Characteristics of Paleogene Whole Petroleum System and Orderly Distribution of Oil and Gas Reservoirs in South Lufeng Depression, Pearl River Mouth Basin
-
摘要: 珠江口盆地陆丰凹陷古近系发育多种类型的油气资源,尤其形成了具有多样特征的复合类和改造类油气藏,利用经典“含油气系统”理论难以解释油气藏成因机制和分布规律. 基于全油气系统新概念阐述了它们的形成分布. 结果表明,在古近系储层致密演化过程中,文昌组和恩平组两套烃源岩提供了早期排出烃、晚期排出烃、源内滞留烃三种原始烃量,源岩内部和周边砂岩储集层因成岩‒压实差异发育了油气自由动力场、局限动力场和束缚动力场,全油气系统内三类原始烃量和3个动力场的耦合作用造成自下而上呈现出“页岩油气‒致密油气‒常规油气”的有序分布.这种规律性认识对于研究区不同类型油气资源分布预测和勘探具有重要的指导意义.Abstract: Many types of oil and gas resources have been developed in the Paleogene of Lufeng Depression, Pearl River Mouth Basin, especially the complex and reformed oil and gas reservoirs with various characteristics. It is difficult to explain the genetic mechanism and distribution law of oil and gas reservoirs by using the classical "petroleum system" theory. Based on the new concept of the whole petroleum system, in this paper it expounds their formation and distribution. It is found that during the tight evolution of Paleogene reservoirs, the two sets of source rocks of Wenchang Formation and Enping Formation provided three kinds of original hydrocarbon quantities: early discharged hydrocarbon, late discharged hydrocarbon and retained hydrocarbon in the source. Due to the diagenetic compaction difference, the sandstone reservoirs inside and around the source rock developed oil and gas free dynamic field, limited dynamic field and bound dynamic field, The coupling effect of three kinds of original hydrocarbon quantities and three dynamic fields in the whole oil and gas system forms an orderly distribution of "shale oil and gas, tight oil and gas and conventional oil and gas" from bottom to top. This understanding of regularity has important guiding significance for the distribution prediction and exploration of different types of oil and gas resources in the study area.
-
图 5 陆丰南文昌组和恩平组烃源岩排烃强度平面分布
a. 古近系源岩层现今累积生烃强度分布图(单位:104 t/km2);b. 古近系源岩层现今滞留烃强度分布图(单位:104 t/km2);c. 古近系烃源岩早期动力场(8 Ma)排烃强度分布图(单位:104 t/km2);d. 古近系烃源岩现今累计排烃强度分布图(单位:104 t/km2)
Fig. 5. Plan distribution of hydrocarbon expulsion intensity of source rocks of Wenchang and Enping formations in the South Lufeng Depression
图 10 全油气系统内不同动力场成藏特征剖析与判识标准(据汪旭东等(2018)修改)
Fig. 10. Reservoir forming characteristics analysis and identification standard of different dynamic fields in the whole petroleum system (modified from Wang et al., 2018)
图 13 陆丰南古近系全油气系统油气资源有序分布模式(据汪旭东等(2018)修改)
Fig. 13. Orderly distribution model of oil and gas resources in the whole petroleum system of Paleogene in the South Lufeng Depression (modified from Wang et al., 2018)
-
[1] Alimohammadi, S., Zendehboudi, S., James, L., 2019. A Comprehensive Review of Asphaltene Deposition in Petroleum Reservoirs: Theory, Challenges, and Tips. Fuel, 252: 753-791. https://doi.org/10.1016/j.fuel.2019.03.016 [2] Chen, J. Q., Pang, X. Q., Wang, X. L., et al., 2020. A New Method for Assessing Tight Oil, with Application to the Lucaogou Formation in the Jimusaer Depression, Junggar Basin, China. AAPG Bulletin, 104(6): 1199-1229. https://doi.org/10.1306/12191917401 [3] Chen, S. Z., Pei, C. M., 1993. Geology and Geochemistry of Source Rocks of the Eastern Pearl River Mouth Basin, South China Sea. Journal of Southeast Asian Earth Sciences, 8(1-4): 393-406. https://doi.org/10.1016/0743⁃9547(93)90041⁃M [4] Dou, L. R., Cheng, D. S., Yu, Y. J., et al., 2021. Tectonic-Thermal Evolution History Reconstruction of the Northern Muglad Basin in Sudan Based on Apatite Fission Track Analysis and Vitrinite Reflectance Data. Acta Petrolei Sinica, 42(8): 986-1002, 1080 (in Chinese with English abstract). [5] Du, J. Y., Zhang, X. T., Liu, P., et al., 2021. Classification of Paleogene Source⁃to⁃Sink System and Its Petroleum Geological Significance in Zhuyi Depression of Pearl River Mouth Basin. Earth Science, 46(10): 3690-3706 (in Chinese with English abstract). [6] Ge, J. W., Zhu, X. M., Zhang, X. T., et al., 2017. Tectono⁃Stratigraphic Evolution and Hydrocarbon Exploration in the Eocene Southern Lufeng Depression, Pearl River Mouth Basin, South China Sea. Australian Journal of Earth Sciences, 64(7): 931-956. https://doi.org/10.1080/08120099.2017.1370613 [7] Guo, P. F., He, S., Chai, D. R., et al., 2015. Oil⁃Source Correlation and Relative Contribution of Source Rock from Enping Formation in Zhu I Depression. Earth Science, 40(7): 1177-1186 (in Chinese with English abstract). [8] Hu, T., Pang, X. Q., Jiang, F. J., et al., 2021. Movable Oil Content Evaluation of Lacustrine Organic⁃Rich Shales: Methods and a Novel Quantitative Evaluation Model. Earth⁃Science Reviews, 214: 103545. https://doi.org/10.1016/j.earscirev.2021.103545 [9] Jia, C. Z., 2017. Breakthrough and Significance of Unconventional Oil and Gas to Classical Petroleum Geological Theory. Petroleum Exploration and Development, 44(1): 1-11 (in Chinese with English abstract). doi: 10.1016/S1876-3804(17)30002-2 [10] Jia, C. Z., Pang, X. Q., Song, Y., 2021. The Mechanism of Unconventional Hydrocarbon Formation: Hydrocarbon Self⁃Containment and Intermolecular Forces. Petroleum Exploration and Development, 48(3): 437-452 (in Chinese with English abstract). [11] Jiang, F. J., Pang, X. Q., Li, L. L., et al., 2018. Petroleum Resources in the Nanpu Sag, Bohai Bay Basin, Eastern China. AAPG Bulletin, 102(7): 1213-1237. https://doi.org/10.1306/0906171608017148 [12] Jiang, H., Pang, X. Q., Shi, H. S., et al., 2015. Source Rock Characteristics and Hydrocarbon Expulsion Potential of the Middle Eocene Wenchang Formation in the Huizhou Depression, Pearl River Mouth Basin, South China Sea. Marine and Petroleum Geology, 67: 635-652. https://doi.org/10.1016/j.marpetgeo.2015.06.010 [13] Jin, Z. J., Zhang, Y. W., Wang, J., et al., 2003. Hydrocarbon Accumulation Mechanism and Distribution Law. Petroleum Industry Press, Beijing (in Chinese). [14] Li, C. R., Pang, X. Q., Huo, Z. P., et al., 2020. A Revised Method for Reconstructing the Hydrocarbon Generation and Expulsion History and Evaluating the Hydrocarbon Resource Potential: Example from the First Member of the Qingshankou Formation in the Northern Songliao Basin, Northeast China. Marine and Petroleum Geology, 121: 104577. https://doi.org/10.1016/j.marpetgeo.2020.104577 [15] Liu, G. D., Niu, Z. C., Chen, Z. L., et al., 2019. Hydrocarbon Accumulation Patterns Controlled by the Migrated Subsags in Lufeng Sag, Pearl River Mouth Basin. Acta Petrolei Sinica, 40(S1): 26-40, 216 (in Chinese with English abstract). [16] Liu, J. J., Liu, C. Y., Wang, Z. L., 2008. Advances from Petroleum System to Accumulating Petroleum System. Geological Review, 54(6): 801-806 (in Chinese with English abstract). [17] Ma, K. Y., 2021. Study on Hydrocarbon Accumulation Model of Paleogene in Lufeng Sag, Pearl River Mouth Basin (Dissertation). China University of Petroleum, Beijing (in Chinese with English abstract). [18] Magoon, L. B., Dow, W. G., 1994. The Petroleum System-From Source to Trap. AAPG Memoir 60. American Association of Petroleum Geologists, Tulsa. https://doi.org/10.1306/M60585 [19] Magoon, L. B., Sanchez, R. M. O., 1995. Beyond the Petroleum System: Geohorizons. AAPG Bulletin, 79(12): 1731-1736. https://doi.org/10.1306/7834dee0⁃1721⁃11d7⁃8645000102c1865d [20] Mi, L. J., Zhang, X. T., Wang, X. D., et al., 2018. Tectonic and Sedimentary Differences of Paleogene and Their Control on Hydrocarbon Accumulation in Lufeng Sag, Pearl River Mouth Basin. China Offshore Oil and Gas, 30(5): 1-10 (in Chinese with English abstract). [21] Niu, Z. C., Liu, G. D., Ge, J. W., et al., 2019. Geochemical Characteristics and Depositional Environment of Paleogene Lacustrine Source Rocks in the Lufeng Sag, Pearl River Mouth Basin, South China Sea. Journal of Asian Earth Sciences, 171: 60-77. https://doi.org/10.1016/j.jseaes.2018.01.004 [22] Pang, X. Q., Hu, T., Larter, S., et al., 2022. Hydrocarbon Accumulation Depth Limit and Implications for Potential Resources Prediction. Gondwana Research, 103: 389-400. https://doi.org/10.1016/j.gr.2021.10.018 [23] Pang, X. Q., Jia, C. Z., Chen, J. Q., et al., 2021. A Unified Model for the Formation and Distribution of Both Conventional and Unconventional Hydrocarbon Reservoirs. Geoscience Frontiers, 12(2): 695-711. https://doi.org/10.1016/j.gsf.2020.06.009 [24] Pang, X. Q., Liu, K. Y., Ma, Z. Z., et al., 2012. Dynamic Field Division of Hydrocarbon Migration, Accumulation and Hydrocarbon Enrichment Rules in Sedimentary Basins. Acta Geologica Sinica (English Edition), 86(6): 1559-1592. https://doi.org/10.1111/1755⁃6724.12023 [25] Pang, X. Q., Luo, X. R., Jiang, Z. X. et al., 2007. Hydrocarbon Accumulation and Dispersion Mechanism and Quantitative Simulation in Typical Superimposed Basins in China. Science Press, Beijing (in Chinese). [26] Pang, X. Q., Jia, C. Z., Wang, W. Y., et al., 2021a. Buoyance⁃Driven Hydrocarbon Accumulation Depth and Its Implication for Unconventional Resource Prediction. Geoscience Frontiers, 12(4): 101133. https://doi.org/10.1016/j.gsf.2020.11.019 [27] Pang, X. Q., Shao, X. H., Li, M. W., et al., 2021b. Correlation and Difference between Conventional and Unconventional Reservoirs and Their Unified Genetic Classification. Gondwana Research, 97: 73-100. https://doi.org/10.1016/j.gr.2021.04.011 [28] Peng, J. W., Pang, X. Q., Shi, H. S., et al., 2016. Hydrocarbon Generation and Expulsion Characteristics of Eocene Source Rocks in the Huilu Area, Northern Pearl River Mouth Basin, South China Sea: Implications for Tight Oil Potential. Marine and Petroleum Geology, 72: 463-487. https://doi.org/10.1016/j.marpetgeo.2016.02.006 [29] Qiu, Z., Zou, C. N., Dong, D. Z., et al., 2016. Petroleum System Assessment of Conventional⁃Unconventional Oil in the Jimusar Sag, Junggar Basin, Northwest China. Journal of Unconventional Oil and Gas Resources, 16: 53-61. https://doi.org/10.1016/j.juogr.2016.09.005 [30] Tang, Y. J., Chen, Z. H., Simoneit, B. R. T., et al., 2021. Recognition of In Situ Oil Cracking in the Precambrian⁃Lower Cambrian Petroleum Systems of Sichuan Basin, Southwestern China. Marine and Petroleum Geology, 126: 104942. https://doi.org/10.1016/j.marpetgeo.2021.104942 [31] Wang, X. D., Zhang, X. T., Lin, H. M., et al., 2018. Reservoir⁃Forming Conditions, Oil Distribution and Exploration Potential of Compound Hydrocarbon Reservoirs in the Lufeng 13 Sag in Pearl River Mouth Basin. China Offshore Oil and Gas, 30(3): 19-27 (in Chinese with English abstract). [32] Wang, X. K., Guo, J. H., Liu, C. S., et al., 2019. Source Rocks Evaluation and Hydrocarbon Accumulation in Paleogene of Lufeng Sag, Pearl River Mouth Basin. Advances in Geosciences, 9(3): 166-176 (in Chinese with English abstract). doi: 10.12677/AG.2019.93020 [33] Wang, Z. J., Yao, J., Yan, X., et al., 2021. A Multi⁃Continuum Model for Simulating In⁃Situ Conversion Process in Low⁃Medium Maturity Shale Oil Reservoir. Advances in Geo⁃Energy Research, 5(4): 456-464. https://doi.org/10.46690/ager.2021.04.10 [34] Wood, D. A., Choubineh, A., 2019. Reliable Predictions of Oil Formation Volume Factor Based on Transparent and Auditable Machine Learning Approaches. Advances in Geo⁃Energy Research, 3(3): 225-241. https://doi.org/10.26804/ager.2019.03.01 [35] Xiao, M., Wu, S. T., Yuan, X. J., et al., 2021. Conglomerate Reservoir Pore Evolution Characteristics and Favorable Area Prediction: A Case Study of the Lower Triassic Baikouquan Formation in the Northwest Margin of the Junggar Basin, China. Journal of Earth Science, 32(4): 998-1010. https://doi.org/10.1007/s12583⁃020⁃1083⁃6 [36] Zhang, J. K., Cao, J., Hu, W. X., et al., 2021. Insights into Carboniferous Subduction⁃Related Petroleum Systems in the Central Asian Orogenic Belt (CAOB) from Hydrocarbons in Vein Calcite Cements, West Junggar, Northwest China. Marine and Petroleum Geology, 124: 104796. https://doi.org/10.1016/j.marpetgeo.2020.104796 [37] Zhang, S. C., Liang, D. G., Gong, Z. S., et al., 2003. Geochemistry of Petroleum Systems in the Eastern Pearl River Mouth Basin: Evidence for Mixed Oils. Organic Geochemistry, 34(7): 971-991. https://doi.org/10.1016/S0146⁃6380(03)00034⁃2 [38] Zhang, W. Z., Zhang, H. H., Li, C. R., et al., 2021. Petroleum Exploration History and Enlightenment in Pearl River Mouth Basin. Xinjiang Petroleum Geology, 42(3): 346-352, 363 (in Chinese with English abstract). [39] Zhang, X. T., Liu, P., Wang, W. Y., et al., 2021. Controlling Effect of Tectonic Transformation in Paleogene Wenchang Formation on Oil and Gas Accumulation in Zhu Ⅰ Depression. Earth Science, 46(5): 1797-1813 (in Chinese with English abstract). [40] Zheng, L., Chen, C., Lu, C., et al., 2018. Study on Facies⁃Controlled Model of a Reservoir in Xijiang 24⁃3 Oilfield in the Northern Pearl River Mouth Basin. Advances in Geo⁃Energy Research, 2(3): 282-291. https://doi.org/10.26804/ager.2018.03.06 [41] 窦立荣, 程顶胜, 於拥军, 等, 2021. 据磷灰石裂变径迹和镜质体反射率重建苏丹Muglad盆地北部的构造‒热演化历史. 石油学报, 42(8): 986-1002, 1080. https://www.cnki.com.cn/Article/CJFDTOTAL-SYXB202108002.htm [42] 杜家元, 张向涛, 刘培, 等, 2021. 珠江口盆地珠一坳陷古近系"源‒汇"系统分类及石油地质意义. 地球科学, 46(10): 3690-3706. doi: 10.3799/dqkx.2020.133 [43] 国朋飞, 何生, 柴德蓉, 等, 2015. 珠Ⅰ坳陷油源对比及恩平组烃源岩的相对贡献. 地球科学, 40(7): 1177-1186. doi: 10.3799/dqkx.2015.098 [44] 贾承造, 2017. 论非常规油气对经典石油天然气地质学理论的突破及意义. 石油勘探与开发, 44(1): 1-11. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK201701002.htm [45] 贾承造, 庞雄奇, 宋岩, 2021. 论非常规油气成藏机理: 油气自封闭作用与分子间作用力. 石油勘探与开发, 48(3): 437-452. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK202103001.htm [46] 金之钧, 张一伟, 王捷, 等, 2003. 油气成藏机理与分布规律. 北京: 石油工业出版社. [47] 柳广弟, 牛子铖, 陈哲龙, 等, 2019. 珠江口盆地陆丰凹陷在洼陷迁移控制下的油气成藏规律. 石油学报, 40(S1): 26-40, 216. doi: 10.7623/syxb2019S1003 [48] 刘静江, 刘池洋, 王震亮, 2008. 从含油气系统到成藏油气系统油气系统研究新动向. 地质论评, 54(6): 801-806. doi: 10.3321/j.issn:0371-5736.2008.06.009 [49] 马奎友, 2021. 珠江口盆地陆丰凹陷古近系油气成藏模式研究(硕士学位论文). 北京: 中国石油大学. [50] 米立军, 张向涛, 汪旭东, 等, 2018. 陆丰凹陷古近系构造‒沉积差异性及其对油气成藏的控制. 中国海上油气, 30(5): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201805001.htm [51] 庞雄奇, 罗晓容, 姜振学, 等, 2007. 中国典型叠合盆地油气聚散机理与定量模拟. 北京: 科学出版社. [52] 汪旭东, 张向涛, 林鹤鸣, 等, 2018. 珠江口盆地陆丰13洼复式油气成藏条件、分布规律及勘探潜力. 中国海上油气, 30(3): 19-27. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201803003.htm [53] 王玺凯, 郭建华, 刘辰生, 等, 2019. 珠江口盆地陆丰凹陷古近系烃源岩评价及油气成藏. 地球科学前沿, 9(3): 166-176. [54] 张文昭, 张厚和, 李春荣, 等, 2021. 珠江口盆地油气勘探历程与启示. 新疆石油地质, 42(3): 346-352, 363. https://www.cnki.com.cn/Article/CJFDTOTAL-XJSD202103012.htm [55] 张向涛, 刘培, 王文勇, 等, 2021. 珠一坳陷古近系文昌期构造转变对油气成藏的控制作用. 地球科学, 46(5): 1797-1813. doi: 10.3799/dqkx.2020.106