关系(据Corbett and Leach, 1998修改)

      Fig.  5.  Controls on mineral precipitation in the hydrothermal deposits

      图  6  热液矿床中流体通道与流体圈闭的示意图

      Fig.  6.  Schematic diagram of fluid channels and traps in the hydrothermal deposits

      图  7  热液矿床中充填成矿作用和交代成矿作用的示意

      Fig.  7.  Schematic diagram of infilling and replacement mineralization in the hydrothermal deposits

      图  8  热液矿床中脉体的形成过程与先后顺序判别

      a~c.脉体形成的三部曲,裂隙打开、形成空间→流体流经、保持张开→矿物沉淀、形成脉体;d. A、B和C脉的切穿关系;e. C脉晚于A脉和B脉;f. C脉与A脉和B脉同时形成;g. A脉、B脉和断裂的切穿关系;h. A脉和B脉通过充填交代作用同时形成

      Fig.  8.  The formation process and sequences of various veins in hydrothermal deposits

    • [1] Barnes, H. L., 2015. Hydrothermal Processes. Geochemical Perspectives, 4(1): 1-93. https://doi.org/10.7185/geochempersp.4.1
      [2] Cao, R., Ma, X. H., Bagas, L., et al., 2021. Late Jurassic Intracontinental Extension and Related Mineralisation in Southwestern Fujian Province of SE China: Insights from Deformation and Syn-Tectonic Granites. Journal of Earth Science, 32(1): 158-173. https://doi.org/10.1007/s12583-020-1387-6
      [3] Chen, Y. J., Li, N., Deng, X. H., et al., 2020. Geology and Geochemistry of Molybdenum Deposits in the Qinling Orogen, P. R. China. Science Press, Beijing (in Chinese).
      [4] Chen, J., Zhou, T. F., Zhang, L. J., et al., 2020. A Discussion of Characteristics, Genesis of Lithocaps and Their Distributions in South China. Acta Petrologica Sinica, 36(11): 3380-3396(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.11.08
      [5] Chen, Y. J., Zhai, M. G., Jiang, S. Y., 2009. Significant Achievements and Open Issues in Study of Orogenesis and Metallogenesis Surrounding the North China Continent. Acta Petrologica Sinica, 25(11): 2695-2726(in Chinese with English abstract).
      [6] Chen, Z. L., Chen, B. L., 2012. Thinking, Steps and Practice of Research on Ore-Field Structure in Geomechanics. Chinese Journal of Nature, 34(4): 208-215(in Chinese with English abstract).
      [7] Chi, G. X., Xue, C. J., 2011. Principles, Methods and Applications of Hydrodynamic Studies of Mineralization. Earth Science Frontiers, 18(5): 1-18(in Chinese with English abstract).
      [8] Corbett, G. J., Leach, T. M., 1998. Southwest Pacific Rim Gold-Copper Systems: Structure, Alteration, and Mineralization. Society of Economic Geologists, 6. https://doi.org/10.5382/SP.06
      [9] Deng, J., Yang, L. Q., Ge, L. S., et al., 2006. Research Progress on Structural System of Jiaodong Ore Concentration Area. Progress in Natural Science, 16(5): 513-518(in Chinese with English abstract). doi: 10.3321/j.issn:1002-008X.2006.05.001
      [10] Du, L. T., 2001. Basic Metallogenic Regularity and General Hydrothermal Metallogeny of Hydrothermal Uranium Deposits in China. Atomic Press, Beijing(in Chinese).
      [11] Fan, H. R., Hu, F. F., Yang, J. H., et al., 2005. Fluid Evolution and Large-Scale Gold Metallogeny during Mesozoic Tectonic Transition in the Eastern Shandong Province. Acta Petrologica Sinica, 21(5): 1317-1328(in Chinese with English abstract).
      [12] Fang, W. X., 2016. On Tectonic System of Hydrothermal Breccia: Objective, Methodology and Lithofacies-Mapping Applications. Geotectonica et Metallogenia, 40(2): 237-265(in Chinese with English abstract).
      [13] Gu, X. X., Li, B. H., Zhang, Y. M., et al., 2019. Methodology and Applications of Metallogeny Research. China Geologic Press, Beijing (in Chinese).
      [14] Hou, Z. Q., Yang, Z. M., 2009. Porphyry Deposits in Continental Settings of China: Geological Characteristics, Magmatic-Hydrothermal System, and Metallogenic Model. Acta Geologica Sinica, 83(12): 1779-1817(in Chinese with English abstract). doi: 10.3321/j.issn:0001-5717.2009.12.002
      [15] Hu, S. X., Ye, Y., Fang, C. Q., 2004. Petrology of Metasomatic Altered Rocks and Its Prospecting Significance. China Geologic Press, Beijing (in Chinese).
      [16] Hu, H. L., Liu, S. L., Fan, H. R., et al., 2020. Structural Networks Constraints on Alteration and Mineralization Processes in the Jiaojia Gold Deposit, Jiaodong Peninsula, China. Journal of Earth Science, 31(3): 500-513. https://doi.org/10.1007/s12583-020-1276-z
      [17] Hu, R. Z., Fu, S. L., Xiao, J. F., 2016. Major Scientific Problems on Low-Temperature Metallogenesis in South China. Acta Petrologica Sinica, 32(11): 3239-3251(in Chinese with English abstract).
      [18] Li, H., Zhu, D. P., Shen, L. W., et al., 2022. A General Ore Formation Model for Metasediment-Hosted Sb-(Au-W) Mineralization of the Woxi and Banxi Deposits in South China. Chemical Geology. https://doi.org/10.1016/j.chemgeo.2022.121020
      [19] Li, J. W., Zhao, X. F., Deng, X. D., et al., 2019. An Overview of the Advance on the Study of China's Ore Deposits during the last Seventy Years. Scientia Sinica (Terrae), 49(11): 1720-1771(in Chinese with English abstract).
      [20] Li, Z. K., Li, X. M., Jin, X. Y., et al., 2021. Age and Genesis of the Laodaizhanggou Pb-Zn-Ag Deposit in the Fudian Ore Field, Southern North China Craton: Implications for Regional Mineral Prospecting. Journal of Earth Science, 32(1): 195-207. https://doi.org/10.1007/s12583-020-1093-4
      [21] Liu, B., Wu, Q. H., Li, H., et al., 2021. Yanshanian NE-Striking Fault Evolution and Its Implications on Mineralization in the Xitian W-Sn Polymetallic Ore Field, Hunan Province. Earth Science, 46(1): 43-58(in Chinese with English abstract).
      [22] Liu, Y. C., Hou, Z. Q., Yue, L. L., et al., 2022. Critical Metals in Sediment-Hosted Pb-Zn Deposits in China. Chinese Science Bulletin, 67(4): 406-424(in Chinese with English abstract).
      [23] Lu, H. Z., Fan, H. R., Ni, P., et al., 2004. Fluid Inclusion. Science Press, Beijing (in Chinese).
      [24] Mao, J. W., Wu, S. H., Song, S. W., et al., 2020. The World-Class Jiangnan Tungsten Belt: Geological Characteristics, Metallogeny, and Ore Deposit Model. Chinese Science Bulletin, 65(33): 3746-3762(in Chinese with English abstract). doi: 10.1360/TB-2020-0370
      [25] Ni, P., Chi, Z., Pan, J. Y., 2020. An Integrated Investigation of Ore-Forming Fluid Evolution in Porphyry and Epithermal Deposits and Their Implication on Exploration. Earth Science Frontiers, 27(2): 60-78(in Chinese with English abstract).
      [26] Pirajno, F., 2009. Hydrothermal Processes and Mineral System. Springer, Netherlands. https://doi.org/10.1007/978-1-4020-8613-7
      [27] Qin, K. Z., Zhai, M. G., Li, G. M., et al., 2017. Links of Collage Orogenesis of Multiblocks and Crust Evolution to Characteristic Metallogeneses in China. Acta Petrologica Sinica, 33(2): 305-325(in Chinese with English abstract).
      [28] Song, S. M., Wen, G. J., Shen, W. J., et al., 2021. Specification for Geological Mapping of Solid Mineral Exploration. China Geologic Press, Beijing (in Chinese).
      [29] Song, M. C., Ding, Z. J., Liu, X. D., et al., 2022. Structural Controls on the Jiaodong Type Gold Deposits and Metallogenic Model. Acta Geologica Sinica, 96(5): 1774-1802(in Chinese with English abstract). doi: 10.3969/j.issn.0001-5717.2022.05.017
      [30] Sun, W. D., Ling, M. X., Yang, X. Y., et al., 2010. Ridge Subduction and Porphyry Copper-Gold Mineralization. Scientia Sinica (Terrae), 40(2): 127-137(in Chinese with English abstract). doi: 10.1360/zd2010-40-2-127
      [31] Tang, J. X., Song, Y., Wang, Q., et al., 2016. Geological Characteristics and Exploration Model of the Tiegelongnan Cu(Au-Ag) Deposit: The First Ten Million Tons Metal Resources of a Porphyry-Epithermal Deposit in Tibet. Acta Geoscientica Sinica, 37(6): 663-690(in Chinese with English abstract).
      [32] Taylor, R. D., Leach, D. L., Bradley, D. C., 2009. Compilation of Mineral Resource Data for Mississippi Valley-Type and Clastic-Dominated Sediment-Hosted Lead-Zinc Deposits. U. S. Geological Survey Open-file Report 2009-1297.
      [33] Wang, G. W., Zhang, Z. Q., Li, R. X., et al., 2021. Resource Prediction and Assessment Based on 3D/4D Big Data Modeling and Deep Integration in Key Ore Districts of North China. Scientia Sinica (Terrae), 51(9): 1594-1610(in Chinese with English abstract). doi: 10.1360/SSTe-2020-0289
      [34] Wang, T., Ji, W. H., Hu, J. M., et al., 2016. Geological Mapping for Special Issues and a Discussion on Related Topics. Geological Bulletin of China, 35(5): 633-641(in Chinese with English abstract). doi: 10.3969/j.issn.1671-2552.2016.05.001
      [35] Yang, Z. M., Hou, Z. Q., Song, Y. C., et al., 2008. Qulong Superlarge Porphyry Cu Deposit in Tibet: Geology, Alteration and Mineralization. Mineral Deposits, 27(3): 279-318(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2008.03.002
      [36] Yang, Z. M., Hou, Z. Q., Yang, Z. S., et al., 2012. Application of Short Wavelength Infrared(SWIR) Technique in Exploration of Poorly Eroded Porphyry Cu District: A Case Study of Niancun Ore District, Tibet. Mineral Deposits, 31(4): 699-717(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2012.04.004
      [37] Ye, T. Z., Lv, Z. C., Pang, Z. S., et al., 2014. Theory and Methodology of Prospecting Prediction in Exploration Area. China Geologic Press, Beijing (in Chinese).
      [38] Yuan, Y. M., Zhao, W. X., Zhang, Z. J., et al., 2008. Teaching System and Content of Geological Field Practice in Zhou Koudian. Chinese Geological Education, 17(2): 61-66(in Chinese with English abstract). doi: 10.3969/j.issn.1006-9372.2008.02.018
      [39] Zhai, Y. S., Peng, R. M., Xiang, Y. C., et al., 2004. Methodology of Reginal Metallogenic Research. China Land Press, Beijing (in Chinese).
      [40] Zhai, Y. S., Yao, S. Z., Cai, K. Q., 2011. Metalogeny (Third Edition). China Geologic Press, Beijing (in Chinese).
      [41] Zhai, M. G., 2010. Tectonic Evolution and Metallogenesis of North China Craton. Mineral Deposits, 29(1): 24-36(in Chinese with English abstract). doi: 10.3969/j.issn.0258-7106.2010.01.004
      [42] Zhang, C. Q., Rui, Z. Y., Chen, Y. C., et al., 2013. The Main Successive Strategic Bases of Resources for Pb-Zn Deposits in China. Geology in China, 40(1): 248-272(in Chinese with English abstract). doi: 10.3969/j.issn.1000-3657.2013.01.017
      [43] Zheng, Y., Zhang, G. Z., Wu, Y. H., 2022. Triassic Multistage Antimony-Gold Mineralization in the Precambrian Sedimentary Rocks of South China: Insights from Structural Analysis, Paragenesis, 40Ar/39Ar Age, In-Situ S-Pb Isotope and Trace Elements of the Longwangjiang-Jiangdongwan Orefield, Xuefengshan Mountain. Ore Geology Reviews. https://doi.org/10.1016/j.oregeorev.2022.105030
      [44] Zhou, J. X., Luo, K., Sun, G. T., 2021. Se Extremely Enriched in the Dingtoushan Pb-Zn Deposit, Qinglong City, Guizhou Province, China. Geology in China, 48(1): 339-340(in Chinese with English abstract).
      [45] Zhou, T. F., Fan, Y., Wang, S. W., et al., 2017. Metallogenic Regularity and Metallogenic Model of the Middle-Lower Yangtze River Valley Metallogenic Belt. Acta Petrologica Sinica, 33(11): 3353-3372(in Chinese with English abstract).
      [46] 陈静, 周涛发, 张乐骏, 等, 2020. 蚀变岩帽的特征、成因以及在华南的分布探讨. 岩石学报, 36(11): 3380-3396. doi: 10.18654/1000-0569/2020.11.08
      [47] 陈衍景, 翟明国, 蒋少涌, 2009. 华北大陆边缘造山过程与成矿研究的重要进展和问题. 岩石学报, 25(11): 2695-2726. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200911003.htm
      [48] 陈衍景, 李诺, 邓小华, 等, 2020. 秦岭造山带钼矿床成矿规律. 北京: 科学出版社.
      [49] 陈正乐, 陈柏林, 2012. 地质力学矿田构造研究思路、步骤与实践. 自然杂志, 34(4): 208-215. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201204005.htm
      [50] 池国祥, 薛春纪, 2011. 成矿流体动力学的原理、研究方法及应用. 地学前缘, 18(5): 1-18. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201105001.htm
      [51] 邓军, 杨立强, 葛良胜, 等, 2006. 胶东矿集区形成的构造体制研究进展. 自然科学进展, 16(5): 513-518. doi: 10.3321/j.issn:1002-008X.2006.05.001
      [52] 翟明国, 2010. 华北克拉通的形成演化与成矿作用. 矿床地质, 29(1): 24-36. doi: 10.3969/j.issn.0258-7106.2010.01.004
      [53] 翟裕生, 彭润民, 向运川, 等, 2004. 区域成矿研究法. 北京: 中国大地出版社.
      [54] 翟裕生, 姚书振, 蔡克勤, 2011. 矿床学(第三版). 北京: 地质出版社.
      [55] 杜乐天, 2001. 中国热液铀矿基本成矿规律和一般热液成矿学. 北京: 原子能出版社.
      [56] 范宏瑞, 胡芳芳, 杨进辉, 等, 2005. 胶东中生代构造体制转折过程中流体演化和金的大规模成矿. 岩石学报, 21(5): 1317-1328. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200505000.htm
      [57] 方维萱, 2016. 论热液角砾岩构造系统及研究内容、研究方法和岩相学填图应用. 大地构造与成矿学, 40(2): 237-265. https://www.cnki.com.cn/Article/CJFDTOTAL-DGYK201602006.htm
      [58] 顾雪祥, 李葆华, 章永梅, 等, 2019. 矿床学研究方法与应用. 北京: 地质出版社.
      [59] 侯增谦, 杨志明, 2009. 中国大陆环境斑岩型矿床: 基本地质特征、岩浆热液系统和成矿概念模型. 地质学报, 83(12): 1779-1817. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE200912002.htm
      [60] 胡瑞忠, 付山岭, 肖加飞, 2016. 华南大规模低温成矿的主要科学问题. 岩石学报, 32(11): 3239-3251. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201611001.htm
      [61] 胡受奚, 叶瑛, 方长泉, 2004. 交代蚀变岩岩石学及其找矿意义. 北京: 地质出版社.
      [62] 李建威, 赵新福, 邓晓东, 等, 2019. 新中国成立以来中国矿床学研究若干重要进展. 中国科学: 地球科学, 49(11): 1720-1771. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201911003.htm
      [63] 刘飚, 吴堑虹, 李欢, 等, 2021. 湖南锡田钨锡多金属矿田燕山期NE向断层演化历史及其成矿意义. 地球科学, 46(1): 43-58. doi: 10.3799/dqkx.2019.263
      [64] 刘英超, 侯增谦, 岳龙龙, 等, 2022. 中国沉积岩容矿铅锌矿床中的关键金属. 科学通报, 67(4): 406-424. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB2022Z1008.htm
      [65] 卢焕章, 范宏瑞, 倪培, 等, 2004. 流体包裹体. 北京: 科学出版社.
      [66] 毛景文, 吴胜华, 宋世伟, 等, 2020. 江南世界级钨矿带: 地质特征、成矿规律和矿床模型. 科学通报, 65(33): 3746-3762. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB202033010.htm
      [67] 倪培, 迟哲, 潘君屹, 2020. 斑岩型和浅成低温热液型矿床成矿流体与找矿预测研究: 以华南若干典型矿床为例. 地学前缘, 27(2): 60-78. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY202002006.htm
      [68] 秦克章, 翟明国, 李光明, 等, 2017. 中国陆壳演化、多块体拼合造山与特色成矿的关系. 岩石学报, 33(2): 305-325. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201702001.htm
      [69] 宋明春, 丁正江, 刘向东, 等, 2022. 胶东型金矿床断裂控矿及成矿模式. 地质学报, 96(5): 1774-1802. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE202205017.htm
      [70] 宋明春, 温桂军, 申文金, 2021. 中华人民共和国地质矿产行业标准固体矿产勘查地质填图规范DZ/T0382-2021. 北京: 地质出版社.
      [71] 孙卫东, 凌明星, 杨晓勇, 等, 2010. 洋脊俯冲与斑岩铜金矿成矿. 中国科学: 地球科学, 40(2): 127-137. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201002001.htm
      [72] 唐菊兴, 宋扬, 王勤, 等, 2016. 西藏铁格隆南铜(金银)矿床地质特征及勘查模型: 西藏首例千万吨级斑岩-浅成低温热液型矿床. 地球学报, 37(6): 663-690. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXB201606003.htm
      [73] 王功文, 张智强, 李瑞喜, 等, 2021. 华北重点矿集区大数据三维/四维建模与深层次集成的资源预测评价. 中国科学: 地球科学, 51(9): 1594-1610. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK202109011.htm
      [74] 王涛, 计文化, 胡建民, 等, 2016. 专题地质填图及有关问题讨论. 地质通报, 35(5): 633-641. https://www.cnki.com.cn/Article/CJFDTOTAL-ZQYD201605001.htm
      [75] 杨志明, 侯增谦, 宋玉财, 等, 2008. 西藏驱龙超大型斑岩铜矿床: 地质、蚀变与成矿. 矿床地质, 27(3): 279-318. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ200803003.htm
      [76] 杨志明, 侯增谦, 杨竹森, 等, 2012. 短波红外光谱技术在浅剥蚀斑岩铜矿区勘查中的应用: 以西藏念村矿区为例. 矿床地质, 31(4): 699-717. https://www.cnki.com.cn/Article/CJFDTOTAL-KCDZ201204005.htm
      [77] 叶天竺, 吕志成, 庞振山, 等, 2014. 勘查区找矿预测理论与方法(总)论. 北京: 地质出版社.
      [78] 袁晏明, 赵温霞, 章泽军, 等, 2008. 周口店野外地质实践教学体系与内容. 中国地质教育, 17(2): 61-66. https://www.cnki.com.cn/Article/CJFDTOTAL-JYDZ200802022.htm
      [79] 张长青, 芮宗瑶, 陈毓川, 等, 2013. 中国铅锌矿资源潜力和主要战略接续区. 中国地质, 40(1): 248-272. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI201301019.htm
      [80] 周家喜, 罗开, 孙国涛, 2021. 贵州晴隆丁头山铅锌矿床发现硒超常富集. 中国地质, 48(1): 339-340. https://www.cnki.com.cn/Article/CJFDTOTAL-DIZI202101027.htm
      [81] 周涛发, 范裕, 王世伟, 等, 2017. 长江中下游成矿带成矿规律和成矿模式. 岩石学报, 33(11): 3353-3372. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201711002.htm
    • 加载中
    图(8)
    计量
    • 文章访问数:  728
    • HTML全文浏览量:  432
    • PDF下载量:  319
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-06-30
    • 刊出日期:  2022-10-25

    目录

      /

      返回文章
      返回