Review on Optimization and Fusion of Seismic Attributes for Fluvial Reservoir Characterization
-
摘要: 地震属性分析已广泛应用于河流相砂体预测并取得良好效果.地震属性分析技术主要包括属性提取、属性优选与属性融合,总结了河流相砂体预测中常见的地震属性提取方式、优选及融合方法,分析了由围岩干扰、地震分辨率限制导致的属性提取与分析误区,阐述了不同属性优选与融合方法的优缺点、适用条件与发展前景.总体而言,基于线性模型的地震属性融合提升效果较差,适用于少井区域;基于非线性模型的属性融合效果较好,但仅适用于钻井较多的地区,如油气开发阶段;无监督智能属性融合可应用于无井或少井区域,是未来无井或少井条件下属性融合的重要发展趋势之一.同时,重点阐述了新提出的分频属性融合与降低围岩干扰的属性融合方法.Abstract: Seismic attribute analyses have been applied widely in hydrocarbon exploration and development of fluvial reservoirs, and obtained good results. The analysis procedure of seismic attributes mainly includes the extraction, the optimization and the fusion of attributes. In this paper it summarizes the main methods of attribute extraction, optimization and fusion, and evaluates their advantages, disadvantages and application conditions. Besides, the common misunderstanding genetically related to seismic resolution and interference of neighboring zone in attribute extraction is also analyzed. Generally, fusion methods of seismic attributes using linear models cannot significantly improve the results, and are suitable for areas with several or a few wells; fusion methods with intelligent models (mainly for supervised learning) are commonly suitable for the areas with dozens of wells, such as areas within oil development stage. Fusion methods based on unsupervised learning are suitable for areas with few and even no wells, which have an optimistic development prospect since they can make full use of the seismic information, and are not limited by wells. In addition, the new fusion methods of frequency-decomposed attributes, and of attributes from target and neighboring zones are also summarized in this paper.
-
Key words:
- fluvial reservoir /
- seismic attribute /
- attribute optimization /
- attribute fusion /
- machine learning /
- sedimentology
-
图 2 基于地震正演模拟的围岩干扰分析图
据 Li et al.(2021).a. 地质正演模型;b. 地震正演模型;c. 常见地震子波;d. 上、下围岩干扰层示意图
Fig. 2. Analysis diagrams of interference from neighboring zones based on seismic forward modeling
图 5 基于颜色透明度的分频融合属性与相干属性叠合图(据Li et al., 2019a)
Fig. 5. Map co-rendering the frequency-decomposed attributes and coherence attributes (Li et al., 2019a)
图 6 不同频率地震子波的振幅与厚度相关关系(AVF曲线)(Li et al., 2019b)
Fig. 6. Tuning curves between the sand thickness and amplitude with different frequency wavelets (AVF curve) (Li et al., 2019b)
图 8 埕岛油田分频地震属性融合图
a. 埕岛油田某小层分频属性智能融合图(Li et al.,2019b);b. 埕岛油田某小层分频属性 RGB 融合图
Fig. 8. Maps of fused frequency-decomposed attributes in the Chengdao oilfield
图 9 河流相储层正演模型及其正演模拟结果
据Li et al.(2020)修改;a. 地质模型;b. 地震正演模拟结果;c. 上部相邻层砂体厚度与RMS对比;d. 目的层砂体厚度与RMS对比;e. 下部相邻层砂体厚度与RMS对比
Fig. 9. Forward geological model of fluvial reservoirs and its seismic responses
图 11 降低围岩干扰前、后的地震属性对比图
据Li et al.(2020)修改;a.三维地震正演模型;b.上部相邻层正演模型实际砂体厚度;c.目的层正演模型实际砂体厚度;d.下部相邻层正演模型实际砂体厚度;e.受围岩干扰的目的层RMS振幅属性;f.降低围岩干扰后的目的层地震属性
Fig. 11. Comparison of seismic attributes before and after reducing the interference of neighboring zones
-
[1] Ariza Ferreira, D. J., Dias, R. M., Lupinacci, W. M., 2021. Seismic Pattern Classification Integrated with Permeability-Porosity Evaluation for Reservoir Characterization of Presalt Carbonates in the Buzios Field, Brazil. Journal of Petroleum Science and Engineering, 201: 1-12. https://doi.org/10.1016/j.petrol.2021.108441 [2] Armitage, D. A., Stright, L., 2010. Modeling and Interpreting the Seismic-Reflection Expression of Sandstone in an Ancient Mass-Transport Deposit Dominated Deep-Water Slope Environment. Marine and Petroleum Geology, 27: 1-12. https://doi.org/10.1016/j.marpetgeo.2009.08.013 [3] Bakke, K., Kane, I. A., Martinsen, O. J., et al., 2013. Seismic Modeling in the Analysis of Deep-Water Sandstone Termination Styles. AAPG Bulletin, 97(9): 1395-1419. https://doi.org/10.1306/03041312069 [4] Balch, A. H., 1971. Color Sonagrams: A New Dimension in Seismic Data Interpretation. Geophysics, 36(6): 1074-1098. https://doi.org/10.1190/1.1440233 [5] Barnes, A. E., 2007. Redundant and Useless Seismic Attributes. Geophysics, 72(3): 33-38. doi: 10.1190/1.2716717 [6] Bitrus, P. R., Iacopini, D., Bond, C. E., 2016. Defining the 3D Geometry of Thin Shale Units in the Sleipner Reservoir Using Seismic Attributes. Marine and Petroleum Geology, 78: 405-425. https://doi.org/10.1016/j.marpetgeo.2016.09.020 [7] Carter, D. C., 2003. 3-D Seismic Geomorpholoy: Insights into Fluvial Reservoir Deposition and Performance, Widuri Field, Java Sea. AAPG Bulletin, 87(6): 909-934. https://doi.org/10.1306/01300300183 [8] Chen, Q., Sidney, S., 1997. Seismic Attribute Technology for Reservoir Forecasting and Monitoring. The Leading Edge, 16(5): 445-448. doi: 10.1190/1.1437657 [9] Chopra, S., Marfurt, K. J., 2005. Seismic Attributes-A Historical Perspective. Geophysics, 70(5): 3SO-28SO. https://doi.org/10.1190/1.2098670 [10] Colombera, L., Mountney, N. P., 2020. Accommodation and Sediment-Supply Controls on Clastic Parasequences: A Meta-Analysis. Sedimentology, 67: 1667-1709. https://doi.org/10.1111/sed.12728 [11] Dorrington, K. P., Link, C A., 2004. Genetic-Algorithm/Neural-Network Approach to Seismic Attribute Selection for Well-Log Prediction. Geophysics, 69(1): 212-221. https://doi.org/10.1190/1.1649389 [12] Fan, X. Y., Yao, G. Q., Yang, Z. F., et al., 2018. Seismic Sedimentology in Multiple Sources-Complex Depositional Systems of Chepaizi Uplift, Junggar Basin. Earth Science, 43(3): 786-801 (in Chinese with English abstract). [13] Guo, H., Lewis, S., Marfurt, K. J., 2008. Mapping Multiple Attributes to Three - and Four-Component Color Models-A Tutorial. Geophysics, 73(3): W7-W19. https://doi.org/10.1190/1.2903819 [14] Guo, J. X., Wang, X. T., Liu, W. K., et al., 2018. Application of the Seismic Sedimentology Based on the Attribute Waveform Classification. Petroleum Geology & Oilfield Development in Daqing, 37(6): 125-131 (in Chinese with English abstract). [15] Hart, B. S., 2008. Channel Detection in 3-D Seismic Data Using Sweetness. AAPG Bulletin, 92(6): 733-742. https://doi.org/10.1306/02050807127 [16] Hu, G. Y., Chen, F., Fan, T. E., et al., 2014. Analysis of Fluvial Facies Compound Sandbody Architecture of the Neogene Minghuazhen Formation of S Oilfield in the Bohai Bay. Acta Sedimentologica Sinica, 32(3): 586-592 (in Chinese with English abstract). [17] La Marca, K., Bedle, H., 2022. Deepwater Seismic Facies and Architectural Element Interpretation Aided with Unsupervised Machine Learning Techniques: Taranaki Basin, New Zealand. Marine and Petroleum Geology, 136: 105427. https://doi.org/10.1016/j.marpetgeo.2021.105427 [18] Li, G. F., Yue, Y., Xiong, J. L., et al., 2011. Experimental Study on Seismic Amplitude Attribute of Thin Interbed Based on 3D Model. Oil Geophysical Prospecting, 46(1): 115-120, 164, 173 (in Chinese with English abstract). [19] Li, S. L., Ma, S. P., Zhou, L. W., et al., 2022. Main Influencing Factors of Braided-Meander Transition and Coexistence Characteristics and Implications of Ancient Fluvial Sedimentary Environment Reconstruction. Earth Science, 1-25 (in Chinese with English abstract). [20] Li, T. T., Wang, Z., Ma, S. Z., et al., 2015. Summary of Seismic Attributes Fusion Method. Progress in Geophysics, 30(1): 378-385 (in Chinese with English abstract). [21] Li, W., Yue, D., Colombera, L., et al., 2021. Quantitative Prediction of Fluvial Sandbodies by Combining Seismic Attributes of Neighboring Zones. Journal of Petroleum Science and Engineering, 196: 107749. https://doi.org/10.1016/j.petrol.2020.107749 [22] Li, W., Yue, D., Wang, W., et al., 2019a. Fusing Multiple Frequency-Decomposed Seismic Attributes with Machine Learning for Thickness Prediction and Sedimentary Facies Interpretation in Fluvial Reservoirs. Journal of Petroleum Science and Engineering, 177: 1087-1102. doi: 10.1016/j.petrol.2019.03.017 [23] Li, W., Yue, D., Wu, S., et al., 2019b. Characterizing Meander Belts and Point Bars in Fluvial Reservoirs by Combining Spectral Decomposition and Genetic Inversion. Marine and Petroleum Geology, 105: 168-184. https://doi.org/10.1016/j.marpetgeo.2019.04.015 [24] Li, W., Yue, D., Wu, S., et al., 2020. Thickness Prediction for High-Resolution Stratigraphic Interpretation by Fusing Seismic Attributes of Target and Neighboring Zones with an SVR Algorithm. Marine and Petroleum Geology, 113: 104153. https://doi.org/10.1016/j.marpetgeo.2019.104153 [25] Li, W., Yue, D. L., Hu, G. Y., et al., et al., 2017. Frequency-Segmented Seismic Attribute Optimization and Sandbody Distribution Prediction: An Example in North Block, Qinhuangdao 32-6 Oilfield. Oil Geophysical Prospecting, 52(1): 121-130 (in Chinese with English abstract). [26] Li, X. X., 2014. Research on the Application of Seismic Multi-Attributes Fusion Methods (Dissertation). Chengdu University of Technology, Chengdu, 60 (in Chinese with English abstract). [27] Lin, N. T., Fu, C., Zhang, D., et al., 2018. Supervised Learning and Unsupervised Learning for Hydrocarbon Prediction Using Multiwave Seismic Data. Geophysical Prospecting for Petroleum, 57(4): 601-610 (in Chinese with English abstract). doi: 10.3969/j.issn.1000-1441.2018.04.015 [28] Liu, W. L., Niu, Y. L., Li, G., et al., 2002. Seismic Attribute Extraction and Effectiveness Analysis of Multi-Attribute Reservoir Prediction. Ceophysical Prospecting for Petroleum, 41(1): 100-106 (in Chinese with English abstract). [29] Luo, D. G., Liu, J. P., Jin, C., et al., 2017. Instantaneous Seismic Attributes and Response Characteristics of Active Faults. Earth Science, 42(3): 462-470 (in Chinese with English abstract). [30] Maleki, M., Davolio, A., Schiozer, D. J., 2019. Quantitative Integration of 3D and 4D Seismic Impedance into Reservoir Simulation Model Updating in the Norne Field. Geophysical Prospecting, 67(1): 167-187. doi: 10.1111/1365-2478.12717 [31] McArdle, N. J., Ackers, M. A., 2012. Understanding Seismic Thin-Bed Responses Using Frequency Decomposition and RGR Blending. First Break, 30(12): 57-65. https://doi.org/10.3997/1365-2397.2012022 [32] McArdle, N. J., Iacopini, D., KunleDare, M. A., et al., 2014. The Use of Geologic Expression Workflows for Basin Scale Reconnaissance: A Case Study from the Exmouth Subbasin, North Carnarvon Basin, Northwestern Australia. Interpretation-J. Sub. , 2(1): SA163-SA177. https://doi.org/10.1190/INT-2013-0112.1 [33] McHargue, T., Pyrcz, M. J., Sullivan, M. D., et al., 2011. Architecture of Turbidite Channel Systems on the Continental Slope: Patterns and Predictions. Marine and Petroleum Geology, 3: 728-743. https://doi.org/10.1016/j.marpetgeo.2010.07.008 [34] Meng, Y. J., Zhao, Y. C., Xiong, S., et al., 2021. Study on Reservoir Architecture and Reservoir Units of Fluvial Deposits of Dongying Formation in Yuke Oilfield. Earth Science, 46(7): 2481-2493 (in Chinese with English abstract). [35] Miall, A. D., 2002. Architecture and Sequence Stratigraphy of Pleistocene Fluvial Systems in the Malay Basin, Based on Seismic Time-Slice Analysis. AAPG Bulletin, 7(7): 1201-1216. [36] Qiu, Y. N., 1992. Developments in Reservoir Sedimentology of Continental Clastic Rocks in China. Acta Sedimentologica Sinica, 10(3): 16-24 (in Chinese with English abstract). [37] Raef, A. E., Meek, T. N., Totten, M. W., 2016. Applications of 3D Seismic Attribute Analysis in Hydrocarbon Prospect Identification and Evaluation: Verification and Validation Based on Fluvial Palaeochannel Cross-Sectional Geometry and Sinuosity, Ness County, Kansas, USA. Marine and Petroleum Geology, 73: 21-35. https://doi.org/10.1016/j.marpetgeo.2016.02.023 [38] Song, J. G., Gao, Q. S., Li, Z., 2016. Application of Random Forests for Regression to Seismic Reservoir Prediction. Oil Geophysical Prospecting, 51(6): 1202-1211 (in Chinese with English abstract). [39] Stark, T., 2006. Visualization Techniques for Enhancing Stratigraphic Inferences from 3D Seismic Data Volumes. First Break, 24(4): 75-85. [40] Wang, K. Y., Xu, Q. Y., Zhang, G. F., et al., 2013. Summary of Seismic Attribute Analysis. Progress in Geophysics, 28(2): 815-823 (in Chinese with English abstract). [41] Wang, X., Zhang, B., Zhao, T., et al., 2017. Facies Analysis by Integrating 3D Seismic Attributes and Well Logs for Prospect Identification and Evaluation-A Case Study from Northwest China. Interpretation, 5(2): SE61-SE74. https://doi.org/10.1190/INT-2016-0149.1 [42] Wang, Y. C., Qin, F. Q., Du, W. L., et al., 2013. Discussions on Optimization and Fusion of Seismic Attributes. China Petroleum Exploration, 18(6): 69-73 (in Chinese with English abstract). doi: 10.3969/j.issn.1672-7703.2013.06.012 [43] Xu, A. N., Mu, L. X., Qiu, Y. N., 1998. Distribution of Reserves and Movable Remaining Oil in Different Sedimentary Reservoirs in China. Petroleum Exploration and Development, 25(5): 41-44 (in Chinese with English abstract). doi: 10.3321/j.issn:1000-0747.1998.05.012 [44] Yao, J. K., Liu, J. H., 2020. Application of Machine Learning Based on Seismic Attributes in Structural Recognition. Coal and Chemical Industry, 43(12): 67-71 (in Chinese with English abstract). [45] Yin, X. Y., Zhou, J. Y., 2005. Summary of Optimum Methods of Seismic Attributes. OGP, 40(4): 482-489 (in Chinese with English abstract). [46] Yousef, I., Morozov, V., Sudakov, V., et al., 2021. Cementation Characteristics and Their Effect on Quality of the Upper Triassic, the Lower Cretaceous, and the Upper Cretaceous Sandstone Reservoirs, Euphrates Graben, Syria. Journal of Earth Science, 32(6): 1545-1562. https://doi.org/10.1007/s12583-020-1065-8 [47] Yue, D. L., Hu, G. Y., Li, W., et al., 2018. Meandering Fluvial Reservoir Architecture Characterization Method and Application by Combining Well Logging and Seismic Data: A Case Study of QHD32-6 Oilfield. China Offshore Oil and Gas, 30(1): 99-109 (in Chinese with English abstract). [48] Yue, D. L., Li, W., Wang, J., et al., 2018. Prediction of Meandering Belt and Point-Bar Recognition Based on Spectral-Decomposed and Fused Seismic Attributes: A Case Study of the Guantao Formation, Chengdao Oilfield, Bohai Bay Basin. Journal of Palaeogeography, 20(6): 941-950 (in Chinese with English abstract). [49] Yue, D. L., Li, W., Wang, W. R., et al., 2019. Fused Spectral-Decomposition Seismic Attributes and Forward Seismic Modelling to Predict Sand Bodies in Meandering Fluvial Reservoirs. Marine and Petroleum Geology, 99: 27-44. https://doi.org/10.1016/j.marpetgeo.2018.09.031 [50] Zeng, H., 2010a. Geologic Significance of Anomalous Instantaneous Frequency. Geophysics, 75(3): P23-P30. https://doi.org/10.1190/1.3427638 [51] Zeng, H., 2010b. Stratal Slicing: Benefits and Challenges. The Leading Edge, 29(9): 1040-1047. https://doi.org/10.1190/1.3485764 [52] Zeng, H., 2017. Thickness Imaging for High-Resolution Stratigraphic Interpretation by Linear Combination and Color Blending of Multiple-Frequency Panels. Interpretation, 6(3): T411-T422. https://doi.org/10.1190/INT-2017-0034.1 [53] Zeng, H. L., 2018. What is Seismic Sedimentology? A Tutorial. Interpretation, 6(2): SD1-SD12. https://doi.org/10.1190/int-2017-0145.1 [54] Zhang, C. M., Zhu, R., Guo, X. G., et al., 2020. Arid Fluvial Fandelta-Fluvial Fan Transition: Implications of Huangyangquan Fan Area. Earth Science, 45(5): 1791-1806 (in Chinese with English abstract). [55] Zhang, K., Lin, N., Tian, G., et al., 2022. Unsupervised-Learning Based Self-Organizing Neural Network Using Multi-Component Seismic Data: Application to Xujiahe Tight-Sand Gas Reservoir in China. Journal of Petroleum Science and Engineering, 209: 109964. https://doi.org/10.1016/j.petrol.2021.109964 [56] Zhang, X. G., Wu, X. X., Huang, D. R., et al., 2021. Single Point Bar Interpretation in Meandering Belt with Extreme Learning Machine Driven Multiple Seismic Attributes Fusion. Oil Geophysical Prospecting, 56(6): 1340-1350 (in Chinese with English abstract). [57] Zhang, X. G., Zhang, T., Lin, C. Y., et al., 2014. Sedimentary Micro Facies Characterization with Seismic in Wenchang 13-1 Oilfield, Zhujiangkou Basin. Oil Geophysical Prospecting, 49(5): 964-970 (in Chinese with English abstract). [58] Zhang, X. N., Cheng, C., Ju, H., et al., 2020. Application of Sandbody Description of Fluvial Facies in One Gas Field of Xihu Sag. Geological Survey of China, 7(5): 25-32 (in Chinese with English abstract). [59] Zhao, T., Li, F., Marfurt, K. J., 2018. Seismic Attribute Selection for Unsupervised Seismic Facies Analysis Using User-Guided Data-Adaptive Weights. Geophysics, 83(2): O31-O44. https://doi.org/10.1190/geo2017-0192.1 [60] Zhao, X. M., Feng, S. L., Tan, C. P., et al., 2020. Formation Mechanism and Sedimentary Characteristics of Translational Point Bars. Journal of Southwest Petroleum University (Science & Technology Edition), 42(4): 22-36 (in Chinese with English abstract). [61] Zhong, H., 2018. The Application of Seismic Attributes in the Reservoir Prediction (Dissertation). China University of Petroleum, Beijing (in Chinese with English abstract). [62] 樊晓伊, 姚光庆, 杨振峰, 等, 2018. 准噶尔盆地车排子凸起多物源复杂沉积体系中的地震沉积学. 地球科学, 43(3): 786-801. doi: 10.3799/dqkx.2017.501 [63] 国景星, 王霄霆, 刘文凯, 等, 2018. 基于属性波形分类的地震沉积学应用. 大庆石油地质与开发, 37(6): 125-131. https://www.cnki.com.cn/Article/CJFDTOTAL-DQSK201806022.htm [64] 胡光义, 陈飞, 范廷恩, 等, 2014. 渤海海域S油田新近系明化镇组河流相复合砂体叠置样式分析. 沉积学报, 32(3): 586-592. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB201403021.htm [65] 李国发, 岳英, 熊金良, 等, 2011. 基于三维模型的薄互层振幅属性实验研究. 石油地球物理勘探, 46(1): 115-120, 164, 173. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201101023.htm [66] 李胜利, 马水平, 周练武, 等, 2022. 辫曲转换与共存的主要影响因素及对古代河流沉积环境恢复的启示. 地球科学, 1-25. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX202211003.htm [67] 李婷婷, 王钊, 马世忠, 等, 2015. 地震属性融合方法综述. 地球物理学进展, 30(1): 378-385. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201501055.htm [68] 李伟, 岳大力, 胡光义, 等, 2017. 分频段地震属性优选及砂体预测方法: 秦皇岛32-6油田北区实例. 石油地球物理勘探, 52(1): 121-130. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201701017.htm [69] 李小霞, 2014. 地震多属性融合技术应用研究(硕士学位论文). 成都: 成都理工大学, 60. [70] 林年添, 付超, 张栋, 等, 2018. 无监督与监督学习下的含油气储层预测. 石油物探, 57(4): 601-610. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT201804016.htm [71] 刘文岭, 牛彦良, 李刚, 等, 2002. 多信息储层预测地震属性提取与有效性分析方法. 石油物探, 41(1): 100-106. https://www.cnki.com.cn/Article/CJFDTOTAL-SYWT200201024.htm [72] 罗登贵, 刘江平, 金聪, 等, 2017. 活断层的地震响应特征与瞬时地震属性. 地球科学, 42(3): 462-470. doi: 10.3799/dqkx.2017.036 [73] 孟玉净, 赵彦超, 熊山, 等, 2021. 榆科油田东营组河流相储层构型与油藏单元研究. 地球科学, 46(7): 2481-2493. doi: 10.3799/dqkx.2020.226 [74] 裘亦楠, 1992. 中国陆相碎屑岩储层沉积学的进展. 沉积学报, 10(3): 16-24. https://www.cnki.com.cn/Article/CJFDTOTAL-CJXB199203003.htm [75] 宋建国, 高强山, 李哲, 2016. 随机森林回归在地震储层预测中的应用. 石油地球物理勘探, 51(6): 1202-1211. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201606021.htm [76] 王开燕, 徐清彦, 张桂芳, 等, 2013. 地震属性分析技术综述. 地球物理学进展, 28(2): 815-823. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201302033.htm [77] 王彦仓, 秦凤启, 杜维良, 等, 2013. 地震属性优选、融合探讨. 中国石油勘探, 18(6): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-KTSY201306012.htm [78] 徐安娜, 穆龙新, 裘怿楠, 1998. 我国不同沉积类型储集层中的储量和可动剩余油分布规律. 石油勘探与开发, 25(5): 41-44. https://www.cnki.com.cn/Article/CJFDTOTAL-SKYK805.011.htm [79] 姚江凯, 刘家豪, 2020. 基于地震属性的机器学习在构造识别中的应用. 煤炭与化工, 43(12): 67-71. https://www.cnki.com.cn/Article/CJFDTOTAL-HHGZ202012020.htm [80] 印兴耀, 周静毅, 2005. 地震属性优化方法综述. 石油地球物理勘探, 40(4): 482-489. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ200504030.htm [81] 岳大力, 胡光义, 李伟, 等, 2018a. 井震结合的曲流河储层构型表征方法及其应用: 以秦皇岛32-6油田为例. 中国海上油气, 30(1): 99-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZHSD201801012.htm [82] 岳大力, 李伟, 王军, 等, 2018b. 基于分频融合地震属性的曲流带预测与点坝识别: 以渤海湾盆地埕岛油田馆陶组为例. 古地理学报, 20(6): 941-950. https://www.cnki.com.cn/Article/CJFDTOTAL-GDLX201806003.htm [83] 张昌民, 朱锐, 郭旭光, 等, 2020. 干旱地区河流扇三角洲‒河流扇演替模式: 来自黄羊泉扇的启示. 地球科学, 45(5): 1791-1806. doi: 10.3799/dqkx.2019.165 [84] 张宪国, 吴啸啸, 黄德榕, 等, 2021. 极限学习机驱动的地震多属性融合识别曲流带单一点坝. 石油地球物理勘探, 56(6): 1340-1350. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ202106017.htm [85] 张宪国, 张涛, 林承焰, 等, 2014. 珠江口盆地文昌13‒1油田ZJ2-1U砂组沉积微相地震刻画. 石油地球物理勘探, 49(5): 964-970. https://www.cnki.com.cn/Article/CJFDTOTAL-SYDQ201405025.htm [86] 张锡楠, 程超, 鞠颢, 等, 2020. 河流相砂体精细描述在西湖凹陷某气田的应用. 中国地质调查, 7(5): 25-32. https://www.cnki.com.cn/Article/CJFDTOTAL-DZDC202005004.htm [87] 赵晓明, 冯圣伦, 谭程鹏, 等, 2020. 平移型点坝形成机理与沉积特征. 西南石油大学学报(自然科学版), 42(4): 22-36. https://www.cnki.com.cn/Article/CJFDTOTAL-XNSY202004003.htm [88] 钟晗, 2018. 地震属性在储层预测中的应用研究(硕士学位论文). 北京: 中国石油大学.