• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    塔里木盆地蓬莱坝组层状白云岩储层发育规律

    乔占峰 张天付 贺训云 熊冉

    乔占峰, 张天付, 贺训云, 熊冉, 2023. 塔里木盆地蓬莱坝组层状白云岩储层发育规律. 地球科学, 48(2): 673-689. doi: 10.3799/dqkx.2022.277
    引用本文: 乔占峰, 张天付, 贺训云, 熊冉, 2023. 塔里木盆地蓬莱坝组层状白云岩储层发育规律. 地球科学, 48(2): 673-689. doi: 10.3799/dqkx.2022.277
    Qiao Zhanfeng, Zhang Tianfu, He Xunyun, Xiong Ran, 2023. Development and Exploration Direction of Bedded Massive Dolomite Reservoir of Lower Ordovician Penglaiba Formation in Tarim Basin. Earth Science, 48(2): 673-689. doi: 10.3799/dqkx.2022.277
    Citation: Qiao Zhanfeng, Zhang Tianfu, He Xunyun, Xiong Ran, 2023. Development and Exploration Direction of Bedded Massive Dolomite Reservoir of Lower Ordovician Penglaiba Formation in Tarim Basin. Earth Science, 48(2): 673-689. doi: 10.3799/dqkx.2022.277

    塔里木盆地蓬莱坝组层状白云岩储层发育规律

    doi: 10.3799/dqkx.2022.277
    基金项目: 

    中国石油基础性前瞻性科技项目“海相碳酸盐岩有效储层形成与保持机理及分布预测研究” 2021DJ0503

    详细信息
      作者简介:

      乔占峰(1983—),男,高级工程师,博士,主要从事碳酸盐岩层序地层与沉积储层研究. ORCID:0000-0002-5614-3444. E-mail:qiaozf_hz@petrochina.com.cn

    • 中图分类号: P624

    Development and Exploration Direction of Bedded Massive Dolomite Reservoir of Lower Ordovician Penglaiba Formation in Tarim Basin

    • 摘要: 塔里木盆地蓬莱坝组油气勘探潜力巨大,但勘探对象上存在“断溶体”和层状白云岩的争议.在露头与钻井储层特征认识的基础上,岩石学与碳氧锶同位素和激光U⁃Pb定年等地球化学分析相结合,探讨了蓬莱坝组白云岩的成因机制及层状规模储层发育潜力与发育规律,进而根据白云岩储层分布预测讨论了塔里木盆地蓬莱坝组的勘探方向. 取得3点认识:(1)蓬莱坝组发育孔隙-孔洞型白云岩储层,平均孔隙度2.81%,最高可达13.91%,具备发育优质储层的潜力;(2)白云岩储层以准同生白云岩叠加浅埋藏云化作用形成的埋藏白云岩为主,具有相控性和规模性,可层状发育,主要分布于内缓坡-中缓坡准同生云化滩;(3)塔北南缘和塔中北斜坡为层状规模优质白云岩储层发育有利区,是该领域值得探索的勘探方向.

       

    • 图  1  塔里木盆地地质背景图

      a.塔里木盆地构造区划图;b.蓬莱坝组沉积相图与断裂分布图;c.塔里木盆地下古生界岩性柱状图;d. 塔里木盆地不同地区蓬莱坝组埋藏史图;塔北南缘以跃满5井为代表,古城地区以古隆5井为代表,塔中北斜坡以塔中62井为代表,塔西南以巴探4井为代表

      Fig.  1.  Geological setting of Lower Ordovician Penglaiba Formation of Tarim Basin

      图  2  塔里木盆地蓬莱坝组岩石类型与储层特征.

      a. 岩心照片,针孔状白云岩,孔隙发育,塔中162井;b. 岩心照片,溶蚀孔洞,晶粒白云岩,于奇6井,O1p;c. 常规单偏光显微照片,晶间孔,细晶白云岩,岩心孔隙度13%,轮深2,O1p,6 575.45 m;d. 常规单偏光显微照片,细中晶白云岩,基本看不出原岩组构特征,孔隙为晶间(溶)孔,与原岩结构的关系不明显,O1p,永安坝剖面;e. 恢复原岩结构照片,视域同d,白云石晶体排列受颗粒组构约束,孔隙为基质孔继承转换而来,O1p,永安坝剖面;f. 常规单偏光显微照片,细中晶白云岩,可见粉细晶白云岩局部富集,但是原岩组构识别不清,孔隙以晶间(溶)孔为主,O1p,永安坝剖面;g. 恢复原岩结构照片,视域同f,清晰可见为颗粒白云岩,孔隙以原生粒间孔为主,O1p,永安坝剖面;h. 常规单偏光显微照片,粗晶白云岩,白云石内部微孔发育,O1p,永安坝剖面;i. 常规单偏光显微照片,含云砂屑灰岩,白云石沿缝合线发育,砂屑灰岩胶结致密,O1p,永安坝剖面;j. 露头照片,硅质岩层,O1p,永安坝剖面;k. 常规正交光显微照片,硅质斑块,白云岩中部分硅化,硅质团块中可见颗粒结构,O1p,永安坝剖面;l. 常规单偏光显微照片,硅质岩,显颗粒结构,局部保留自形晶白云石,O1p,永安坝剖面

      Fig.  2.  Photographs showing the rock fabric and reservoir features of Penglaiba Formation in Tarim Basin

      图  3  塔里木盆地蓬莱坝组白云岩物性分布与储层发育直方图

      a.塔里木盆地蓬莱坝组露头与岩心白云岩孔隙度分布直方图;b. 塔里木盆地露头与钻井岩心蓬莱坝组白云岩孔渗交汇图;c.塔里木盆地蓬莱坝组岩心白云岩孔隙度分布直方图;d. 塔里木盆地蓬莱坝组露头剖面白云岩孔隙度分布直方图;e. 塔里木盆地重点井和露头蓬莱坝组储层厚度与储地比分布直方图

      Fig.  3.  Histograms showing the petrophysical distribution and reservoir thickness of Penglaiba Formation of Tarim Basin

      图  4  塔里木盆地西北部永安坝剖面蓬莱坝组白云岩碳氧锶同位素交互图

      a. 永安坝剖面蓬莱坝组白云岩碳氧同位素交互图;b. 永安坝剖面蓬莱坝组白云岩碳和锶同位素交互图

      Fig.  4.  Crossplots of carbon and oxygen and carbon and strontium of dolomite of Penglaiba Formation of Yoanganba Outcrop in northwestern Tarim Basin

      图  5  蓬莱坝组白云岩形成年代与演化路径图

      Fig.  5.  The forming ages and evolution pathes of the dolomite of Penglaiba Formation in Tarim Basin

      图  6  塔里木盆地永安坝剖面蓬莱坝组解剖段储层发育对比图

      Fig.  6.  The correlation of dolomite reservoirs of Penglaiba Formation of Yonganba Outcrop

      图  7  塔里木盆地蓬莱坝组硅质岩发育特征

      a. 露头照片,辉绿岩段-硅质岩段-硅化云岩段-白云岩段依次发育,O1p,永安坝剖面;b. 露头照片,硅质岩层,O1p,永安坝剖面;c. 常规正交光显微照片,硅质斑块,白云岩中部分硅化,硅质团块中可见颗粒结构,O1p,永安坝剖面;d. 常规单偏光显微照片,硅质岩,显颗粒结构,局部保留自形晶白云石,O1p,永安坝剖面

      Fig.  7.  Photographs showing the features of Siliceous Rock of Penglaiba Formation in Tarim Basin

      图  8  塔里木盆地蓬莱坝组规模优质储层发育模式图

      Fig.  8.  the evolution model of development of large⁃sized high⁃quality dolomite reservoir of Penglaiba formation in Tarim Basin

      图  9  塔里木盆地塔中北斜坡蓬莱坝组储层对比图

      Fig.  9.  The correlation of dolomite reservoirs of Penglaiba Formation in North Slope of Tazhong uplift in Tarim Basin

      图  10  塔里木盆地塔北南缘蓬莱坝组地震响应剖面

      Fig.  10.  The seismic profile showing the response of Penglaiba Formation in south margin of Tabei uplift in Tarim Basin

      图  11  塔里木盆地蓬莱坝组储层分布预测图

      Fig.  11.  The prediction map of dolomite reservoir distribution of Penglaiba Formation in Tarim Basin

    • [1] Chen, Y. Q., Yan, W., Han, C. W., et al., 2015. Redefinition on Structural Paleogeography and Lithofacies Paleogeography Framework form Cambrian to Early Ordovician in the Tarim Basin: A New Approach Based on Seismic Stratigraphy Evidence. Natural Gas Geoscience, 26(10): 1831-1843(in Chinese with English abstract). doi: 10.11764/j.issn.1672-1926.2015.10.1831
      [2] Chen, Y. Q., Zhou, X. Y., Zhao, K. D., et al., 2009. The Petrologic Rhythm of Lower Ordovician Penglaiba Formation Encountered by Well Tazhong 19 amd New Dolomitization Model, Tarim Basin. Acta Sedimentologica Sinica, 27(2): 14-23(in Chinese with English abstract).
      [3] Deng, W. L., 2016. Reservior Geochemical Study of Yueman Block in Halahatang Region, Tarim Basin(Dissertation). China University of Petroleum, Beijing(in Chinese with English abstract).
      [4] Deng, X. L., Qiao, Z. F., Wang, P., et al., 2018. Origin, Development and Features of the "Fault-Dissolved body"Reservior Formed in Burial Stage: A case Study of Upper Ordovician Lianglitage Formation in Tarim Basin, Northwest China. Marine Origin Petroleum Geology, 23(1): 47-55(in Chinese with English abstract). doi: 10.3969/j.issn.1672-9854.2018.01.006
      [5] Dong, S. F., Chen, D. Z., Qing, H. R., et al., 2013. Hydrothermal Alteration of Dolostones in the Lower Ordovician, Tarim Basin, NW China: Multiple Constraints from Petrology, Isotope Geochemistry and Fluid Inclusion Microthermometry. Marine and Petroleum Geology, 46: 270-286. https://doi.org/10.1016/j.marpetgeo.2013.06.013
      [6] Gao, Z. Q., Fan, T. L., 2012. Extensional Tectonics and Sedimentary Response of the Early-Middle Cambrian Passive Continental Margin, Tarim Basin, Northwest China. Geoscience Frontiers, 3(5): 661-668. https://doi.org/10.1016/j.gsf.2012.01.007
      [7] Gu, J. Y.,, 2000. Characteristics and Origin Analysis of Dolomite in Lower Ordovician of Tarim Basin. XinJiang Petroleim Geology, 21(2): 120-122(in Chinese with English abstract).
      [8] Hardie, L. A., 1987. Dolomitization: A Critical View of Some Currentviews. Journal of Sedimentary Petrology, 57(1): 153-165.
      [9] Hu, M. Y., Ngia, N. R., Gao, D., 2019. Dolomitization and Hydrotectonic Model of Burial Dolomitization of the Furongian-Lower Ordovician Carbonates in the Tazhong Uplift, Central Tarim Basin, NW China: Implications from Petrography and Geochemistry. Marine and Petroleum Geology, 106: 88-115. https://doi.org/10.1016/j.marpetgeo.2019.04.018
      [10] Jia, C. Z., Zhang, S. B., Wu, S. Z., et al., 2004. Stratigraphey of the Tarim Basin and Adjacent Areas. Science Press, Beijing (in Chinese).
      [11] Li, W. Q., Guo, W., Sun, S. L., et al., 2018. Research on Hydeocarbon Accumulation Periods of Reservoirs in Bachu-Maigaiti Area of Tarim Basin. Journal of Jilin University (Earth Science Editon), 48(3): 640-651(in Chinese with English abstract).
      [12] Lu, X. B., Hu, W. G., Wang, Y., et al., 2015. Characteristics and Development Practice of Fault-Karst Carbonate Reservoirs in Tahe Area, Tarim Basin. Oil & Gas Geology, 36(3): 347-355(in Chinese with English abstract).
      [13] Lu, Z. Y., Chen, H. H., Feng, Y., et al., 2015. Evidences of Multi-Eposodically Paleo-Fluid Flow and Its Significance in Ordovician of Guchen Xu Uplift, Tarim Basin. Earth Science, 40(9): 1529-1537(in Chinese with English abstract).
      [14] Ma, D. B., Wu, G. H., Zhu, Y. F., et al., 2019. Segmentation Characteristics of Deep Strike Slip Faults in the Tarim Basin and Its Control on Hydrocarbon Enrichment: Taking the Ordovician Strike Slip Fault in the Halahatang Oilfield in the Tabei Area as an Example. Earth Science Frontiers, 26(1): 225-237(in Chinese with English abstract).
      [15] Pan, W. Q., Chen, Y. Q., Xiong, Y. X., et al., 2015. Sedimentary Facies Research and Implications to Advantaged Exploration Regions on Lower Cambrian Source Rocks, Tarim Basin. Natural Gas Geoscience, 26(7): 1224-1232(in Chinese with English abstract).
      [16] Qiao, Z. F., Shen, A. J., Zheng, J. F., et al., 2017. Digitized Outcrop Geomodeling of Ramp Shoals and Its Reservoirs: as an Example of Lower Triassic Feixianguan Formation of Eastern Sichuan Basin. Acta Geologica Sinica (English Edition), 91(4): 1395-1412. doi: 10.1111/1755-6724.13369
      [17] Qiao, Z. F., Shen, A. J., Zou, W. H., et al., 2011. A Fault-Controlled Non-Exposed Meteoric Karsttification: A Case Study of Ordovician Carbonate Reservoir at Structure YM2 in Northern Tarim Basin, Northestern China. Acta Geologica Sinica, 85(12): 2070-2073(in Chinese with English abstract).
      [18] Qiao, Z. F., Shen, A. J., Zhang, L. J., et al., 2012a. Characteristics and Origin of Middle Ordovician Karst Reservoirs in South Margin of Northern Tarim Basin. Marine Origin Petroleum Geology, 17(4): 21-33(in Chinese with English abstract).
      [19] Qiao, Z. F., Shen, A. J., Zheng, J. F., et al., 2012b. Classification and Origin of the Lower Ordovician Dolostone in Tarim Basin. Journal of Palaeogeography, 14(1): 21-32(in Chinese with English abstract).
      [20] Qiao, Z. F., Zhang, S. N., Shen, A. J., et al., 2020. Laser Ablated U-Pb Dating-Based Determination of Burial Dolomitization Process: A Case Study of Lower Ordovician Penglaiba Formation of Yonganba Outcrop in Tarim Basin. Acta Petrologica Sinica, 36(11): 3493-3509(in Chinese with English abstract). doi: 10.18654/1000-0569/2020.11.15
      [21] Qiu, N. S., Liu, W., Xu, Q. C., et al., 2018. Temperature-pressure Field and Hydrocarbon Accumulation in Deep-Ancient Marine Strata. Earth Science, 43(10): 3511-3525(in Chinese with English abstract).
      [22] Shang, P., Chen, H. H., Hu, S. Z., et al., 2020. Geochemical Characteristics of Crude Oil and Hydrocarbon Accumulation in the Ordovician of Yuqixi Area, Tarim Basin. Earth Science, 45(3): 1013-1026(in Chinese with English abstract).
      [23] She, M., Shou, J. F., Shen, A. J., et al., 2016. Experimental Simulation of Dissolution Law and Porosity Evolution of Carbonate Rock. Petroleum Exploration and Development, 43(4): 564-572(in Chinese with English abstract).
      [24] Sun, L. H., Wang, Y. J., Fan, W. M., et al., 2007. Petrogenesis and Tectonic Significances of the Diabase Dikes in the Bachu Area, Xinjiang. Acta Petrologica Sinica, 23(6): 1369-1380(in Chinese with English abstract). doi: 10.3969/j.issn.1000-0569.2007.06.013
      [25] Wang, B., Yang, Y., Cao, Z. C., et al., 2021. U-Pb Dating of Calcite Veins Developed in the Middle-Lower Ordovician Reservoirs in Tahe Oilfield and Its Petroleum Geologic Significance in Tahe Oilfield. Earth Science, 46(9): 3203-3216(in Chinese with English abstract).
      [26] Wang, Z. M., Xie, H. W., Chen, Y. Q., et al., 2014. Discovery and Exploration of Cambrian Subsalt Dolomite Original Hydrocarbon Reservoir at Zhongshen-1 Well in Tarim Basin. China Petroleum Exploration, 19(2): 1-13(in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2014.02.001
      [27] Xiong, R., Zhang, T. F., Qiao, Z. F., et al., 2019. The Carbonate Ramp Deposits from the Ordovician Penglaiba Formation in the Tarim Basin, Xinjiang. Sedimentary Geology and Tethyan Geology, 39(1): 42-49(in Chinese with English abstract). doi: 10.3969/j.issn.1009-3850.2019.01.005
      [28] Xu, H., Guo, X. W., Cao, Z. C., et al., 2021. Application of Minimum Homogenization Temperatures of Aqueous Inclusions in Calcite veins to Determine Time of Hydrocarbon Accumulation in Ordovician of Tahe Oilfield: Evidence from In-Situ Calcite U-Pb Dating by Laser Ablation. Earth Science, 46(10): 3535-3548(in Chinese with English abstract).
      [29] Yang, H. J., 2015. Exploration Knowledge and Direction of Lower Proterozoic Inner Dolostones, Tarim Basin. Natural Gas Geoscience, 26(7): 1213-1223(in Chinese with English abstract).
      [30] Yang, H. J., Deng, X. L., Zhang, Y. T., et al., 2020. Great Discovery and Its Significance of Exploration for Ordovician Ultra-Deep Fault-Controlled Carbonate Reservoirs of Well Manshen 1 in Tarim Basin. China Petroleum Exploration, 128(3): 17-27(in Chinese with English abstract).
      [31] Ye, N., Zhang, S. N., Qing, H. R., et al., 2019. Dolomitization and Its Impact on Porosity Development and Preservation in the Deeply Burial Lower Ordovician Carbonate Rocks of Tarim Basin, NW China. Journal of Petroleum Science and Engineering, 182: 106303. https://doi.org/10.1016/j.petrol.2019.106303
      [32] Zheng, J. C., Li, B., Wu, H. Y., et al., 2018. Study on the Thermal History of the Source Rock and Its Relationship with Hydrocarbon Accumulation Based on the Basin Modeling Technology: A Case of the Yuertusi Formation of Tarim Basin. Petroleum Geology and Recovery Efficiency, 25(5): 39-49(in Chinese with English abstract).
      [33] Zheng, J. F., Shen, A. J., Qiao, Z. F., et al., 2014. Characteristics and Pore Genesis of Dolomite in the Penglaiba Formation in Keping-Bachu Outcrop Area. Acta Petrologica Sinica, 35(4): 664-672(in Chinese with English abstract).
      [34] Zheng, J. F., Shen, A. J., Qiao, Z. F., et al., 2013. Genesis of Dolomite and Main Controlling Factors of Reservoir in Penglaiba Formation of Lower Ordovician, Tarim Basin: A Case Study of Dabantage Outcrop in Bachu Area. Acta Petrologica Sinica, 29(9): 267-276(in Chinese with English abstract).
      [35] Zhu, G. Y., Chen, F. R., Chen, Z. Y., et al., 2016. Discovery and Basic Characteristics of the High-Quality Source Rocks of the Cambrian Yuertusi Formation in Tarim Basin. Natural Gas Geoscience, 27(1): 8-21(in Chinese with English abstract).
      [36] 陈永权, 周新源, 赵葵东, 等, 2009. 塔里木盆地塔中19井奥陶系蓬莱坝组云灰互层段的岩性旋回特征与"顶侵型"埋藏云化模式的建立. 沉积学报, 27(2): 14-23. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB200902002.htm
      [37] 陈永权, 严威, 韩长伟, 等, 2015. 塔里木盆地寒武纪-早奥陶世构造古地理与岩相古地理格局再厘定——基于地震证据的新认识. 天然气地球科学, 26(10): 1831-1843. doi: 10.11764/j.issn.1672-1926.2015.10.1831
      [38] 邓卫龙, 2016. 塔里木盆地哈拉哈塘地区跃满区块成藏地球化学研究(博士毕业论文). 北京: 中国石油大学.
      [39] 邓兴梁, 乔占峰, 王彭, 等, 2018. 埋藏期"断溶体"的储集特征、成因及发育规律——以塔中十号带良里塔格组为例. 海相油气地质, 23(1): 47-55. doi: 10.3969/j.issn.1672-9854.2018.01.006
      [40] 顾家裕, 2000. 塔里木盆地下奥陶统白云岩特征及成因. 新疆石油地质, 21(2): 120-122. doi: 10.3969/j.issn.1001-3873.2000.02.008
      [41] 贾承造, 张师本, 吴绍祖, 等, 2004. 塔里木盆地及周边地层. 北京: 科学出版社.
      [42] 李文强, 郭巍, 孙守亮, 等, 2018. 塔里木盆地巴楚-麦盖提地区古生界油气藏成藏期次. 吉林大学学报(地球科学版), 48(3): 640-651. https://www.cnki.com.cn/Article/CJFDTOTAL-CCDZ201803003.htm
      [43] 鲁新便, 胡文革, 汪彦, 等, 2015. 塔河地区碳酸盐岩断溶体油藏特征与开发实践. 石油与天然气地质, 36(3), 347-355. https://www.cnki.com.cn/Article/CJFDTOTAL-SYYT201503003.htm
      [44] 鲁子野, 陈红汉, 丰勇, 等, 2015. 塔里木盆地古城墟隆起奥陶系多期古流体活动证据及意义. 地球科学, 40(9): 1529-1537. doi: 10.3799/dqkx.2015.137
      [45] 马德波, 邬光辉, 朱永峰, 等, 2019. 塔里木盆地深层走滑断层分段特征及对油气富集的控制: 以塔北地区哈拉哈塘油田奥陶系走滑断层为例. 地学前缘, 26(1), 229-241. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201901022.htm
      [46] 潘文庆, 陈永权, 熊益学, 等, 2015. 塔里木盆地下寒武统烃源岩沉积相研究及其油气勘探指导意义. 天然气地球科学, 26(7): 1224-1232. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201507003.htm
      [47] 邱楠生, 刘雯, 徐秋晨, 等, 2018. 深层-古老海相层系温压场与油气成藏. 地球科学, 43(10): 3511-3525. doi: 10.3799/dqkx.2018.286
      [48] 乔占峰, 沈安江, 邹伟宏, 等, 2011. 断裂控制的非暴露型大气水岩溶作用模式——以塔北英买2构造奥陶系碳酸盐岩储层为例. 地质学报, 85(12): 2070-2083 https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201112010.htm
      [49] 乔占峰, 沈安江, 张丽娟, 等, 2012a. 塔北南缘中奥陶统顺层岩溶储层特征及成因. 海相油气地质, 17(4): 27-33. https://www.cnki.com.cn/Article/CJFDTOTAL-HXYQ201204007.htm
      [50] 乔占峰, 沈安江, 郑剑锋, 等, 2012b. 塔里木盆地下奥陶统白云岩类型及其成因. 古地理学报, 14(1): 21-32. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201201006.htm
      [51] 乔占峰, 张哨楠, 沈安江, 等, 2020. 基于激光U-Pb定年的埋藏白云岩形成过程——以塔里木盆地永安坝剖面下奥陶统蓬莱坝组为例. 岩石学报, 36(11): 3493-3509. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB202011015.htm
      [52] 尚培, 陈红汉, 胡守志, 等, 2020. 塔里木盆地于奇西地区奥陶系原油特征及油气充注过程. 地球科学, 45(3): 1013-1026. doi: 10.3799/dqkx.2019.046
      [53] 佘敏, 寿建峰, 沈安江, 等, 2016. 碳酸盐岩溶蚀规律与孔隙演化实验研究. 石油勘探与开发, 43(04), 564-572. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201604009.htm
      [54] 孙林华, 王岳军, 范蔚茗, 等, 2007. 新疆巴楚辉绿岩岩脉的岩石成因和大地构造意义. 岩石学报, 2007, 23(6): 1369-1380. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB200706012.htm
      [55] 王斌, 杨毅, 曹自成, 等, 2021. 塔河油田中下奥陶统储层裂缝方解石脉U-Pb同位素年龄及油气地质意义. 地球科学, 46(9): 3203-3216. doi: 10.3799/dqkx.2020.352
      [56] 熊冉, 张天付, 乔占峰, 等, 2019. 塔里木盆地奥陶系蓬莱坝组碳酸盐岩缓坡沉积特征及油气勘探意义. 沉积与特提斯地质, 39(1): 42-49. https://www.cnki.com.cn/Article/CJFDTOTAL-TTSD201901005.htm
      [57] 徐豪, 郭小文, 曹自成, 等, 2021. 运用方解石中流体包裹体最小均一温度确定塔河油田奥陶系油气成藏时间: 来自激光原位方解石U-Pb年龄的证据. 地球科学, 46(10): 3535-3548. doi: 10.3799/dqkx.2020.376
      [58] 杨海军, 2015. 塔里木盆地下古生界内幕白云岩勘探认识与勘探方向. 天然气地球科学, 26(7): 1213-1223. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201507002.htm
      [59] 杨海军, 邓兴梁, 张银涛, 等, 2020. 塔里木盆地满深1井奥陶系超深断控碳酸盐岩油气藏勘探重大发现及意义. 中国石油勘探, 128(3): 17-27. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY202003002.htm
      [60] 王招明, 谢会文, 陈永权, 等, 2014. 塔里木盆地中深1井寒武系盐下白云岩原生油气藏的发现与勘探意义. 中国石油勘探, 19(2): 1-13. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201402001.htm
      [61] 朱光有, 陈斐然, 陈志勇, 等, 2016. 塔里木盆地寒武系玉尔吐斯组优质烃源岩的发现及其基本特征. 天然气地球科学, 27(1): 8-21. https://www.cnki.com.cn/Article/CJFDTOTAL-TDKX201601003.htm
      [62] 郑见超, 李斌, 吴海燕, 等, 2018. 基于盆地模拟技术的烃源岩热演化史及油气关系研究——以塔里木盆地玉尔吐斯组为例. 油气地质与采收率, 25(5): 39-49. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201805006.htm
      [63] 郑剑锋, 沈安江, 乔占峰, 等, 2013. 塔里木盆地下奥陶统蓬莱坝组白云岩成因及储层主控因素分析——以巴楚大班塔格剖面为例. 岩石学报, 29(9): 267-276. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXB201309021.htm
      [64] 郑剑锋, 沈安江, 乔占峰, 等, 2014. 柯坪-巴楚露头区蓬莱坝组白云岩特征及孔隙成因. 石油学报, 35(4): 664-672. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB201404006.htm
    • 加载中
    图(11)
    计量
    • 文章访问数:  17
    • HTML全文浏览量:  1
    • PDF下载量:  1
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-12-11
    • 刊出日期:  2023-02-25

    目录

      /

      返回文章
      返回