Recent Progress and Perspective of Experimental Mineral Physics: 1. Phase Transition and Equation of State, Electrical Conductivity and Thermal Conductivity
-
摘要: 实验矿物物理是高温高压实验地球科学的重要分支学科之一,它主要是通过高温高压实验模拟地球内部的物理化学环境,并原位测定地球深部物质(矿物、岩石和熔/流体等)的相变和状态方程、电导率、热导率等物理参数,探讨地球内部的圈层结构、物质组成、地球动力学过程等地球物理性质相关的一系列重要科学问题. 综述了实验矿物物理的发展历史、近二十年的研究现状与趋势,并展望了该学科未来发展的方向、关键科学问题与面临的主要挑战.Abstract: Experimental mineral physics is one of the important branches of high‐temperature and high‐pressure experimental Earth science. The primary objectives of experimental mineral physics are to in situ determine phase transition and the state equation, conductivity, thermal conductivity and other physical properties for geomaterial (including minerals, rocks and melt/fluid) through high‐temperature and high‐pressure experiments to simulate the physical and chemical environment inside the Earth. By using these available physical properties, it is crucial for understanding many important scientific problems related to the layered structure, chemical composition and geodynamic process of the Earth. In this paper, the research history, recent progress and perspectives of experimental mineral physics in the past twenty years are reviewed, and the future direction, key scientific problems and main challenges of this discipline are also prospected.
-
图 2 (a)大腔体压机(large volume press,简称LVP)和(b)金刚石压腔(diamond anvil cell,简称DAC)能够达到的温压范围
Fig. 2. Pressure and temperature ranges for (a) large volume press (LVP) and (b) diamond anvil cell (DAC)
-
[1] Akimoto, S. I., Fujisawa, H., 1968. Olivine‐Spinel Transition in the System Mg2SiO4‐Fe2SiO4 at 800℃. Earth and Planetary Science Letters, 1(4): 237-240. https://doi.org/10.1016/0012‐821x(66)90076‐8 [2] Badro, J., Fiquet, G., Guyot, F., et al., 2003. Iron Partitioning in Earth's Mantle: Toward a Deep Lower Mantle Discontinuity. Science, 300(5620): 789-791. https://doi.org/10.1126/science.1081311 [3] Badro, J., Rueff, J. P., Vanko, G., et al., 2004. Electronic Transitions in Perovskite: Possible Nonconvecting Layers in the Lower Mantle. Science, 305(5682): 383-386. https://doi.org/10.1126/science.1098840 [4] Beck, A. E., Darbha, D. M., Schloessin, H. H., 1978. Lattice Conductivities of Single‐Crystal and Polycrystalline Materials at Mantle Pressures and Temperatures. Physics of the Earth and Planetary Interiors, 17(1): 35-53. https://doi.org/10.1016/0031‐9201(78)90008‐0 [5] Beck, P., Goncharov, A. F., Struzhkin, V. V., et al., 2007. Measurement of Thermal Diffusivity at High Pressure Using a Transient Heating Technique. Applied Physics Letters, 91(18): 181914. https://doi.org/10.1063/1.2799243 [6] Birch, F., 1938. The Effect of Pressure Upon the Elastic Parameters of Isotropic Solids, According to Murnaghan's Theory of Finite Strain. Journal of Applied Physics, 9(4): 279-288. https://doi.org/10.1063/1.1710417 [7] Birch, F., 1952. Elasticity and Constitution of the Earth's Interior. Journal of Geophysical Research, 57(2): 227-286. https://doi.org/10.1029/jz057i002p00227 [8] Bridgman, P.W., 1958. Physics of High Pressure. G Bell and Sons, London. [9] Buffett, B.A., Garnero, E.J., Jeanloz, R., 2000. Sediments at the Top of Earth' s Core. Science, 290: 1338-1342. doi: 10.1126/science.290.5495.1338 [10] Chai, M., Brown, J. M., Slutsky, L. J., 1996. Thermal Diffusivity of Mantle Minerals. Physics and Chemistry of Minerals, 23(7): 470-475. https://doi.org/10.1007/bf00202033 [11] Chang, Y. Y., Hsieh, W. P., Tan, E., et al., 2017. Hydration‐Reduced Lattice Thermal Conductivity of Olivine in Earth's Upper Mantle. Proceedings of the National Academy of Sciences, 114(16): 4078-4081. https://doi.org/10.1073/pnas.1616216114 [12] Chen, S. B., Guo, X. Z., Yoshino, T., et al., 2018. Dehydration of Phengite Inferred by Electrical Conductivity Measurements: Implication for the High Conductivity Anomalies Relevant to the Subduction Zones. Geology, 46(1): 11-14. https://doi.org/10.1130/g39716.1 [13] Coes, L., 1953. A New Dense Crystalline Silica. Science, 118(3057): 131-132. https://doi.org/10.1126/science.118.3057.131 [14] Dai, L. D., Karato, S. I., 2009. Electrical Conductivity of Pyrope‐Rich Garnet at High Temperature and High Pressure. Physics of the Earth and Planetary Interiors, 176(1/2): 83-88. https://doi.org/10.1016/j.pepi.2009.04.002 [15] Dai, L. D., Li, H. P., Hu, H. Y., et al., 2008. Experimental Study of Grain Boundary Electrical Conductivities of Dry Synthetic Peridotite under High‐Temperature, High‐Pressure, and Different Oxygen Fugacity Conditions. Journal of Geophysical Research, 113(B12): 211. https://doi.org/10.1029/2008jb005820 [16] Fei, Y. W., Ricolleau, A., Frank, M., et al., 2007. Toward an Internally Consistent Pressure Scale. Proceedings of the National Academy of Sciences, 104(22): 9182-9186. https://doi.org/10.1073/pnas.0609013104 [17] Fei, H. , Huang, R., Yang, X., 2017. CaSiO3‐Perovskite May Cause Electrical Conductivity Jump in the Topmost Lower Mantle. Geophysical Research Letters, 44: 10226-10232. https://doi.org/10.1002/2017gl075070 [18] Fei, H. Z., Druzhbin, D., Katsura, T., 2020. The Effect of Water on Ionic Conductivity in Olivine. Journal of Geophysical Research: Solid Earth, 125(3): 1-15. https://doi.org/10.1029/2019jb019313 [19] Fu, H. F., Zhang, B. H., Ge, J. H., et al., 2019. Thermal Diffusivity and Thermal Conductivity of Granitoids at 283‐988 K and 0.3‐1.5 GPa. American Mineralogist, 104(11): 1533-1545. https://doi.org/10.2138/am‐2019‐7099 [20] Garnero, E. J., McNamara, A. K., 2008. Structure and Dynamics of Earth's Lower Mantle. Science, 320(5876): 626-628. https://doi.org/10.1126/science.1148028 [21] Ge, J. H., Zhang, B. H., Xiong, Z. L., et al., 2021. Thermal Properties of Harzburgite and Dunite at 0.8‐3 GPa and 300‐823 K and Implications for the Thermal Evolution of Tibet. Geoscience Frontiers, 12(2): 947-956. https://doi.org/10.1016/j.gsf.2020.01.008 [22] Gomi, H., Hirose, K., 2015. Electrical Resistivity and Thermal Conductivity of Hcp Fe‐Ni Alloys under High Pressure: Implications for Thermal Convection in the Earth's Core. Physics of the Earth and Planetary Interiors, 247: 2-10. https://doi.org/10.1016/j.pepi.2015.04.003 [23] Guillot, T., 2005. The Interiors of Giant Planets: Models and Outstanding Questions. Annual Review of Earth and Planetary Sciences, 33(1): 493-530. https://doi.org/10.1146/annurev.earth.32.101802.120325 [24] Guo, X. Z., Yoshino, T., 2014. Pressure‐Induced Enhancement of Proton Conduction in Brucite. Geophysical Research Letters, 41(3): 813-819. https://doi.org/10.1002/2013gl058627 [25] Guo, X. Z., Yoshino, T., 2013. Electrical Conductivity of Dense Hydrous Magnesium Silicates with Implication for Conductivity in the Stagnant Slab. Earth and Planetary Science Letters, 369-370: 239-247. https://doi.org/10.1016/j.epsl.2013.03.026 [26] Guo, X. Z., Yoshino, T., Shimojuku, A., 2015. Electrical Conductivity of Albite‐(Quartz)‐Water and Albite‐Water‐NaCl Systems and its Implication to the High Conductivity Anomalies in the Continental Crust. Earth and Planetary Science Letters, 412(2): 1-9. https://doi.org/10.1016/j.epsl.2014.12.021 [27] Guo, X., Zhang, L., Behrens, H., et al., 2016. Probing the Status of Felsic Magma Reservoirs: Constraints from the P‐T‐H2O Dependences of Electrical Conductivity of Rhyolitic Melt. Earth and Planetary Science Letters, 433: 54-62. https://doi.org/10.1016/j.epsl.2015.10.036 [28] Gutenberg, B., 1913. Uber die Konstitution der Erdinnern, Erschlossen aus Erdbebenbeobachtungen. Physika Zeitschrift, 14: 1217-1218. [29] Helled, R., Nettelmann, N., Guillot, T., 2020. Uranus and Neptune: Origin, Evolution and Internal Structure. Space Science Reviews, 216(3): 1-26. https://doi.org/10.1007/s11214‐020‐00660‐3 [30] Hinze, E., Will, G., Cemič, L., 1981. Electrical Conductivity Measurements on Synthetic Olivines and on Olivine, Enstatite and Diopside from Dreiser Weiher, Eifel (Germany) under Defined Thermodynamic Activities as a Function of Temperature and Pressure. Physics of the Earth and Planetary Interiors, 25(3): 245-254. https://doi.org/10.1016/0031‐9201(81)90068‐6 [31] Hirose, K., Wood, B., Vočadlo, L., 2021. Light Elements in the Earth's Core. Nature Reviews Earth & Environment, 2(9): 645-658. https://doi.org/10.1038/s43017‐021‐00203‐6 [32] Hsieh, W. P., Chen, B., Li, J., et al., 2009. Pressure Tuning of the Thermal Conductivity of the Layered Muscovite Crystal. Physical Review B, 80(18): 302. https://doi.org/10.1103/physrevb.80.180302 [33] Hsieh, W. P., Deschamps, F., Okuchi, T., et al., 2017. Reduced Lattice Thermal Conductivity of Fe‐Bbearing Bridgmanite in Earth's Deep Mantle. Journal of Geophysical Research: Solid Earth, 122(7): 4900-4917. https://doi.org/10.1002/2017jb014339 [34] Hsieh, W. P., Deschamps, F., Okuchi, T., et al., 2018. Effects of Iron on the Lattice Thermal Conductivity of Earth's Deep Mantle and Implications for Mantle Dynamics. Proceedings of the National Academy of Sciences, 115(16): 4099-4104. https://doi.org/10.1073/pnas.1718557115 [35] Hsieh, W. P., Goncharov, A. F., Labrosse, S., et al., 2020. Low Thermal Conductivity of Iron‐Silicon Alloys at Earth's Core Conditions with Implications for the Geodynamo. Nature Communications, 11(1): 3332. https://doi.org/10.1038/s41467‐020‐17106‐7 [36] Hu, Q. Y., Kim, D. Y., Yang, W. G., et al., 2016. FeO2 and FeOOH under Deep Lower‐Mantle Conditions and Earth's Oxygen‐Hydrogen Cycles. Nature, 534(7606): 241-244. https://doi.org/10.1038/nature18018 [37] Hu, Q. Y., Liu, J., Chen, J., et al., 2021. Mineralogy of the Deep Lower Mantle in the Presence of H2O. National Science Review, 8(4): 98. https://doi.org/10.1093/nsr/nwaa098 [38] Huang, X. G., Xu, Y. S., Karato, S. I., 2005. Water Content in the Transition Zone from Electrical Conductivity of Wadsleyite and Ringwoodite. Nature, 434(7034): 746-749. https://doi.org/10.1038/nature03426 [39] Irifune, T., Nishiyama, N., Kuroda, K., et al., 1998. The Postspinel Phase Boundary in Mg2SiO4 Determined by in Situ X‐Rray Diffraction. Science, 279: 1698-1700. doi: 10.1126/science.279.5357.1698 [40] Ito, E., Takahashi, E., 1989. Postspinel Transformations in the System Mg2SiO4‐Fe2SiO4 and some Geophysical Implications. Journal of Geophysical Research: Solid Earth, 94(B8): 10637-10646. https://doi.org/10.1029/jb094ib08p10637 [41] Journaux, B., Daniel, I., Petitgirard, S., et al., 2017. Salt Partitioning between Water and High‐Pressure Ices. Implication for the Dynamics and Habitability of Icy Moons and Water‐Rich Planetary Bodies. Earth and Planetary Science Letters, 463: 36-47. https://doi.org/10.1016/j.epsl.2017.01.017 [42] Karato, S., 1990. The Role of Hydrogen in the Electrical Conductivity of the Upper Mantle. Nature,347: 272-273. doi: 10.1007/bf00200122 [43] Katsura, T., 1995. Thermal Diffusivity of Olivine under Upper Mantle Conditions. Geophysical Journal International, 122(1): 63-69. https://doi.org/10.1111/j.1365‐246x.1995.tb03536.x [44] Katsura, T., Sato, K., Ito, E., 1998. Electrical Conductivity of Silicate Perovskite at Lower‐Mantle Conditions. Nature, 395(6701): 493-495. https://doi.org/10.1038/26736 [45] Konôpková, Z., McWilliams, R. S., Gómez‐Pérez, N., et al., 2016. Direct Measurement of Thermal Conductivity in Solid Iron at Planetary Core Conditions. Nature, 534(7605): 99-101. https://doi.org/10.1038/nature18009 [46] Lebedev, S., Chevrot, S., van der Hilst, R. D., 2002. Seismic Evidence for Olivine Phase Changes at the 410‐ and 660‐Kilometer Discontinuities. Science, 296(5571): 1300-1302. https://doi.org/10.1126/science.1069407 [47] Lehmann, I., 1936. P', Publications du Bureau Central Seismologique International, Série A. Travaux Scientifique, 14: 87-115. [48] Li, Y., Jiang, H. T., Yang, X. Z., 2017. Fluorine Follows Water: Effect on Electrical Conductivity of Silicate Minerals by Experimental Constraints from Phlogopite. Geochimica et Cosmochimica Acta, 217: 16-27. https://doi.org/10.1016/j.gca.2017.08.020 [49] Lin, J. F., Struzhkin, V. V., Jacobsen, S. D., et al., 2005. Spin Transition of Iron in Magnesiowüstite in the Earth's Lower Mantle. Nature, 436(7049): 377-380. https://doi.org/10.1038/nature03825 [50] Lin, J. F., Speziale, S., Mao, Z., et al., 2013. Effects of The Electronic Spin Transitions of Iron in Lower Mantle Minerals: Implications for Deep Mantle Geophysics and Geochemistry. Reviews of Geophysics, 51(2): 244-275. https://doi.org/10.1002/rog.20010 [51] Liu, J., Hu, Q. Y., Young Kim, D., et al., 2017. Hydrogen‐Bearing Iron Peroxide and the Origin of Ultralow‐Velocity Zones. Nature, 551(7681): 494-497. https://doi.org/10.1038/nature24461 [52] Liu, J., Hu, Q. Y., Bi, W. L., et al., 2019. Altered Chemistry of Oxygen and Iron under Deep Earth Conditions. Nature Communications, 10(1): 153. https://doi.org/10.1038/s41467‐018‐08071‐3 [53] Liu, J., Wang, C. X., Lv, C., et al., 2020. Evidence for Oxygenation of Fe‐Mg Oxides at Mid‐Mantle Conditions and the Rise of Deep Oxygen. National Science Review, 8(4): 96. https://doi.org/10.1093/nsr/nwaa096 [54] Liu, H. Y., Zhang, K., Ingrin, J., et al., 2021. Electrical Conductivity of Omphacite and Garnet Indicates Limited Deep Water Recycling by Crust Subduction. Earth and Planetary Science Letters, 559: 116784. https://doi.org/10.1016/j.epsl.2021.116784 [55] Liu, L. G., 1976. The Post‐Spinel Phase of Forsterite. Nature, 262(5571): 770-772. https://doi.org/10.1038/262770a0 [56] Lobanov, S. S., Zhu, Q., Holtgrewe, N., et al., 2015. Stable Magnesium Peroxide at High Pressure. Scientific Reports, 5(1): 13582. https://doi.org/10.1038/srep13582 [57] Lv, C. J., Liu, J., 2022. Early Planetary Processes and Light Elements in Iron‐Dominated Cores. Acta Geochimica, 218(12): 1-25. https://doi.org/10.1007/s11631‐021‐00522‐x [58] Manthilake, G. M., de Koker, N., Frost, D. J., et al., 2011. Lattice Thermal Conductivity of Lower Mantle Minerals and Heat Flux from Earth's Core. Proceedings of the National Academy of Sciences, 108(44): 17901-17904. https://doi.org/10.1073/pnas.1110594108 [59] Manthilake, G., Bolfan‐Casanova, N., Novella, D., et al., 2016. Dehydration of Chlorite Explains Anomalously High Electrical Conductivity in the Mantle Wedges. Science Advances, 2(5): 1-14. https://doi.org/10.1126/sciadv.1501631 [60] Manthilake, G., Mookherjee, M., Bolfan‐Casanova, N., et al., 2015. Electrical Conductivity of Lawsonite and Dehydrating Fluids at High Pressures and Temperatures. Geophysical Research Letters, 42(18): 7398-7405. https://doi.org/10.1002/2015gl064804 [61] Mao, Z., Lin, J. F., Liu, J., et al., 2011. Thermal Equation of State of Lower‐Mantle Ferropericlase across the Spin Crossover. Geophysical Research Letters, 38(23): 10-25. https://doi.org/10.1029/2011gl049915 [62] Mao, Z., Lin, J. F., Liu, J., et al., 2012. Sound Velocities of Fe and Fe‐Si Alloy in the Earth's Core. Proceedings of the National Academy of Sciences, 109(26): 10239-10244. https://doi.org/10.1073/pnas.1207086109 [63] Mao, Z., Lin, J.F., Yang, J., et al., 2014. (Fe, Al)‐Bearing Post‐Perovskite in the Earth's Lower Mantle. Earth and Planetary Science Letters, 403: 157-165. doi: 10.1016/j.epsl.2014.06.042 [64] Marzotto, E., Hsieh, W. P., Ishii, T., et al., 2020. Effect of Water on Lattice Thermal Conductivity of Ringwoodite and its Implications for the Thermal Evolution of Descending Slabs. Geophysical Research Letters, 47(13): 23-29. https://doi.org/10.1029/2020gl087607 [65] Miao, S. Q., Li, H. P., Chen, G., 2014. The Temperature Dependence of Thermal Conductivity for Lherzolites from the North China Craton and the Associated Constraints on the Thermodynamic Thickness of the Lithosphere. Geophysical Journal International, 197(2): 900-909. https://doi.org/10.1093/gji/ggu020 [66] Murakami, M., Hirose, K., Kawamura, K., et al., 2004. Post‐Perovskite Phase Transition in MgSiO3. Science, 304(5672): 855-858. https://doi.org/10.1126/science.1095932 [67] Murnaghan, F. D., 1937. Finite Deformations of an Elastic Solid. American Journal of Mathematics, 59(2): 235. https://doi.org/10.2307/2371405 [68] Ni, H. W., Keppler, H., Manthilake, M. A. G. M., et al., 2011. Electrical Conductivity of Dry and Hydrous NaAlSi3O8 Glasses and Liquids at High Pressures. Contributions to Mineralogy and Petrology, 162(3): 501-513. https://doi.org/10.1007/s00410‐011‐0608‐5 [69] Ni, H. W., Hui, H., Steinle‐Neumann, G., 2015. Transport Properties of Silicate Melts. Reviews of Geophysics, 53(3): 715-744. https://doi.org/10.1002/2015rg000485 [70] Oganov, A. R., Ono, S., 2004. Theoretical and Experimental Evidence for a Post‐Perovskite Phase of MgSiO3 in Earth's D″ Layer. Nature, 430(6998): 445-448. https://doi.org/10.1038/nature02701 [71] Ohta, K., Onoda, S., Hirose, K., et al., 2008. The Electrical Conductivity of Post‐Perovskite in Earth's D'' Layer. Science, 320(5872): 89-91. https://doi.org/10.1126/science.1155148 [72] Ohta, K., Yagi, T., Taketoshi, N., et al., 2012. Lattice Thermal Conductivity of MgSiO3 Perovskite and Post‐Perovskite at the Core‐mantle Boundary. Earth and Planetary Science Letters, 349-350: 109-115. https://doi.org/10.1016/j.epsl.2012.06.043 [73] Ohta, K., Kuwayama, Y., Hirose, K., et al., 2016. Experimental Determination of the Electrical Resistivity of Iron at Earth's Core Conditions. Nature, 534(7605): 95-98. https://doi.org/10.1038/nature17957 [74] Oldham, R. D., 1906. The Constitution of the Interior of the Earth, as Revealed by Earthquakes: (Second Communication). some New Light on the Origin of the Oceans. Quarterly Journal of the Geological Society, 63(1/2/3/4): 344-350. https://doi.org/10.1144/gsl.jgs.1907.063.01‐04.24 [75] Osako, M., Ito, E., Yoneda, A., 2004. Simultaneous Measurements of Thermal Conductivity and Thermal Diffusivity for Garnet and Olivine under High Pressure. Physics of the Earth and Planetary Interiors, 143-144: 311-320. https://doi.org/10.1016/j.pepi.2003.10.010 [76] Peslier, A. H., Schönbächler, M., Busemann, H., et al., 2017. Water in the Earth's Interior: Distribution and Origin. Space Science Reviews, 212(1/2): 743-810. https://doi.org/10.1007/s11214‐017‐0387‐z [77] Pozzo, M., Davies, C., Gubbins, D., et al., 2012. Thermal and Electrical Conductivity of Iron at Earth's Core Conditions. Nature, 485(7398): 355-358. https://doi.org/10.1038/nature11031 [78] Ringwood, A.E., 1959. The Olivine‐Spinel Inversion in Fayalite. American Mineralogist, 44: 659-661. [79] Ringwood, A. E., 1975. Composition and Petrology of the Earth's Mantle, McGraw‐Hill, New York, 1-618. [80] Roberts, J. J., Tyburczy, J. A., 1991. Frequency Dependent Electrical Properties of Polycrystalline Olivine Compacts. Journal of Geophysical Research, 96(B10): 16205. https://doi.org/10.1029/91jb01574 [81] Roberts, J. J., Tyburczy, J. A., 1993. Impedance Spectroscopy of Single and Polycrystalline Olivine: Evidence for Grain Boundary Transport. Physics and Chemistry of Minerals, 20(1): 19-26. https://doi.org/10.1007/bf00202246 [82] Roberts, J. J., Tyburczy, J. A., 1999. Partial‐Melt Electrical Conductivity: Influence of Melt Composition. Journal of Geophysical Research: Solid Earth, 104(B4): 7055-7065. https://doi.org/10.1029/1998jb900111 [83] Saikia, A., Frost, D. J., Rubie, D. C., 2008. Splitting of the 520 Kilometer Seismic Discontinuity and Chemical Heterogeneity in the Mantle. Science, 319(5869): 1515-1518. https://doi.org/10.1126/science.1152818 [84] Shim, S. H., Duffy, T. S., Shen, G. Y., 2001. The Post‐Spinel Transformation in Mg2SiO4 and Its Relation to the 660 km Seismic Discontinuity. Nature, 411(6837): 571-574. https://doi.org/10.1038/35079053 [85] Shimojuku, A., Yoshino, T., Yamazaki, D., et al., 2012. Electrical Conductivity of Fluid‐Bearing Quartzite under Lower Crustal Conditions. Physics of the Earth and Planetary Interiors, 198-199: 1-8. https://doi.org/10.1016/j.pepi.2012.03.007 [86] Stevenson, D. J., 2020. Jupiter's Interior as Revealed by Juno. Annual Review of Earth and Planetary Sciences, 48(1): 465-489. https://doi.org/10.1146/annurev‐earth‐081619‐052855 [87] Stishov, S. M., Popova, S. V., 1961. A New Dense Modification of Silica. Geochemistry, 10: 923-926. [88] Sun, W., Dai L., Li, H., et al., 2020. Electrical Conductivity of Clinopyroxene‐NaCl‐H2O System at High Temperatures and Pressures: Implications for High‐conductivity Anomalies in the Deep Crust and Subduction Zone. Journal of Geophysical Research: Solid Earth, 125: e2019JB019093. [89] Takahashi, T., Bassett, W. A., 1964. High‐Pressure Polymorph of Iron. Science, 145(3631): 483-486. https://doi.org/10.1126/science.145.3631.483 [90] Tange, Y., Nishihara, Y., Tsuchiya, T., 2010. Correction to "Unified Analyses for P‐V‐Tequation of State of MgO: A Solution for Pressure‐Scale Problems in High P‐T Experiments". Journal of Geophysical Research, 115(B12): 3208. https://doi.org/10.1029/2010jb007959 [91] Wang, D. J., Mookherjee, M., Xu, Y. S., et al., 2006. The Effect of Water on the Electrical Conductivity of Olivine. Nature, 443(7114): 977-980. https://doi.org/10.1038/nature05256 [92] Wang, C., Yoneda, A., Osako, M., et al., 2014. Measurement of Thermal Conductivity of Omphacite, Jadeite, and Diopside up to 14 GPa and 1 000 K: Implication for the Role of Eclogite in Subduction Slab. Journal of Geophysical Research: Solid Earth, 119: 6277-6287. doi: 10.1002/2014JB011208 [93] Wu, X., Lin, J. F., Kaercher, P., et al., 2017. Seismic Anisotropy of the D″ Layer Induced by (001) Deformation of Post‐Perovskite. Nature Communications, 8(1): 14669. https://doi.org/10.1038/ncomms14669 [94] Wu, X., Wu, Y., Lin, J.F., Liu, J., et al., 2016. Two‐Stage Spin Transition of Iron in FeAl‐Bearing Phase D at Lower Mantle. Journal of Geophysical Research: Solid Earth, 121(9): 6411-6420. https://doi.org/10.1002/2016jb013209 [95] Xia, Q. K., Liu, J., Kovács, I., et al., 2019. Water in the Upper Mantle and Deep Crust of Eastern China: Concentration, Distribution and Implications. National Science Review, 6(1): 125-144. https://doi.org/10.1093/nsr/nwx016 [96] Xie, H.S., 1997. Introduction to Deep Earth Material Science. Science Press, Beijing, 1-297(in Chinese). [97] Xiong, Z. L., Zhang, B. H., Ge, J. H., et al., 2021. Thermal Diffusivity and Thermal Conductivity of Alkali Feldspar at 0.8‐3 GPa and 300‐873 K. Contributions to Mineralogy and Petrology, 176(6): 42. https://doi.org/10.1007/s00410‐021‐01797‐2 [98] Xu, Y. S., Shankland, T. J., Linhardt, S., et al., 2004. Thermal Diffusivity and Conductivity of Olivine, Wadsleyite and Ringwoodite to 20 GPa and 1 373 K. Physics of the Earth and Planetary Interiors, 143-144: 321-336. https://doi.org/10.1016/j.pepi.2004.03.005 [99] Yamazaki, D., Yoshino, T., Nakakuki, T., 2014. Interconnection of Ferro‐Periclase Controls Subducted Slab Morphology at the Top of the Lower Mantle. Earth and Planetary Science Letters, 403: 352-357. https://doi.org/10.1016/j.epsl.2014.07.017 [100] Yamazaki, D., Ito, E., 2020. High Pressure Generation in the Kawai‐Type Multianvil Apparatus Equipped with Sintered Diamond Anvils. High Pressure Research, 40(1): 3-11. https://doi.org/10.1080/08957959.2019.1689975 [101] Yang, X. Z., Keppler, H., McCammon, C., et al., 2011. Effect of Water on the Electrical Conductivity of Lower Crustal Clinopyroxene. Journal of Geophysical Research, 116(B4): 208. https://doi.org/10.1029/2010jb008010 [102] Yang, X. Z., Keppler, H., McCammon, C., et al., 2012. Electrical Conductivity of Orthopyroxene and Plagioclase in the Lower Crust. Contributions to Mineralogy and Petrology, 163(1): 33-48. https://doi.org/10.1007/s00410‐011‐0657‐9 [103] Yoshino, T., Katsura, T., 2009. Reply to Comments on "Electrical Conductivity of Wadsleyite as a Function of Temperature and Water Content" by Manthilake et al. . Physics of the Earth and Planetary Interiors, 174(1/2/3/4): 22-23. https://doi.org/10.1016/j.pepi.2009.01.012 [104] Yoshino, T., Noritake, F., 2011. Unstable Graphite Films on Grain Boundaries in Crustal Rocks. Earth and Planetary Science Letters, 306(3/4): 186-192. https://doi.org/10.1016/j.epsl.2011.04.003 [105] Yoshino, T., Katsura, T., 2013. Electrical Conductivity of Mantle Minerals: Role of Water in Conductivity Anomalies. Annual Review of Earth and Planetary Sciences, 41(1): 605-628. https://doi.org/10.1146/annurev‐earth‐050212‐124022 [106] Yoshino, T., Walter, M. J., Katsura, T., 2004. Connectivity of Molten Fe Alloy in Peridotite Based on in Situ Electrical Conductivity Measurements: Implications for Core Formation in Terrestrial Planets. Earth and Planetary Science Letters, 222(2): 625-643. https://doi.org/10.1016/j.epsl.2004.03.010 [107] Yoshino, T., Matsuzaki, T., Yamashita, S., et al., 2006. Hydrous Olivine Unable to Account for Conductivity Anomaly at the Top of the Asthenosphere. Nature, 443(7114): 973-976. https://doi.org/10.1038/nature05223 [108] Yoshino, T., Manthilake, G., Matsuzaki, T., et al., 2008. Dry Mantle Transition Zone Inferred from the Conductivity of Wadsleyite and Ringwoodite. Nature, 451(7176): 326-329. https://doi.org/10.1038/nature06427 [109] Yoshino, T., Matsuzaki, T., Shatzkiy, A., et al., 2009. Corrigendum to "The Effect of Water on the Electrical Conductivity of Olivine Aggregates and its Implications for the Electrical Structure in the Upper Mantle". Earth and Planetary Science Letters, 391: 135-136. https://doi.org/10.1016/j.epsl.2009.09.032 [110] Yoshino, T., Laumonier, M., McIsaac, E., et al., 2010. Electrical Conductivity of Basaltic and Carbonatite Melt‐Bearing Peridotites at High Pressures: Implications for Melt Distribution and Melt Fraction in the Upper Mantle. Earth and Planetary Science Letters, 295(3/4): 593-602. https://doi.org/10.1016/j.epsl.2010.04.050 [111] Yoshino, T., Ito, E., Katsura, T., et al., 2011. Effect of Iron Content on Electrical Conductivity of Ferropericlase with Implications for the Spin Transition Pressure. Journal of Geophysical Research, 116(B4): 87-96. https://doi.org/10.1029/2010jb007801 [112] Yoshino, T., Kamada, S., Zhao, C. C., et al., 2016. Electrical Conductivity Model of Al‐Bearing Bridgmanite with Implications for the Electrical Structure of the Earth's Lower Mantle. Earth and Planetary Science Letters, 434(B4): 208-219. https://doi.org/10.1016/j.epsl.2015.11.032 [113] Yoshino, T., Zhang, B. H., Rhymer, B., et al., 2017. Pressure Dependence of Electrical Conductivity in Forsterite. Journal of Geophysical Research: Solid Earth, 122(1): 158-171. https://doi.org/10.1002/2016jb013555 [114] Zhang, B. H., Ash, B., Yoshino, T., 2017. Effect of Graphite on the Electrical Conductivity of the Lithospheric Mantle. Geochemistry, Geophysics, Geosystems, 18(1): 23-40. https://doi.org/10.1002/2016gc006530 [115] Zhang, B. H., Yoshino, T., 2020. Temperature‐Enhanced Electrical Conductivity Anisotropy in Partially Molten Peridotite under Shear Deformation. Earth and Planetary Science Letters, 530(12): 115922. https://doi.org/10.1016/j.epsl.2019.115922 [116] Zhang, B. H., Xia, Q. K., 2021. Influence of Water on the Physical Properties of Olivine, Wadsleyite, and Ringwoodite. European Journal of Mineralogy, 33(1): 39-75. https://doi.org/10.5194/ejm‐33‐39‐2021 [117] Zhang, B. H., Yoshino, T., Wu, X. P., et al., 2012. Electrical Conductivity of Enstatite as a Function of Water Content: Implications for the Electrical Structure in the Upper Mantle. Earth and Planetary Science Letters, 357-358: 11-20. https://doi.org/10.1016/j.epsl.2012.09.020 [118] Zhang, B. H., Yoshino, T., Yamazaki, D., et al., 2014. Electrical Conductivity Anisotropy in Partially Molten Peridotite under Shear Deformation. Earth and Planetary Science Letters, 405: 98-109. https://doi.org/10.1016/j.epsl.2014.08.018 [119] Zhang, B.H., Zhao, C.C., Ge, J.H., et al., 2019a. Electrical Conductivity of Omphacite as a Function of Water Content and Implications for High Conductivity Anomalies in the Dabie‐Sulu UHPM Belts and Tibet. Journal of Geophysical Research: Solid Earth, 124(12): 12523-12536. https://doi.org/10.1029/2019jb018826 [120] Zhang, B.H., Ge, J.H., Xiong, Z.L., et al., 2019b. Effect of Water on the Thermal Properties of Olivine with Implications for Lunar Internal Temperature. Journal of Geophysical Research: Planets, 124(12): 3469-3481. https://doi.org/10.1029/2019je006194 [121] Zhang, Y. Y., Yoshino, T., Yoneda, A., et al., 2019c. Effect of Iron Content on Thermal Conductivity of Olivine with Implications for Cooling History of Rocky Planets. Earth and Planetary Science Letters, 519(16): 109-119. https://doi.org/10.1016/j.epsl.2019.04.048 [122] Zhang, B. H., Guo, X., Yoshino, T., et al., 2021. Electrical Conductivity of Melts: Implications for Conductivity Anomalies in the Earth's Mantle. National Science Review, 8(11): 64. https://doi.org/10.1093/nsr/nwab064 [123] Zhang, L., Meng, Y., Yang, W., et al., 2014. Disproportionation of (Mg, Fe)SiO3 Perovskite in Earth's Deep Lower Mantle. Science, 344: 877-882. doi: 10.1126/science.1250274 [124] Zhao, C. C., Yoshino, T., 2016. Electrical Conductivity of Mantle Clinopyroxene as a Function of Water Content and its Implication on Electrical Structure of Uppermost Mantle. Earth and Planetary Science Letters, 447(20): 1-9. https://doi.org/10.1016/j.epsl.2016.04.028 [125] Zhou, C.Y., Jin, Z.M., 2014. The "Bright Lamp" into the Deep Earth: Experiments at High Pressure and High Temperature. Chinese Journal of Nature, 36(2): 79-88(in Chines with English abstract). [126] Zhuang, Y. K., Su, X. W., Salke, N. P., et al., 2021. The Effect of Nitrogen on the Compressibility and Conductivity of Iron at High Pressure. Geoscience Frontiers, 12(2): 983-989. https://doi.org/10.1016/j.gsf.2020.04.012 [127] 谢鸿森, 1997. 地球深部物质科学导论. 北京: 科学出版社, 1-297. [128] 周春银, 金振民, 2014. 照亮地球深部的"明灯"——高温高压实验. 自然杂志, 36(2): 79-88. https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZZ201402002.htm