The High Efficiency Development Technology of Horizontal Well in Offshore Shallow Water Delta Oilfield
-
摘要: 陆地定向井密井网开发模式在海上浅水三角洲油田适应性差,对海上浅水三角洲油田水平井开发技术开展研究. 以浅水三角洲沉积模式为指导,根据地震沉积学原理,提出了BZ油田浅水三角洲储层的形成条件、成因机理及分布特征;结合大尺寸物模实验及油藏数值模拟方法对一次井网进行部署与优化. BZ油田浅水三角洲储层发育类型为多个单一分流河道侧向迁移叠置所形成的连片朵叶状复合砂体,识别了3种河道接触样式. 海上浅水三角洲油田一次井网采用水平井交错井网,储层上部采油、下部注水开发效果最好,提出3种河道接触样式下井网优化方法. 首次提出了海上浅水三角洲油田基于单河道的水平井单砂体布井开发技术,在BZ油田应用,开发效果评价为一类.Abstract: The development mode with dense well pattern in land is not applicable to offshore shallow water delta oilfield, This paper studies the development technology of horizontal wells in offshore shallow water delta oilfield. Based on the sedimentary model of shallow water delta and the principle of seismic sedimentology, the formation conditions, genetic mechanism and distribution characteristics of shallow water delta reservoir in BZ oilfield are put forward. The primary well pattern is deployed and optimized through large⁃scale physical model experiment and reservoir numerical simulation. The development type of shallow water delta reservoir in BZ oilfield is continuous lobed composite sand body formed by lateral migration and superposition of multiple single distributary channels, Three river contact patterns were identified. The primary well pattern of offshore shallow water delta oilfield adopts horizontal well staggered well pattern, and the effect of oil production in the upper part and water injection development in the lower part of the reservoir is the best. The well pattern optimization method under three channel contact patterns is proposed. For the first time, the development mode of horizontal well and single sand body layered system based on single channel in offshore shallow water delta oilfield is proposed, which is applied in BZ oilfield, and the development effect is evaluated as class I.
-
表 1 BZ油田水驱开发水平分级
Table 1. Classification of water drive development level in BZ Oilfield
序号 项目 分级标准 油田指标及评级结果 一类 二类 三类 一次井网 目前 1 水驱储量控制程度(%) ≥85 < 85~≥70 < 70 86.0 一类 94.5 一类 2 水驱储量动用程度(%) ≥75 < 75~≥60 < 60 77.4 一类 85.2 一类 3 能量保持水平 p≥pb pb > p≥0.85pb p < 0.85pb 0.91pb 二类 0.90pb 二类 4 阶段末采出程度(%) ≥18 < 18~≥12 < 12 18.1 一类 25.5 一类 5 综合含水上升率(%) ≤4.0 > 4.0~≤5.0 > 5.0 2.2 一类 1.5 一类 6 单位采油速度综合递减率(%) ≤6.0 > 6.0~≤8.0 > 8.0 4.2 一类 6.5 二类 7 油井措施有效率(%) ≥95 < 95~≥80 < 80 85.3 二类 90.2 二类 8 注水井分注率(%) ≥95 < 95~≥80 < 80 96.0 一类 100 一类 9 分注井层段配注合格率(%) ≥95 < 95~≥80 < 80 97.2 一类 80.6 二类 10 油水井综合时率(%) ≥95 < 95~≥90 < 90 97.8 一类 98.5 一类 11 注水水质达标状况(%) 100 < 100~≥90 < 90 100 一类 100 一类 12 平均检泵周期(d) ≥1 200 < 1 200~≥800 < 800 923 二类 967 二类 13 动态监测计划完成率(%) ≥95 < 95~≥90 < 90 96.2 一类 95.5 一类 注:以上13项应有9项,其中1,2,3,5,6,8,9,13项应有7项达标,且第4项应达标,方可划为此类. 表 2 港东油田与BZ油田开发阶段指标对比
Table 2. Comparison of development stage indicators between Gangdong oilfield and BZ Oilfield
油田 开发阶段 地质储量(104 t) 井数口 井控储量(104 t) 阶段末期含水率(%) 阶段末期采出程度(%) 平均采油速度(%) 港东 全面开发阶段 5 521.6 238 23.2 70.5 17.8 1.1 BZ 一次井网开发阶段 5 067.6 82 61.8 70.8 18.1 3.0 -
[1] Chapin, M. A., Davies, P., Gibson, J. L., et al., 1994. Reservoir Architecture of Turbidite Sheet Sandstones in Laterally Extensive Outcrops, Ross Formation, Western Ireland. [2] Diao, F., Wen, Z. G., Zou, H. Y., et al., 2013. Sedimentary Characteristics of Shallow Water Deltas in Chang 8 Oil-Bearing Interval in Eastern Gansu, Ordos Basin. Earth Science, 38(6): 1289-1298(in Chinese with English Abstract). [3] Duan, D. P., Hou, J. G., Liu, Y. M. et al., 2014. Quantitative Study on the Front Sedimentary System of River Controlled Delta: Taking Poyang Lake Delta as an Example. Acta Sedimentologica Sinica, 32(2): 270-277(in Chinese with English Abstract). [4] Guo, T. X., Yang, Q. H., Huang, K., et al., 2013. High Efficiency Offshore Oilfield Development Technology. Petroleum Exploration and Development, 40(6): 708-714(in Chinese with English Abstract). [5] He, K., Zhang, Z. P., Zhou, J. L., et al., 2020. A New Method for Identifying the Internal Configuration Interface of Composite Meander Zone and Its Application. Lithologic Reservoir, 32(4): 126-135(in Chinese with English Abstract). [6] He, W. X., Wu, S. H., Tang, Y. J., et al., 2005. Fine Anatomy of Estuarine Bar Sand Body Configuration. Petroleum Exploration and Development, 32(5): 42-46(in Chinese with English Abstract). [7] Heng, Y., Duang, X. G., Wang, Y. F., et al., 2022. Internal Structure of Distributary Channel Sand Body and its Effect Gas-Water Distribution in Shallow-Water Delta: A Case Study of Shaximiao Formation in Zhonjiang Gas Field, Sichuan Basin, China. Journal of Chengdu University of Technology (Science & Technology Edition), 49(1): 1-11(in Chinese with English Abstract). [8] Jia, J. S., Wang, J. Y., Duan, J. H., et al., 2012. Development Potential and Countermeasures of Fluvial Facies Development Unit in Shengli Oil Field. Oil and Gas Geology and Oil Recovery, 19(1): 91-94(in Chinese with English Abstract). [9] Jiang, Y. P., Zhang, L., Wu, Q. Y., et al., 2020. Reservoir Configuration Characterization of Lobed Shallow Water Delta in the Southern Bohai Sea. Special Oil and Gas Reservoir, 27(6): 88-95(in Chinese with English Abstract). [10] Li, Z. P, 2020. Characterization of Distributary Channel Type Shallow Water Delta Reservoir Configuration in Bohai Sea: Taking the Formation of the Lower Ming Member of Qikou Oilfield as an Example. China Offshore Oil and Gas, 32(1): 103-110(in Chinese with English Abstract). [11] Liu, C., Li, Y. P., Zhang, W., et al., 2017. Remaining Oil Distribution Model Under Interlayer Control of Oilfield in Bohai Sea. Lithologic Reservoir, 29(5): 148-154(in Chinese with English Abstract). [12] Liu, S. N., 2016. Research on Fine Geological Modeling and Numerical Simulation Method of Complex Fluvial Facies. Northeast Petroleum University, Daqing(in Chinese with English Abstract). [13] Lv, J. R., Tan, F. Q., Xu, C. F., et al., 2015. Reservoir Classification Characteristics and Water Drive Law of Karamay Conglomerate Reservoir. Journal of Northeast Petroleum University, 39(4): 21-29(in Chinese with English Abstract). [14] Meng, Y. J., Zhao, Y. C., Xiong, S., et al., 2021. Study on Reservoir Architecture and Reservoir Units of Fluvial Deposits of Dongying Formation in Yuke Oilfield. Earth Science, 46(7): 2481-2493(in Chinese with English Abstract). [15] Pyles, D. R., Syvitski, J., Slatt, R. M., 2011. Defining the Concept of Stratigraphic Grade and Applying it to Stratal (Reservoir) Architecture and Evolution of the Slope-to-basin Profile: An Outcrop Perspective. Marine & Petroleum Geology, 28(3): 675-697. [16] Qin, W., Zhu, S. F., Zhu, X. M., et al., 2017. Sedimentary Characteristics and Source Sink Process of Shallow Water Delta on the Southern Gentle Slope of Dongying Depression. Earth Science, 42(11): 2081-2094(in Chinese with English Abstract). [17] Ren, Y. F., Zhao. J. F., Chen, J. Y., et al., 2022. Sedimentary Characteristics and Sand Body Architecture of Shallow Delta Front in Ordos Basin: A Case Study of Chant 9 Member in Shiwanhe Section in Yichuan. Xinjiang Petroleum Geology, 43(3): 310-319(in Chinese with English Abstract). [18] Sun, Q., Sun, H. Y., Yang, K., et al., 2020. Polymer Injection Production Practice in Block 45 of Gangdong Block 2 in Dagang Oilfield. Logging Engineering, 31(4): 115-120(in Chinese with English Abstract). doi: 10.3969/j.issn.1672-9803.2020.04.018 [19] Tang, H. M., Wen, X., Zhang, X. Y., et al., 2014. Water Flooding Simulation Experiment of Interlayer Heterogeneous Conglomerate Reservoir. Journal of Southwest Petroleum University (Natural Science Edition), 36(5): 129-134(in Chinese with English Abstract). [20] Wang, J. H., Chen H. H., Jiang, T., et al., 2012. Sandbodies Frameworks of Subaqueous Distributary Channel in Shallow-Water Delta, Xinli Area of Songliao Basin. . Earth Science, 37(3): 556-564(in Chinese with English Abstract). [21] Wu, Q. Y., Mu, P. F., Sun, G. Y., et al., 2020. A New Method for Fine Characterization of Distributary Sand Dam in Shallow Water Delta. Fault Block Oil and Gas Field, 27 (2): 176-181(in Chinese with English Abstract). [22] Xiao, W. L., Yang, Y. B., Li, M., et al., 2021. Experiment on Water Flooding Characteristics of Different Types of Reservoirs in Ordos Basin. Petroleum Exploration and Development, 48(4): 807-814(in Chinese with English Abstract). [23] Yi, J. J., Chen, K. F., 2021. Sedimentary Characteristics and Development Model of Salt Lake Shallow Water Delta in Qianjiang Sag, Jianghan Basin. Northwest Geology, 54(4): 199-210(in Chinese with English Abstract). [24] Yin, N. X., Luo, C., Wu, B., et al., 2022. Sedimentary Characteristics of Shallow Water Delta in the Lower Member of Sha 2 Formation in W33 Fault Block. Northweastern Geology, 55(2): 135-145(in Chinese with English Abstract). [25] Yue, D. L., Wu, S. H., Liu, J. M., 2007. Fine Anatomy Method of Underground Reservoir Configuration of Point Dam in Meandering River. Journal of Petroleum, 28(4): 99-103(in Chinese with English Abstract). [26] Zeng, X. P, 2010. Application of Reservoir Configuration Research in Oilfield Fine Development. Petroleum Exploration and Development, 37(4): 483-489(in Chinese with English Abstract). [27] Zhang, W. B, Duan, T., Zhao, H. W., et al., 2021. Architecture Characterization of Ordovician Fault-Controlled PaleoKarst Carbonate Reservoirs in Tuoputai, Tahe Oilfield, Tarim Basin, NW China. Petroleum Exploration and Development, 48(2): 367-380. doi: 10.1016/S1876-3804(21)60029-0 [28] Zhao, W., Qiu, L. W., Jiang, Z. X., et al., 2011. Sedimentary Evolution and Sedimentary Model of Shallow Water Delta in the Shrinking Period of Fault Depression Lake Basin: Taking the Upper Sub Member and Second Member of Sha3 Member of Paleogene in Niuzhuang Sag of Dongying Depression as an Example. Journal of Geology, 85(6): 1019-1027(in Chinese with English Abstract). [29] Zhao, Z. F., 2007. Research on Well Pattern Adjustment Technology in Fluvial Sandstone Reservoir at Ultra-high Water cut Stage. China University of Petroleum, Beijing(in Chinese with English Abstract). [30] Zhou, Y. Z., Yin, D. Y., Zhang, C. L., et al., 2014. Application of ASP Flooding in Horizontal Wells in Meandering River Point Bar Sand Body. Special Oil and Gas Reservoir, 21(3): 87-89(in Chinese with English Abstract). [31] Zhu, L. H., 2013. Comprehensive Description and Distribution Characteristics of Remaining Oil in Thick Reservoir in Ultra-High Water Cut Stage. Daqing Petroleum Geology and Development, 32(6): 58-62(in Chinese with English Abstract). [32] Zou, . T., Ding, Y. J., Xiao, M., et al., 2013. Study on 3D Geological Structure Modeling of Complex Fault Block Reservoir in Gangdong Oilfield. Petroleum Geology and Engineering, 27 (5): 73-76(in Chinese with English Abstract). [33] 刁帆, 文志刚, 邹华耀, 等, 2013. 鄂尔多斯盆地陇东地区长8油层组浅水三角洲沉积特征. 地球科学, 38(6): 1289-1298. doi: 10.3799/dqkx.2013.000 [34] 段冬平, 侯加根, 刘钰铭, 等, 2014. 河控三角洲前缘沉积体系定量研究——以鄱阳湖三角洲为例. 沉积学报, 32(2): 270-277. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201402011.htm [35] 郭太现, 杨庆红, 黄凯, 等. 2013. 海上河流相油田高效开发技术. 石油勘探与开发, 40(6): 708-714. [36] 何康, 张鹏志, 周军良, 等, 2020. 复合曲流带内部构型界面识别新方法及其应用. 岩性油气藏, 32(4): 126-135. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX202004013.htm [37] 何文祥, 吴胜和, 唐义疆, 等, 2005. 河口坝砂体构型精细解剖. 石油勘探与开发, 32(5): 42-46. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK200505008.htm [38] 衡勇, 段新国, 王勇飞, 等, 2022. 浅水三角洲分流河道砂体内部结构及其对气水分布的影响——以四川盆地中江气田沙溪庙组为例. 成都理工大学学报(自然科学版), 49(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-CDLG202201001.htm [39] 贾俊山, 王建勇, 段杰宏, 等, 2012. 胜利油区整装油田河流相开发单元开发潜力及对策. 油气地质与采收率, 19(1): 91-94. https://www.cnki.com.cn/Article/CJFDTOTAL-YQCS201201029.htm [40] 江远鹏, 张岚, 吴穹螈, 等, 2020. 渤海南部海域朵叶状浅水三角洲储层构型表征. 特种油气藏, 27(6): 88-95. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ202006012.htm [41] 李振鹏, 2020. 渤海海域分流河道型浅水三角洲储层构型表征——以歧口油田明下段地层为例. 中国海上油气, 32(1): 103-110. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD202001012.htm [42] 刘超, 李云鹏, 张伟, 等, 2017. 渤海海域A油田夹层控制下的剩余油分布模式. 岩性油气藏, 29(5): 148-154. https://www.cnki.com.cn/Article/CJFDTOTAL-YANX201705018.htm [43] 刘书宁, 2016. 复杂河流相精细地质建模与数值模拟方法研究(博士毕业论文). 大庆: 东北石油大学. [44] 吕建荣, 谭锋奇, 许长福, 等, 2015. 克拉玛依砾岩油藏储层分类特征及水驱油规律. 东北石油大学学报, 39(4): 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSY201504004.htm [45] 孟玉净, 赵彦超, 熊山, 等, 2021. 榆科油田东营组河流相储层构型与油藏单元研究. 地球科学, 46(7): 2481-2493. doi: 10.3799/dqkx.2020.226 [46] 秦祎, 朱世发, 朱筱敏, 等, 2017. 东营凹陷南缓坡浅水三角洲沉积特征与源—汇过程. 地球科学, 42(11): 2081-2094. doi: 10.3799/dqkx.2017.133 [47] 任奕霖, 赵俊峰, 陈佳宇, 等, 2022. 鄂尔多斯盆地浅水三角洲前缘沉积特征与砂体构型——以宜川仕望河剖面长9油层组为例. 新疆石油地质, 43(3): 310-319. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202203006.htm [48] 孙琦, 孙海燕, 杨凯, 等, 2020. 大港油田港东二区四五断块聚合物注采实践. 录井工程, 31(4): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-LJGZ202004018.htm [49] 唐洪明, 文鑫, 张旭阳, 等, 2014. 层间非均质砾岩油藏水驱油模拟实验. 西南石油大学学报(自然科学版), 36(5): 129-134. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY201405016.htm [50] 王家豪, 陈红汉, 江涛, 等, 2012. 松辽盆地新立地区浅水三角洲水下分流河道砂体结构解剖. 地球科学, 37(3): 556-564. doi: 10.3799/dqkx.2012.062 [51] 吴穹螈, 穆朋飞, 孙广义, 等, 2020. 浅水三角洲分流砂坝精细刻画新方法. 断块油气田, 27(2): 176-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DKYT202002009.htm [52] 肖文联, 杨玉斌, 李闽, 等, 2021. 鄂尔多斯盆地不同类型储集层水驱油特征实验. 石油勘探与开发, 48(4): 807-814. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202104015.htm [53] 易晶晶, 陈科霏. 2021. 江汉盆地潜江凹陷盐湖浅水三角洲沉积特征与发育模式. 西北地质, 54(4): 199-210. [54] 尹楠鑫, 罗超, 吴斌, 等, 2022. 东濮凹陷文33断块沙二下亚段浅水三角洲沉积特征. 西北地质, 55(2): 135-145. https://www.cnki.com.cn/Article/CJFDTOTAL-XBDI202202011.htm [55] 岳大力, 吴胜和, 刘建民, 2007. 曲流河点坝地下储层构型精细解剖方法. 石油学报, 28(4): 99-103. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB200704019.htm [56] 曾祥平, 2010. 储集层构型研究在油田精细开发中的应用. 石油勘探与开发, 37(4): 483-489. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201004015.htm [57] 赵伟, 邱隆伟, 姜在兴, 等, 2011. 断陷湖盆萎缩期浅水三角洲沉积演化与沉积模式——以东营凹陷牛庄洼陷古近系沙三段上亚段和沙二段为例. 地质学报, 85(6): 1019-1027. https://www.cnki.com.cn/Article/CJFDTOTAL-DZXE201106010.htm [58] 赵志峰, 2007. 河流相砂岩油藏特高含水期井网调整技术研究(博士毕业论文). 北京: 中国石油大学. [59] 周亚洲, 殷代印, 张承丽, 等, 2014. 水平井三元复合驱在曲流河点坝砂体的应用. 特种油气藏, 21(3): 87-89. https://www.cnki.com.cn/Article/CJFDTOTAL-TZCZ201403020.htm [60] 朱丽红, 2013. 特高含水期厚油层剩余油综合描述及分布特征. 大庆石油地质与开发, 32(6): 58-62. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201306012.htm [61] 邹拓, 丁亚军, 肖枚, 等, 2013. 港东油田复杂断块油藏三维地质构造建模研究. 石油地质与工程, 27(5): 73-76. https://www.cnki.com.cn/Article/CJFDTOTAL-SYHN201305021.htm