• 中国出版政府奖提名奖

    中国百强科技报刊

    湖北出版政府奖

    中国高校百佳科技期刊

    中国最美期刊

    留言板

    尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

    姓名
    邮箱
    手机号码
    标题
    留言内容
    验证码

    从40万年长偏心率周期看米兰科维奇理论

    田军 吴怀春 黄春菊 李明松 马超 汪品先

    田军, 吴怀春, 黄春菊, 李明松, 马超, 汪品先, 2022. 从40万年长偏心率周期看米兰科维奇理论. 地球科学, 47(10): 3543-3568. doi: 10.3799/dqkx.2022.248
    引用本文: 田军, 吴怀春, 黄春菊, 李明松, 马超, 汪品先, 2022. 从40万年长偏心率周期看米兰科维奇理论. 地球科学, 47(10): 3543-3568. doi: 10.3799/dqkx.2022.248
    Tian Jun, Wu Huaichun, Huang Chunju, Li Mingsong, Ma Chao, Wang Pinxian, 2022. Revisiting the Milankovitch Theory from the Perspective of the 405 ka Long Eccentricity Cycle. Earth Science, 47(10): 3543-3568. doi: 10.3799/dqkx.2022.248
    Citation: Tian Jun, Wu Huaichun, Huang Chunju, Li Mingsong, Ma Chao, Wang Pinxian, 2022. Revisiting the Milankovitch Theory from the Perspective of the 405 ka Long Eccentricity Cycle. Earth Science, 47(10): 3543-3568. doi: 10.3799/dqkx.2022.248

    从40万年长偏心率周期看米兰科维奇理论

    doi: 10.3799/dqkx.2022.248
    基金项目: 

    国家自然科学基金项目 42030403

    国家自然科学基金项目 42188102

    海洋地质国家重点实验室自主课题 MG202104

    详细信息
      作者简介:

      田军(1974-),男,教授,长期从事古海洋学与古气候学的教学和科研. ORCID:0000-0002-4842-7076. E-mail:tianjun@tongji.edu.cn

    • 中图分类号: P691;P67;P736

    Revisiting the Milankovitch Theory from the Perspective of the 405 ka Long Eccentricity Cycle

    • 摘要: 新生代至前寒武纪海相和陆相沉积记录显示,405 ka长偏心率周期贯穿整个地质历史,从陆地季风降水到大洋碳循环都有表现,是地球表层系统中水循环和碳循环的基本节拍,不仅可用作基本的地质计时单位,还是低纬过程的重要特征之一.现有的地质记录表明405 ka长偏心率周期存在被隐匿或被破坏的现象,火山岩浆活动释放CO2、生物圈重大变革和冰盖增大事件等都可以造成405 ka长偏心率周期的隐匿,这为揭示地球表层系统重大变化提供了一个新的切入点.通过研究405 ka长偏心率周期的演变特征和破坏机制,可望穿越暖室和冰室期,建立起完整的气候演变理论.最后对我国开展天文旋回研究力争走到世界前列提出了建议和展望.

       

    • 图  1  近三百万年来的重大跨冰期长期变化

      黄色阴影表示由δ13Cmax到北极冰盖事件的转折期,虚线表示与偏心率最低值对应的δ13Cmax,红色曲线为偏心率(据Wang et al.,2014改)

      Fig.  1.  Major transglacial long-term changes over the last three million years

      图  2  美国东北陆相晚三叠世天文年代地层(Kent et al., 2017

      注意三叠纪与侏罗纪的分界在405 ka周期No. 498期

      Fig.  2.  Late Triassic astrochronological stratigraphy of the northeastern United States

      图  3  显生宙405 ka周期的报道(Hinnov,2018

      1~51为具体地层剖面的代号,见该文Appendix G

      Fig.  3.  The 405 ka long eccentricity cycle in the Phanerozoic Eon

      图  4  中新世碳位移

      A. IODP U1337站底栖有孔虫δ18O;B. IODP U1337站底栖有孔虫δ13C. A中箭头和三角符号指示冰期事件,B中阿拉伯数字和英文字母组合代表碳同位素极值事件(Carbon maxima),具有典型的405 ka周期.LMCS.晚中新世大洋碳位移;MMCS.中中新世大洋碳位移.图修改自Tian et al.(2018

      Fig.  4.  Middle and Late Miocene ocean carbon negative shifts

      图  5  白垩纪Weissert碳位移事件对405 ka长偏心率周期的破坏(据Martinez et al., 2013, 2015编绘)

      图中V1-H14为405 ka长偏心率周期的编序,右侧为自然伽马记录中405 ka和100 ka偏心率周期的能谱

      Fig.  5.  Obscurring of the 405 ka long eccentricity cycle caused by the Cretaceous Weissert Ocean Carbon Shift event

    • [1] IODP-China Office, 2018. Fifty Years of the International Ocean Drilling Program. Tongji University Press, Shanghai(in Chinese).
      [2] Agassiz, L., 1842. The Glacial Theory and Its Recent Progress. Edinburgh New Philosophical Journal, 33: 271-283.
      [3] Ait-Itto, F. Z., Martinez, M., Price, G. D., et al., 2018. Synchronization of the Astronomical Time Scales in the Early Toarcian: A Link between Anoxia, Carbon-Cycle Perturbation, Mass Extinction and Volcanism. Earth and Planetary Science Letters, 493: 1-11. https://doi.org/10.1016/j.epsl.2018.04.007
      [4] Armstrong Mckay, D. I., Tyrrell, T., Wilson, P. A., et al., 2014. Estimating The Impact of The Cryptic Degassing Of Large Igneous Provinces: A Mid-Miocene Case-Study. Earth and Planetary Science Letters, 403: 254-262. https://doi.org/10.1016/j.epsl.2014.06.040
      [5] Bao, X. J., Zhang, S. H., Jiang, G. Q., et al., 2018. Cyclostratigraphic Constraints on the Duration of the Datangpo Formation and the Onset Age of the Nantuo (Marinoan) Glaciation in South China. Earth and Planetary Science Letters, 483: 52-63. https://doi.org/10.1016/j.epsl.2017. 12.001 doi: 10.1016/j.epsl.2017.12.001
      [6] Batenburg, S. J., Gale, A. S., Sprovieri, M., et al., 2014. An Astronomical Time Scale for the Maastrichtian Based on the Zumaia and Sopelana Sections (Basque Country, Northern Spain). Journal of the Geological Society, 171(2): 165-180. https://doi.org/10.1144/jgs2013-015
      [7] Berends, C. J., Köhler, P., Lourens, L. J., et al., 2021. On the Cause of the Mid-Pleistocene Transition. Reviews of Geophysics, 59(2): e2020RG000727. https://doi.org/10.1029/2020rg000727
      [8] Blackburn, T. J., Olsen, P. E., Bowring, S. A., et al., 2013. Zircon U-Pb Geochronology Links the End-Triassic Extinction with the Central Atlantic Magmatic Province. Science, 340(6135): 941-945. https://doi.org/10.1126/science.1234204
      [9] Bond, G., Showers, W., Cheseby, M., et al., 1997. A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Climates. Science, 278(5341): 1257-1266. https://doi.org/10.1126/science.278.5341.1257
      [10] Boulila, S., Galbrun, B., Hinnov, L. A., et al., 2008a. Orbital Calibration of the Early Kimmeridgian (Southeastern France): Implications for Geochronology and Sequence Stratigraphy. Terra Nova, 20(6): 455-462. https://doi.org/10.1111/j.1365-3121.2008.00838.x
      [11] Boulila, S., Hinnov, L. A., Huret, E., et al., 2008b. Astronomical Calibration of the Early Oxfordian (Vocontian and Paris Basins, France): Consequences of Revising the Late Jurassic Time Scale. Earth and Planetary Science Letters, 276(1/2): 40-51. https://doi.org/10.1016/j.epsl.2008.09.006
      [12] Boulila, S., Galbrun, B., Hinnov, L. A., et al., 2010. Milankovitch and Sub-Milankovitch Forcing of the Oxfordian (Late Jurassic) Terres Noires Formation (SE France) and Global Implications. Basin Research, 22(5): 717-732. https://doi.org/10.1111/j.1365-2117.2009.00429.x
      [13] Boulila, S., Galbrun, B., Huret, E., et al., 2014. Astronomical Calibration of the Toarcian Stage: Implications for Sequence Stratigraphy and Duration of the Early Toarcian OAE. Earth and Planetary Science Letters, 386: 98-111. https://doi.org/10.1016/j.epsl.2013.10.047
      [14] Boulila, S., Galbrun, B., Laskar, J., et al., 2012. A ~9 Myr Cycle in Cenozoic δ13C Record and Long-Term Orbital Eccentricity Modulation: Is there a Link? Earth and Planetary Science Letters, 317/318: 273-281. https://doi.org/10.1016/j.epsl.2011.11.017
      [15] Boulila, S., Galbrun, B., Sadki, D., et al., 2019. Constraints on the Duration of the Early Toarcian T-OAE and Evidence for Carbon-Reservoir Change from the High Atlas (Morocco). Global and Planetary Change, 175: 113-128. https://doi.org/10.1016/j.gloplacha.2019.02.005
      [16] Boulila, S., Hinnov, L. A., 2017. A Review of Tempo and Scale of the Early Jurassic Toarcian OAE: Implications for Carbon Cycle and Sea Level Variations. Newsletters on Stratigraphy, 50(4): 363-389. https://doi.org/10.1127/nos/2017/0374
      [17] Boulila, S., Vahlenkamp, M., de Vleeschouwer, D., et al., 2018. Towards a Robust and Consistent Middle Eocene Astronomical Timescale. Earth and Planetary Science Letters, 486: 94-107. https://doi.org/10.1016/j.epsl.2018.01.003
      [18] Chalk, T. B., Hain, M. P., Foster, G. L., et al., 2017. Causes of Ice Age Intensification across the Mid-Pleistocene Transition. Proceedings of the National Academy of Sciences of the United States of America, 114(50): 13114-13119. https://doi.org/10.1073/pnas.1702143114
      [19] Charbonnier, G., Boulila, S., Spangenberg, J. E., et al., 2018. Obliquity Pacing of the Hydrological Cycle during the Oceanic Anoxic Event 2. Earth and Planetary Science Letters, 499: 266-277. https://doi.org/10.1016/j.epsl.2018.07.029
      [20] Cheng, H., Edwards, R. L., Sinha, A., et al., 2016. The Asian Monsoon over the Past 640, 000 Years and Ice Age Terminations. Nature, 534(7609): 640-646. https://doi.org/10.1038/nature18591
      [21] Chu, R. J., Wu, H. C., Zhu, R. K., et al., 2020. Orbital Forcing of Triassic Megamonsoon Activity Documented in Lacustrine Sediments from Ordos Basin, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 541: 109542. https://doi.org/10.1016/j.palaeo.2019.109542
      [22] Clark, P. U., Pollard, D., 1998. Origin of the Middle Pleistocene Transition by Ice Sheet Erosion of Regolith. Paleoceanography, 13(1): 1-9. https://doi.org/10.1029/97pa02660
      [23] Clemens, S. C., Tiedemann, R., 1997. Eccentricity Forcing of Pliocene-Early Pleistocene Climate Revealed in a Marine Oxygen-Isotope Record. Nature, 385(6619): 801-804. https://doi.org/10.1038/385801a0
      [24] Crampton, J. S., Meyers, S. R., Cooper, R. A., et al., 2018. Pacing of Paleozoic Macroevolutionary Rates by Milankovitch Grand Cycles. Proceedings of the National Academy of Sciences of the United States of America, 115(22): 5686-5691. https://doi.org/10.1073/pnas.1714342115
      [25] Croll, J., 1864. XIII. On the Physical Cause of the Change of Climate during Geological Epochs. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 28(187): 121-137. https://doi.org/10.1080/14786446408643733
      [26] Dansgaard, W., Johnsen, S. J., Clausen, H. B., et al., 1993. Evidence for General Instability of Past Climate from a 250-kyr Ice-Core Record. Nature, 364(6434): 218-220. https://doi.org/10.1038/364218a0
      [27] D'Argenio, B., 2003. Sequence Cyclostratigraphy: a Methodology for Long-Distance Correlation and Orbital Chronostratigraphy. AAPG International Conference, Barcelona, Spain.
      [28] D'Argenio, B., Ferreri, V., Amodio, S., et al., 1997. Hierarchy of High-Frequency Orbital Cycles in Cretaceous Carbonate Platform Strata. Sedimentary Geology, 113(3-4): 169-193. https://doi.org/10.1016/S0037-0738(97)00076-6
      [29] Davydov, V. I., Crowley, J. L., Schmitz, M. D., et al., 2010. High-Precision U-Pb Zircon Age Calibration of the Global Carboniferous Time Scale and Milankovitch Band Cyclicity in the Donets Basin, Eastern Ukraine. Geochemistry, Geophysics, Geosystems, 11(2): Q0AA04. https://doi.org/10.1029/2009gc002736
      [30] de Oliveira Carvalho Rodrigues, P., Hinnov, L. A., Franco, D. R., 2019. A New Appraisal of Depositional Cyclicity in the Neoarchean-Paleoproterozoic Dales Gorge Member (Brockman Iron Formation, Hamersley Basin, Australia). Precambrian Research, 328: 27-47. https://doi.org/10.1016/j.precamres.2019.04.007
      [31] de Vleeschouwer, D., da Silva, A. C., Sinnesael, M., et al., 2017. Timing and Pacing of the Late Devonian Mass Extinction Event Regulated by Eccentricity and Obliquity. Nature Communications, 8: 2268. https://doi.org/10.1038/s41467-017-02407-1
      [32] de Vleeschouwer, D., Drury, A. J., Vahlenkamp, M., et al., 2020. High-Latitude Biomes and Rock Weathering Mediate Climate-Carbon Cycle Feedbacks on Eccentricity Timescales. Nature Communications, 1(1): 1-10. https://doi.org/ 10.1038/s41467-020-18733-w
      [33] de Vleeschouwer, D., Parnell, A., 2014. Reducing Time-Scale Uncertainty for the Devonian by Integrating Astrochronology and Bayesian Statistics. Geology, 42(6): 491-494. https://doi.org/10.1130/G35618.1
      [34] Diester-Haass, L., Billups, K., Gröcke, D. R., et al., 2009. Mid-Miocene Paleoproductivity in the Atlantic Ocean and Implications for the Global Carbon Cycle. Paleoceanography, 24(1): PA1209. https://doi.org/10.1029/2008pa001605
      [35] Ding, Z. L., Liu, D. S., 1989. Progresses of Loess Research in China (Part 1) Loess Stratigraphy. Quaternary Sciences, 9(1): 24-35(in Chinese with English abstract). doi: 10.3321/j.issn:1001-7410.1989.01.003
      [36] Emiliani, C., 1955. Pleistocene Temperatures. The Journal of Geology, 63(6): 538-578. https://doi.org/10.1086/626295
      [37] EPICA Community Members, 2004. Eight glacial cycles from an Antarctic ice core. Nature, 429: 623-628. https://doi.org/10.1038/nature02599
      [38] Fang, Q., Wu, H. C., Shen, S. Z., et al., 2021. Trends and Rhythms in Climate Change during the Early Permian Icehouse. Paleoceanography and Paleoclimatology, 36(12): e2021PA004340. https://doi.org/10.1029/2021PA004340
      [39] Fang, J. C., Wu, H. C., Fang, Q., et al., 2020. Cyclostratigraphy of the Global Stratotype Section and Point (GSSP) of the Basal Guzhangian Stage of the Cambrian Period. Palaeogeography, Palaeoclimatology, Palaeoecology, 540: 109530. https://doi.org/10.1016/j.palaeo.2019.109530
      [40] Fang, Q., Wu, H. C., Hinnov, L. A., et al., 2015. Geologic Evidence for Chaotic Behavior of the Planets and Its Constraints on the Third-Order Eustatic Sequences at the End of the Late Paleozoic Ice Age. Palaeogeography, Palaeoclimatology, Palaeoecology, 440: 848-859. https://doi.org/10.1016/j.palaeo.2015.10.014
      [41] Fang, Q., Wu, H. C., Wang, X. L., et al., 2018. Astronomical Cycles in the Serpukhovian-Moscovian (Carboniferous) Marine Sequence, South China and Their Implications for Geochronology and Icehouse Dynamics. Journal of Asian Earth Sciences, 156: 302-315. https://doi.org/10.1016/j.jseaes.2018.02.001
      [42] Fang, Q., Wu, H. C., Wang, X. L., et al., 2019. An Astronomically Forced Cooling Event during the Middle Ordovician. Global and Planetary Change, 173: 96-108. https://doi.org/10.1016/j.gloplacha.2018.12.010
      [43] Farmer, J. R., Hönisch, B., Haynes, L. L., et al., 2019. Deep Atlantic Ocean Carbon Storage and the Rise of 100 000-Year Glacial Cycles. Nature Geoscience, 12(5): 355-360. https://doi.org/10.1038/s41561-019-0334-6
      [44] Fischer, A. G., Schwarzacher, W., 1984. Cretaceous Bedding Rhythms under Orbital Control. In: Berger, A. L., Imbrie, J., Hays, J., et al., eds., Milankovitch and Climate. NATO ASI series C, 126, 163-175.
      [45] Flower, B. P., Kennett, J. P., 1995. Middle Miocene Deepwater Paleoceanography in the Southwest Pacific: Relations with East Antarctic Ice Sheet Development. Paleoceanography, 10(6): 1095-1112. https://doi.org/10.1029/95pa02022
      [46] Gale, A. S., Jenkyns, H. C., Tsikos, H., et al., 2019a. High-Resolution Bio- and Chemostratigraphy of an Expanded Record of Oceanic Anoxic Event 2 (Late Cenomanian-Early Turonian) at Clot Chevalier, near Barrême, SE France (Vocontian Basin). Newsletters on Stratigraphy, 52(1): 97-129. https://doi.org/10.1127/nos/2018/0445
      [47] Gale, A. S., Kennedy, W. J., Walasczcyk, I., 2019b. Upper Albian, Cenomanian and Lower Turonian Stratigraphy, Ammonite and Inoceramid Bivalve Faunas from the Cauvery Basin, Tamil Nadu, South India. Acta Geologica Polonica, 69(2): 161-338.
      [48] Gale, A., 2019. Correlation, Age and Significance of Turonian Chalk Hardgrounds in Southern England and Northern France: The Roles of Tectonics, Eustasy, Erosion and Condensation. Cretaceous Research, 103: 104164. https://doi.org/10.1016/j.cretres.2019.06.010
      [49] Gale, A. S., 2002. ABSTRACT: Milankovitch Control on Sequence Formation; Evidence for Sea-Level Change Forced by the 400 kyr Long Eccentricity Cycle in the Cretaceous and Paleogene. AAPG Annual Meeting, Houston, Texas.
      [50] Gambacorta, G., Menichetti, E., Trincianti, E., et al., 2018. Orbital Control on Cyclical Primary Productivity and Benthic Anoxia: Astronomical Tuning of the Telychian Stage (Early Silurian). Palaeogeography, Palaeoclimatology, Palaeoecology, 495: 152-162. https://doi.org/10.1016/j.palaeo.2018.01.003
      [51] Gildor, H., Tziperman, E., 2001. Physical Mechanisms Behind Biogeochemical Glacial-Interglacial CO2 Variations. Geophysical Research Letters, 28(12): 2421-2424. https://doi.org/10.1029/2000gl012571
      [52] Gong, Z., Li, M. S., 2020. Astrochronology of the Ediacaran Shuram Carbon Isotope Excursion, Oman. Earth and Planetary Science Letters, 547: 116462. https://doi.org/10.1016/j.epsl.2020.116462
      [53] Grootes, P. M., Stuiver, M., White, J. W. C., et al., 1993. Comparison of Oxygen Isotope Records from the GISP2 and GRIP Greenland Ice Cores. Nature, 366(6455): 552-554. https://doi.org/10.1038/366552a0
      [54] Guo, Z. T., Ruddiman, W. F., Hao, Q. Z., et al., 2002. Onset of Asian Desertification by 22 Myr ago Inferred from Loess Deposits in China. Nature, 416(6877): 159-163. https://doi.org/10.1038/416159a
      [55] Hao, Q. Z., Wang, L., Oldfield, F., et al., 2012. Delayed Build-up of Arctic Ice Sheets during 400 000-Year Minima in Insolation Variability. Nature, 490(7420): 393-396. https://doi.org/10.1038/nature11493
      [56] Hao, Q. Z., Wang, L., Oldfield, F., et al., 2015. Extra-Long Interglacial in Northern Hemisphere during MISs 15-13 Arising from Limited Extent of Arctic Ice Sheets in Glacial MIS 14. Scientific Reports, 5: 12103. https://doi.org/10.1038/srep12103
      [57] Hay, W. W., Leslie, M. A., 1990. Could Possible Changes in Global Groundwater Reservoir Cause Eustatic Sea-Level Fluctuations. In: Revelle, R. R., eds., Sea-Level Change. National Academy Press, Washington, D. C., 161-170.
      [58] Hays, J. D., Imbrie, J., Shackleton, N. J., 1976. Variations in the Earth's Orbit: Pacemaker of the Ice Ages. Science, 194(4270): 1121-1132. https://doi.org/10.1126/science.194.4270.1121
      [59] Heinrich, H., 1988. Origin and Consequences of Cyclic Ice Rafting in the Northeast Atlantic Ocean during the Past 130 000 Years. Quaternary Research, 29(2): 142-152. https://doi.org/10.1016/0033-5894(88)90057-9
      [60] Herbert, T. D., 1997. A Long Marine History of Carbon Cycle Modulation by Orbital-Climatic Changes. PNAS, 94(16): 8362-8369. https://doi.org/10.1073/pnas.94.16.8362
      [61] Herbert, T. D., Fischer, A. G., 1986. Milankovitch ClimaticOrigin of Mid-Cretaceous Black Shale Rhythms in Central Italy. Nature, 321(6072): 739-743. https://doi.org/10.1038/321739a0
      [62] Hilgen, F., Zeeden, C., Laskar, J., 2020. Paleoclimate Records Reveal Elusive ~200-kyr Eccentricity Cycle for the First Time. Global and Planetary Change, 194: 103296. https://doi.org/10.1016/j.gloplacha.2020.103296
      [63] Hinnov, L. A., 2000. New Perspectives on Orbitally Forced Stratigraphy. Annual Review of Earth and Planetary Sciences, 28: 419-475. https://doi.org/10.1146/annurev.earth.28.1.419
      [64] Hinnov, L. A., 2018. Cyclostratigraphy and Astrochronology in 2018. In: Montenari, M., ed., Stratigraphy & Timescales. Academic Press, Amsterdam, 1-80.
      [65] Huang, C. J., 2018. Astronomical Time Scale for the Mesozoic. In: Montenari, M., ed., Stratigraphy & Timescales 3. Academic Press, Amsterdam, 81-150.
      [66] Huang, C. J., Hesselbo, S. P., 2014. Pacing of the Toarcian Oceanic Anoxic Event (Early Jurassic) from Astronomical Correlation of Marine Sections. Gondwana Research, 25(4): 1348-1356. https://doi.org/10.1016/j.gr.2013.06.023
      [67] Huang, C. J., Hinnov, L., Fischer, A. G., et al., 2010. Astronomical Tuning of the Aptian Stage from Italian Reference Sections. Geology, 38(10): 899-902. https://doi.org/10.1130/g31177.1
      [68] Huang, C. J., Ogg, J. G., Kemp, D. B., 2020. Cyclostratigraphy and Astrochronology: Case Studies from China. Palaeogeography, Palaeoclimatology, Palaeoecology, 560: 110017. https://doi.org/10.1016/j.palaeo.2020.110017
      [69] Huang, H., Gao, Y., Ma, C., et al., 2021. Organic Carbon Burial is Paced by a ~173-ka Obliquity Cycle in the Middle to High Latitudes. Science Advances, 7(28): eabf9489. https://doi.org/10.1126/sciadv.abf9489
      [70] Hüsing, S. K., Beniest, A., van der Boon, A., et al., 2014. Astronomically-Calibrated Magnetostratigraphy of the Lower Jurassic Marine Successions at St. Audrie's Bay and East Quantoxhead (Hettangian-Sinemurian; Somerset, UK). Palaeogeography, Palaeoclimatology, Palaeoecology, 403: 43-56. https://doi.org/10.1016/j.palaeo.2014.03.022
      [71] Husson, D., Galbrun, B., Laskar, J., etal., 2011. Astronomical Calibration of the Maastrichtian (Late Cretaceous). Earth and Planetary Science Letters, 305(3-4): 328-340. https://doi.org/10.1016/j.epsl.2011.03.008
      [72] Ikeda, M., Tada, R., 2014. A 70 Million Year Astronomical Time Scale for the Deep-Sea Bedded Chert Sequence (Inuyama, Japan): Implications for Triassic-Jurassic Geochronology. Earth and Planetary Science Letters, 399: 30-43. https://doi.org/10.1016/j.epsl.2014.04.031
      [73] Ikeda, M., Tada, R., Ozaki, K., 2017. Astronomical Pacing of the Global Silica Cycle Recorded in Mesozoic Bedded Cherts. Nature Communications, 8: 15532. https://doi.org/10.1038/ncomms15532
      [74] Imbrie, J., 1982. Astronomical Theory of the Pleistocene Ice Ages: A Brief Historical Review. Icarus, 50(2/3): 408-422. https://doi.org/10.1016/0019-1035(82)90132-4
      [75] Imbrie, J., 1985. A Theoretical Framework for the Pleistocene Ice Ages. Journal of the Geological Society, 142(3): 417-432. https://doi.org/10.1144/gsjgs.142.3.0417
      [76] Imbrie, J., Berger, A., Boyle, E. A., et al., 1993. On the Structure and Origin of Major Glaciation Cycles 2. the 100 000-Year Cycle. Paleoceanography, 8(6): 699-735. https://doi.org/10.1029/93pa02751
      [77] Jansen, J. H., Kuijpers, A., Troelstra, S. R., 1986. A Mid-Brunhes Climatic Event: Long-Term Changes in Global Atmosphere and Ocean Circulation. Science, 232(4750): 619-622. https://doi.org/10.1126/science.232.4750.619
      [78] Jenkyns, H. C., 2018. Transient Cooling Episodes during Cretaceous Oceanic Anoxic Events with Special Reference to OAE 1a (Early Aptian). Philosophical TransactionsSeriesA, Mathematical, Physical, and Engineering Sciences, 376(2130): 20170073. https://doi.org/10.1098/rsta.2017.0073
      [79] Jin, Y. G., Wang, Y., Wang, W., et al., 2000. Pattern of Marine Mass Extinction near the Permian-Triassic Boundary in South China. Science, 289(5478): 432-436. https://doi.org/10.1126/science.289.5478.432
      [80] Kashiwaya, K., Ochiai, S., Sakai, H., et al., 2001. Orbit-Related Long-Term Climate Cycles Revealed in a 12-Myr Continental Record from Lake Baikal. Nature, 410(6824): 71-74. https://doi.org/10.1038/35065057
      [81] Kent, D. V., Olsen, P. E., Witte, W. K., 1995. Late Triassic-Earliest Jurassic Geomagnetic Polarity Sequence and Paleolatitudes from Drill Cores in the Newark Rift Basin, Eastern North America. Journal of Geophysical Research: Solid Earth, 100(B8): 14965-14998. https://doi.org/10.1029/95jb01054
      [82] Kent, D. V., Olsen, P. E., Muttoni, G., 2017. Astrochronostratigraphic Polarity Time Scale (APTS) for the Late Triassic and Early Jurassic from Continental Sediments and Correlation with Standard Marine Stages. Earth-Science Reviews, 166: 153-180. https://doi.org/10.1016/j.earscirev.2016.12.014
      [83] Kent, D. V., Olsen, P. E., Rasmussen, C., et al., 2018. Empirical Evidence for Stability of the 405-Kiloyear Jupiter-Venus Eccentricity Cycle over Hundreds of Millions of Years. Proceedings of the National Academy of Sciences of the United States of America, 115(24): 6153-6158. https://doi.org/10.1073/pnas.1800891115
      [84] Lantink, M. L., Davies, J. H. F. L., Mason, P. R. D., et al., 2019. Climate Control on Banded Iron Formations Linked to Orbital Eccentricity. Nature Geoscience, 12(5): 369-374. https://doi.org/10.1038/s41561-019-0332-8
      [85] Larsen, H. C., Saunders, A. D., Clift, P. D., et al., 1994. Seven Million Years of Glaciation in Greenland. Science, 264, 952-955. doi: 10.1126/science.264.5161.952
      [86] Laskar, J., Robutel, P., Joutel, F., et al., 2004. A Long-Term Numerical Solution for the Insolation Quantities of the Earth. Astronomy Astrophysics, 428(1): 261-285. https://doi.org/10.1051/0004-6361: 20041335 doi: 10.1051/0004-6361:20041335
      [87] Laskar, J., 1989. A Numerical Experiment on the Chaotic Behaviour of the Solar System. Nature, 338(6212): 237-238. https://doi.org/10.1038/338237a0
      [88] Laskar, J., Fienga, A., Gastineau, M., et al., 2011. La2010: A New Orbital Solution for the Long-Term Motion of the Earth. Astronomy Astrophysics, 532: A89. https://doi.org/10.1051/0004-6361/201116836
      [89] Latta, D. K., Anastasio, D. J., Hinnov, L. A., et al., 2006. Magnetic Record of Milankovitch Rhythms in Lithologically Noncyclic Marine Carbonates. Geology, 34(1): 29-32. https://doi.org/10.1130/g21918.1
      [90] Lea, D. W., Pak, D. K., Spero, H. J., 2000. Climate Impact of Late Quaternary Equatorial Pacific Sea Surface Temperature Variations. Science, 289(5485): 1719-1724. https://doi.org/10.1126/science.289.5485.1719
      [91] Li, M. S., Huang, C. J., Hinnov, L., et al., 2018. Astrochronology of the Anisian Stage (Middle Triassic) at the Guandao Reference Section, South China. Earth and Planetary Science Letters, 482: 591-606. https://doi.org/10.1016/j.epsl.2017.11.042
      [92] Li, M. S., Hinnov, L. A., Huang, C. J., et al., 2018a. Sedimentary Noise and Sea Levels Linked to Land-Ocean Water Exchange and Obliquity Forcing. Nature Communications, 9: 1004. https://doi.org/10.1038/s41467-018-03454-y
      [93] Li, M. S., Kump, L. R., Hinnov, L. A., et al., 2018b. Tracking Variable Sedimentation Rates and Astronomical Forcing in Phanerozoic Paleoclimate Proxy Series with Evolutionary Correlation Coefficients and Hypothesis Testing. Earth and Planetary Science Letters, 501: 165-179. https://doi.org/10.1016/j.epsl.2018.08.041
      [94] Li, M. S., Zhang, Y., Huang, C. J., et al., 2017. Astronomical Tuning and Magnetostratigraphy of the Upper Triassic Xujiahe Formation of South China and Newark Supergroup of North America: Implications for the Late Triassic Time Scale. Earth and Planetary Science Letters, 475: 207-223. https://doi.org/10.1016/j.epsl.2017.07.015
      [95] Li, M. S., Huang, C. J., Hinnov, L., et al., 2016. Obliquity-Forced Climate during the Early Triassic Hothouse in China. Geology, 44(8): 623-626. . doi: 10.1130/G37970.1.https://doi.org/ 10.1130/G37970.1
      [96] Li, Y. X., Bralower, T. J., Montañez, I. P., et al., 2008. Toward an Orbital Chronology for the Early Aptian Oceanic Anoxic Event (OAE1a, ~ 120 Ma). Earth and Planetary Science Letters, 271(1-4): 88-100. https://doi.org/10.1016/j.epsl.2008.03.055
      [97] Lisiecki, L. E., Raymo, M. E., 2005. A Pliocene-Pleistocene Stack of 57 Globally Distributed Benthic δ18ORecords. Paleoceanography, 20(1): PA1003. https://doi.org/10.1029/2004pa001071
      [98] Liu, D. Y., Huang, C. J., Kemp, D. B., et al., 2021. Paleoclimate and Sea Level Response to Orbital Forcing in the Middle Triassic of the Eastern Tethys. Global and Planetary Change, 199: 103454. https://doi.org/10.1016/j.gloplacha.2021.103454
      [99] Liu, G. H., Zhang, S. H., Wu, H. C., 2020. Progress and Challenges in Precambrian Cyclostratigraphy Research. Journal of Stratigraphy, 44(3): 239-249(in Chinese with English abstract).
      [100] Locklair, R. E., Sageman, B. B., 2008. Cyclostratigraphy of the Upper Cretaceous Niobrara Formation, Western Interior, USA: A Coniacian-Santonian Orbital Timescale. Earth and Planetary Science Letters, 269(3/4): 540-553. https://doi.org/10.1016/j.epsl.2008.03.021
      [101] Lourens, L. J., Sluijs, A., Kroon, D., et al., 2005. Astronomical Pacing of Late Palaeocene to Early Eocene Global Warming Events. Nature, 435(7045): 1083-1087. https://doi.org/10.1038/nature03814
      [102] Lourens, L. J., Sluijs, A., Kroon, D., et al., 2005. Astronomical Pacing of Late Palaeocene to Early Eocene Global Warming Events. Nature, 435: 1083-1087. doi: 10.1038/nature03814
      [103] Loutre, M. F., 2009. Eccentricity. In: Gornitz, V., ed., Encyclopedia of Paleoclimatology and Ancient Environments. Springer, Dordrecht, 301-302.
      [104] Loutre, M. F., Berger, A., 2000. Future Climatic Changes: Are we Entering an Exceptionally Long Interglacial? Climatic Change, 46(1-2): 61-90.
      [105] Lüthi, D., Le Floch, M., Bereiter, B., et al., 2008. High-Resolution Carbon Dioxide Concentration Record 650 000-800 000 years before Present. Nature, 453(7193): 379-382. https://doi.org/10.1038/nature06949
      [106] Ma, C., Meyers, S. R., Sageman, B. B., 2017. Theory of Chaotic Orbital Variations Confirmed by Cretaceous Geological Evidence. Nature, 542(7642): 468-470. https://doi.org/10.1038/nature21402
      [107] Ma, C., Meyers, S. R., Sageman, B. B., 2019. Testing Late Cretaceous Astronomical Solutions in a 15 Million Year Astrochronologic Record from North America. Earth and Planetary Science Letters, 513: 1-11. https://doi.org/10.1016/j.epsl.2019.01.053
      [108] Martinez, M., Deconinck, J. F., Pellenard, P., et al., 2013. Astrochronology of the Valanginian Stage from Reference Sections (Vocontian Basin, France) and Palaeoenvironmental Implications for the Weissert Event. Palaeogeography, Palaeoclimatology, Palaeoecology, 376: 91-102. https://doi.org/10.1016/j.palaeo.2013.02.021
      [109] Martinez, M., Deconinck, J. F., Pellenard, P., et al., 2015. Astrochronology of the Valanginian-Hauterivian Stages (Early Cretaceous): Chronological Relationships between the Paraná-Etendeka Large Igneous Province and the Weissert and the Faraoni Events. Global and Planetary Change, 131: 158-173. https://doi.org/10.1016/j.gloplacha.2015.06.001
      [110] Meyers, S. R., 2019. Cyclostratigraphy and the Problem of Astrochronologic Testing. Earth-ScienceReviews, 190: 190-223. https://doi.org/10.1016/j.earscirev.2018.11.015
      [111] Meyers, S. R., Malinverno, A., 2018. Proterozoic Milankovitch Cycles and the History of the Solar System. Proceedings of the National Academy of Sciences of the United States of America, 115(25): 6363-6368. https://doi.org/10.1073/pnas.1717689115
      [112] Meyers, S. R., Sageman, B. B., 2007. Quantification of Deep-Time Orbital Forcing by Average Spectral Misfit. American Journal of Science, 307(5): 773-792. https://doi.org/10.2475/05.2007.01
      [113] Meyers, S. R., Siewert, S. E., Singer, B. S., et al., 2012. Intercalibration of Radioisotopic and Astrochronologic Time Scales for the Cenomanian-Turonian Boundary Interval, Western Interior Basin, USA. Geology, 40(1): 7-10. https://doi.org/10.1130/g32261.1
      [114] Milankovitch, M., 1941. Canon of Insolation and the Ice Age Problem (in German), Math. Natl. Sci. , 33(s132): 633.
      [115] Milankovitch, M., 1930. Mathematische Klimalehre Und Astronomische Theorie Der Klimaschwankungen. Handbuch Der Klimatologie 1.
      [116] Mix, A. C., Pisias, N. G., Rugh, W., et al., 1995. Benthic Foraminifer Stable Isotope Record from Site 849 (0-5 Ma): Local and Global Climate Changes. Proceedings of the Ocean Drilling Program, 138, 371-412. https://doi.org/10.2973/odp.proc.sr.138.120.1995
      [117] O'Connor, L. K., Batenburg, S. J., Robinson, S. A., et al., 2020. An Orbitally Paced, Near-Complete Record of Campanian Climate and Sedimentation in the Mississippi Embayment, USA. Newsletters on Stratigraphy, 53(4): 443-459. https://doi.org/10.1127/nos/2020/0534
      [118] Ogg, J. G., 2012. Chapter 25: Triassic. In: Gradstein, F., Ogg, J., Schmitz, M., et al., eds., The Geological Time Scale 2012. Elsevier, 681-730.
      [119] Olsen, P. E., Kent, D. V., 1996. Milankovitch Climate Forcing in the Tropics of Pangaea during the Late Triassic. Palaeogeography, Palaeoclimatology, Palaeoecology, 122(1/2/3/4): 1-26. https://doi.org/10.1016/0031-0182(95)00171-9
      [120] Olsen, P. E., Kent, D. V., Cornet, B., et al., 1996. High-Resolution Stratigraphy of the Newark Rift Basin (Early Mesozoic, Eastern North America). Geological Society of America Bulletin, 108(1): 40-77. https://doi.org/10.1130/0016-7606(1996)1080040: hrsotn>2.3.co;2 doi: 10.1130/0016-7606(1996)1080040:hrsotn>2.3.co;2
      [121] Pälike, H., Norris, R. D., Herrle, J. O., et al., 2006. The Heartbeat of the Oligocene Climate System. Science, 314(5807): 1894-1898. https://doi.org/10.1126/science.1133822
      [122] Park, J., Herbert, T. D., 1987. Hunting for Paleoclimatic Periodicities in a Geologic Time Series with an Uncertain Time Scale. Journal of Geophysical Research: Solid Earth, 92(B13): 14027-14040. https://doi.org/10.1029/jb092ib13p14027
      [123] Penck, A., Brückner, E., 1909. Die alpen im Eiszeitalter. The Journal of Geology, 17(4): 380-386. doi: 10.1086/621622
      [124] Petit, J. R., Jouzel, J., Raynaud, D., et al., 1999. Climate and Atmospheric History of the Past 420 000 Years from the Vostok Ice Core, Antarctica. Nature, 399(6735): 429-436. https://doi.org/10.1038/20859
      [125] Rasmussen, J. A., Thibault, N., Mac Ørum Rasmussen, C., 2021. Middle Ordovician Astrochronology Decouples Asteroid Breakup from Glacially-Induced Biotic Radiations. Nature Communications, 12: 6430. https://doi.org/10.1038/s41467-021-26396-4
      [126] Raymo, M. E., Nisancioglu, K. H., 2003. The 41 kyr World: Milankovitch's other Unsolved Mystery. Paleoceanography, 18(1): 1001. https://doi.org/10.1029/2002pa000791
      [127] Raymo, M. E., 1997. The Timing of Major Climate Terminations. Paleoceanography, 12(4): 577-585. https://doi.org/10.1029/97pa01169
      [128] Ruebsam, W., Mayer, B., Schwark, L., 2019. Cryosphere Carbon Dynamics Control Early Toarcian Global Warming and Sea Level Evolution. Global and Planetary Change, 172: 440-453. https://doi.org/10.1016/j.gloplacha.2018.11.003
      [129] Ruhl, M., Deenen, M. H. L., Abels, H. A., et al., 2010. Astronomical Constraints on the Duration of the Early Jurassic Hettangian Stage and Recovery Rates Following the End-Triassic Mass Extinction (St Audrie's Bay/East Quantoxhead, UK). Earth and Planetary Science Letters, 295(1/2): 262-276. https://doi.org/10.1016/j.epsl.2010.04.008
      [130] Sageman, B. B., Singer, B. S., Meyers, S. R., et al., 2014. Integrating 40Ar/39Ar, U-Pb, and Astronomical Clocks in the Cretaceous Niobrara Formation, Western Interior Basin, USA. Geological Society of America Bulletin, 126(7/8): 956-973. https://doi.org/10.1130/b30929.1
      [131] Sames, B., Wagreich, M., Conrad, C. P., et al., 2020. Aquifer-Eustasy as the Main Driver of Short-Term Sea-Level Fluctuations during Cretaceous Hothouse Climate Phases. Geological Society, London, Special Publications, 498(1): 9-38. https://doi.org/10.1144/sp498-2019-105
      [132] Schulz, M., Berger, W. H., Sarnthein, M., et al., 1999. Amplitude Variations of 1 470-Year Climate Oscillations during the last 100 000 Years Linked to Fluctuations of Continental Ice Mass. Geophysical Research Letters, 26(22): 3385-3388. https://doi.org/10.1029/1999gl006069
      [133] Schwarzacher, W., Fischer, A. G., 1982. Limestone-Shale Bedding and Perturbations of the Earth's Orbit. Cyclic and Event Stratification. Springer, Berlin, Heidelberg, 72-95. https://doi.org/10.1007/978-3-642-75829-4_5
      [134] Sellers, W. D., 1969. A Global Climatic Model Based on the Energy Balance of the Earth-Atmosphere System. Journal of Applied Meteorology, 8(3): 392-400. https://doi.org/10.1175/1520-0450(1969)0080392: agcmbo>2.0.co;2 doi: 10.1175/1520-0450(1969)0080392:agcmbo>2.0.co;2
      [135] Sha, J. G., Olsen, P. E., Pan, Y. H., et al., 2015. Triassic-Jurassic Climate in Continental High-Latitude Asia was Dominated by Obliquity-Paced Variations (Junggar Basin, Ürümqi, China). Proceedings of the National Academy of Sciences of the United States of America, 112(12): 3624-3629. https://doi.org/10.1073/pnas.1501137112
      [136] Shackleton, N. J., Opdyke, N. D., 1976. Oxygen-Isotope and Paleomagnetic Stratigraphy of Pacific Core V28-239 Late Pliocene to Latest Pleistocene. GeologicalSociety of America Memoirs: 145. Geological Society of America, 449-464. https://doi.org/10.1130/mem145-p449
      [137] Shackleton, N. J., Hall, M. A., Raffi, I., et al., 2000. Astronomical Calibration Age for the Oligocene-Miocene Boundary. Geology, 28(5): 447-450. https://doi.org/10.1130/0091-7613(2000)28447: acafto>2.0.co;2 doi: 10.1130/0091-7613(2000)28447:acafto>2.0.co;2
      [138] Sonett, C. P., Chan, M. A., 1998. Neoproterozoic Earth-Moon Dynamics: Rework of the 900 Ma Big Cottonwood Canyon Tidal Laminae. Geophysical Research Letters, 25(4): 539-542. https://doi.org/10.1029/98gl00048
      [139] Sproson, A. D., 2020. Pacing of the Latest Ordovician and Silurian Carbon Cycle by a ~4.5 Myr Orbital Cycle. Palaeogeography, Palaeoclimatology, Palaeoecology, 540: 109543. https://doi.org/10.1016/j.palaeo.2019.109543
      [140] Sprovieri, M., Sabatino, N., Pelosi, N., et al., 2013. Late Cretaceous Orbitally-Paced Carbon Isotope Stratigraphy from the Bottaccione Gorge (Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 379/380: 81-94. https://doi.org/10.1016/j.palaeo.2013.04.006
      [141] Sun, Y. B., Clemens, S. C., An, Z. S., et al., 2006. Astronomical Timescale and Palaeoclimatic Implication of Stacked 3.6-Myr Monsoon Records from the Chinese Loess Plateau. Quaternary Science Reviews, 25(1/2): 33-48. https://doi.org/10.1016/j.quascirev.2005.07.005
      [142] Svensen, H. H., Hammer, Ø., Corfu, F., 2015. Astronomically Forced Cyclicity in the Upper Ordovician and U-Pb Ages of Interlayered Tephra, Oslo Region, Norway. Palaeogeography, Palaeoclimatology, Palaeoecology, 418: 150-159. https://doi.org/10.1016/j.palaeo.2014.11.001
      [143] Thibault, N., Jarvis, I., Voigt, S., et al., 2016. Astronomical Calibration and Global Correlation of the Santonian (Cretaceous) Based on the Marine Carbon Isotope Record. Paleoceanography, 31(6): 847-865. https://doi.org/10.1002/2016pa002941
      [144] Thibault, N., Ruhl, M., Ullmann, C. V., et al., 2018. The Wider Context of the Lower Jurassic Toarcian Oceanic Anoxic Event in Yorkshire Coastal Outcrops, UK. Proceedings of the Geologists'Association, 129(3): 372-391. https://doi.org/10.1016/j.pgeola.2017.10.007
      [145] Tian, J., Ma, X. L., Zhou, J. H., et al., 2018. Paleoceanography of the East Equatorial Pacific over the Past 16 Myr and Pacific-Atlantic Comparison: High Resolution Benthic Foraminiferal δ18O and δ13C Records at IODP Site U1337. Earth and Planetary Science Letters, 499: 185-196. https://doi.org/10.1016/j.epsl.2018.07.025
      [146] Tian, J., Xie, X., Ma, W. T., et al., 2011. X-Ray Fluorescence Core Scanning Records of Chemical Weathering and Monsoon Evolution over the Past 5 Myr in the Southern South China Sea. Paleoceanography, 26(4): PA4202.
      [147] Vincent, E., Berger, W. H., 1985. Carbon Dioxide and Polar Cooling in the Miocene. In: Sundquist, E. T., Broecker, W. S., eds., The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Geophysical Monograph Series, 455-468.
      [148] Wagreich, M., Lein, R., Sames, B., 2014. Eustasy, Its Controlling Factors, and the limno-Eustatic Hypothesis-Concepts Inspired by Eduard Suess. Austrian Journal of Earth Sciences, 107(1): 115-131.
      [149] Walker, J. C. G., Zahnle, K. J., 1986. Lunar Nodal Tide and Distance to the Moon during the Precambrian. Nature, 320(6063): 600-602. https://doi.org/10.1038/320600a0
      [150] Waltham, D., 2015. Milankovitch Period Uncertainties and Their Impact on Cyclostratigraphy. Journal of Sedimentary Research, 85(8): 990-998. https://doi.org/10.2110/jsr.2015.66
      [151] Wang, P. X., Tian, J., Cheng, X. R., 2001. Records of Quaternary Cycle Transformation in Nansha Deep Sea. Science in China, 31(10): 793-799(in Chinese with English abstract).
      [152] Wang, M., Chen, H. H., Huang, C. J., et al., 2020. Astronomical Forcing and Sedimentary Noise Modeling of Lake-Level Changes in the Paleogene Dongpu Depression of North China. Earth and Planetary Science Letters, 535: 116116. https://doi.org/10.1016/j.epsl.2020.116116
      [153] Wang, M., Li, M. S., Kemp, D. B., et al., 2022. Sedimentary Noise Modeling of Lake-Level Change in the Late Triassic Newark Basin of North America. Global and Planetary Change, 208: 103706. https://doi.org/10.1016/j.gloplacha.2021.103706
      [154] Wang, P. X., 2002. Ice and Carbon in Climate Evolution. Earth Science Frontiers, 9(1): 85-93(in Chinese with English abstract).
      [155] Wang, P. X., 2015. A New Chapter in Paleoenvironmental Research. Chinese Science Bulletin, 60(12): 1079-1080(in Chinese with English abstract). doi: 10.1360/csb2015-60-12-1079
      [156] Wang, P. X., Li, Q. Y., Tian, J., et al., 2015. Long-Term Cycles in Carbon Reservoir of the Quaternary Ocean: A Perspective from the South China Sea. Quaternary Sciences, 35(6): 1297-1319(in Chinese with English abstract).
      [157] Wang, P. X., Li, Q. Y., Tian, J., et al., 2014. Long-Term Cycles in the Carbon Reservoir of the Quaternary Ocean: A Perspective from the South China Sea. National Science Review, 1(1): 119-143.
      [158] Wang, P. X., Tian, J., Lourens, L. J., 2010. Obscuring of Long Eccentricity Cyclicity in Pleistocene Oceanic Carbon Isotope Records. Earth and Planetary Science Letters, 290(3-4): 319-330. https://doi.org/10.1016/j.epsl.2009.12.028
      [159] Weedon, G. P., Page, K. N., Jenkyns, H. C., 2019. Cyclostratigraphy, Stratigraphic Gaps and the Duration of the Hettangian Stage (Jurassic): Insights from the Blue Lias Formation of Southern Britain. Geological Magazine, 156(9): 1469-1509. https://doi.org/10.1017/s0016756818000808
      [160] Westerhold, T., Marwan, N., Drury, A. J., et al., 2020. An Astronomically Dated Record of Earth's Climate and Its Predictability over the last 66 Million Years. Science, 369(6509): 1383-1387. https://doi.org/10.1126/science.aba6853
      [161] Williams, G. E., 1989. Late Precambrian Tidal Rhythmites in South Australia and the History of the Earth's Rotation. Journal of the Geological Society, 146(1): 97-111. https://doi.org/10.1144/gsjgs.146.1.0097
      [162] Williams, G. E., 2000. Geological Constraints on the Precambrian History of Earth's Rotation and the Moon's Orbit. Reviews of Geophysics, 38(1): 37-59. https://doi.org/10.1029/1999rg900016
      [163] Wu, H. C., Qiang, F., Wang, X. D., et al., 2018. An ~34 M. y. Astronomical Time Scale for the Uppermost Mississippian through Pennsylvanian of the Carboniferous System of the Paleo-Tethyan Realm. Geology, 47(1): 83-86. . https://doi.org/10.1130/G45461.1
      [164] Wu, H. C., Zhang, S. H., Hinnov, L. A., et al., 2013. Time-Calibrated Milankovitch Cycles for the Late Permian. Nature Communications, 4: 2452. https://doi.org/10.1038/ncomms3452
      [165] Wu, H. C., Zhang, S. H., Hinnov, L. A., et al., 2014. Cyclostratigraphy and Orbital Tuning of the Terrestrial Upper Santonian-Lower Danian in Songliao Basin, Northeastern China. Earth and Planetary Science Letters, 407: 82-95. https://doi.org/10.1016/j.epsl.2014.09.038
      [166] Wu, Q., Ramezani, J., Zhang, H., et al., 2021. High-Precision U-Pb Age Constraints on the Permian Floral Turnovers, Paleoclimate Change, and Tectonics of the North China Block. Geology, 49(6): 677-681. https://doi.org/10.1130/G48051.1
      [167] Xu, W. M., Ruhl, M., Hesselbo, S., et al., 2016. Orbital Pacing of the Early Jurassic Carbon Cycle, Black Shale Formation and Seabed Methane Seepage. Sedimentology, 64(1): 127-149. https://doi.org/10.1111/sed.12329
      [168] Yehudai, M., Kim, J., Pena, L. D., et al., 2021. Evidence for a Northern Hemispheric Trigger of the 100 000-y Glacial Cyclicity. Proceedings of the National Academy of Sciences of the United States of America, 118(46): e2020260118. https://doi.org/10.1073/pnas.2020260118
      [169] Zeebe, R. E., Lourens, L. J., 2019. Solar System Chaos and the Paleocene-Eocene Boundary Age Constrained by Geology and Astronomy. Science, 365(6456): 926-929. https://doi.org/10.1126/science.aax0612
      [170] Zhang, Y., Li, M. S., Ogg, J. G., et al., 2015. Cycle-Calibrated Magnetostratigraphy of Middle Carnian from South China: Implications for Late Triassic Time Scale and Termination of the Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 436: 135-166. https://doi.org/10.1016/j.palaeo.2015.05.033
      [171] Zhong, Y. Y., Wu, H. C., Fan, J. X., et al., 2020. Late Ordovician Obliquity-Forced Glacio-Eustasy Recorded in the Yangtze Block, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 540: 109520. https://doi.org/10.1016/j.palaeo.2019.109520
      [172] Zhong, Y. Y., Wu, H. C., Zhang, Y. D., et al., 2018. Astronomical Calibration of the Middle Ordovician of the Yangtze Block, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 505: 86-99. https://doi.org/10.1016/j.palaeo.2018.05.030
      [173] 丁仲礼, 刘东生, 1989. 中国黄土研究新进展(一)黄土地层. 第四纪研究, 9(1): 24-35. https://www.cnki.com.cn/Article/CJFDTOTAL-DSJJ198901002.htm
      [174] 刘光泓, 张世红, 吴怀春, 2020. 前寒武纪旋回地层学研究的进展与挑战. 地层学杂志, 44(3): 239-249. https://www.cnki.com.cn/Article/CJFDTOTAL-DCXZ202003002.htm
      [175] 汪品先, 2002. 气候演变中的冰和碳. 地学前缘, 9(1): 85-93. https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY200201016.htm
      [176] 汪品先, 2015. 古环境研究的新篇章. 科学通报, 60(12): 1079-1080. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201512003.htm
      [177] 汪品先, 李前裕, 田军, 等, 2015. 从南海看第四纪大洋碳储库的长周期循环. 第四纪研究, 35(6): 1297-1319.
      [178] 汪品先, 田军, 成鑫荣, 2001. 第四纪冰期旋回转型在南沙深海的记录. 中国科学D辑, 31(10): 793-799. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK200110000.htm
      [179] 中国大洋发现计划办公室, 2018. 大洋钻探五十年. 上海: 同济大学出版社.
    • dqkxzx-47-10-3543-附表.doc
    • 加载中
    图(5)
    计量
    • 文章访问数:  868
    • HTML全文浏览量:  425
    • PDF下载量:  342
    • 被引次数: 0
    出版历程
    • 收稿日期:  2022-04-30
    • 刊出日期:  2022-10-25

    目录

      /

      返回文章
      返回